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We study the asymptotic behaviour of the displacement of a thin
periodically perforated rod under the action of forces applied to one of
the rod ends, another end of the rod is clamped. We show that, up to
boundary layer functions arising in the vicinity of the end points of the rod,
the set of solutions forms a finite dimensional space, and that in the interior
of the rod any solution only depends on the resultant forces and moments.
We also provide the results of numerical computations of the effective
torsion rigidity for a hexagonal periodically perforated rod.

Keywords: thin rod; homogenization; periodic structure

AMS Subject Classifications: 35K20; 35Q35; 35R60

1. Introduction

This article deals with the asymptotic behaviour of deformation of a thin elastic
periodically perforated rod in the presence of twisting forces. We assume that the
deformations are small so that the linearized model applies.

The deformation of a rod of vanishing thickness has been widely studied in the
works of mechanical engineers. There are also several rigorous mathematical works
on this subject, where, for some particular models, the asymptotic expansion and
the limit problem have been justified. A number of these works focused on
inhomogeneous rods and rod constructions with periodic microstructure. In
particular, in [1] Kozlova and Panasenko studied the vibration of a thin rod with
clamped end points under the action of distributed forces and moments of forces.
The stationary models describing a thin elastic rod with distributed forces were
studied in [2,3] and in the book by Nazarov [4]. Closely related problems were
investigated in [5]. A thin curved elastic rod was studied in [6] by means of unfolding
technique.
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In this work we consider the elasticity system describing a thin periodically
perforated rod under the assumption that one end of the rod is clumped, and all the
forces and moments are applied to another end of the rod.

It is supposed that the rod thickness and the perforation period are of the same
order, a small parameter characterizing these quantities, being denoted by ".

We will show that a solution of the corresponding elasticity problem admits
an asymptotic expansion, as "! 0. Moreover, in contrast with the case of forces
distributed along the rod [2,3], in the case under considerations the mentioned
asymptotic expansion involves only finite number of terms. For the reader
convenience we will compare the results of this work with some results from [2,3].

The solution of the original problem will be represented as a finite polynomial
series with respect to ", each term of this series either can be expressed in terms of
solutions of auxiliary periodic problems and polynomial functions or is a boundary
layer type function. The boundary layer functions describe the behaviour of the rod
in the vicinity of its end points. In particular, in the interior points of the rod the
solution can be represented as a finite linear combination of the products
of polynomials of degree not greater than three and auxiliary periodic functions.
The coefficient of this linear combination only depends on the resultant forces and
moments applied to the rod end.

The effective equations for the displacements in the tangential and transversal
directions are, in general, coupled. However, in the presence of additional
symmetries, the limit system of equations is getting decoupled and consists
of independent second-order equation for the tangential displacements and fourth-
order system for the transversal displacements.

In this work, under some symmetry conditions, we derive the homogenized
problem and prove the convergence result. We also show that the boundary layer
functions describing the behaviour of solutions in the vicinity of the rod end points
are of exponential type.

There is vast literature devoted to thin plates and shells, see, for instance, [7] and
the bibliography therein.

General ideas of homogenization of elastic bodies with periodic microstructure
were exposed in classical books [8,9].

The paper is organized as follows. In Section 1 we introduce the model studied in
this work and specify the assumptions. Section 2 deals with a number of auxiliary cell
problems stated in the space of functions being periodic in the axial direction of the
rod. Section 3 contains the convergence results. We build an asymptotic expansion
for the solution of the problem under consideration, and then justify the
convergence. The mentioned asymptotic expansion consists of a locally periodic
inner expansion and boundary layer functions in the vicinity of the rod bases.
Finally, in Section 4 we expose the results of numerical computations done for a
hexagonal rod made of an isotropic homogeneous material, with a periodic set of
cylindrical holes. We determine numerically the effective torsion rigidity and other
effective characteristics of the rod.

1.1. Problem set up

Let B be a 1-periodic in the direction x1, open, connected set in R
3 with a smooth

boundary. We assume that the origin belongs to B and that jx2j þ jx3j �C for all
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x2B. For a small "4 0 we set

B" ¼

�
x 2 R

3 : 05 x1 5 1,
x

"
2 B

�
,

and suppose that B" is a connected set. This set is called the perforated rod. Denote

S"0 ¼ fx 2 @B" : x1 ¼ 0g, S"1 ¼ fx 2 @B" : x1 ¼ 1g,

�" ¼ fx 2 @B" : 05 x1 5 1g:

In the set B" we consider the following boundary value problem for the elasticity

system:

@

@xi

�
Aij
�x
"

� @

@xj
�u"

�
¼ �f"ðxÞ

nkA
kj
�x
"

� @

@xj
�u"

���
�"

¼ 0

�u"

���
S"
0

¼ 0

n1A
1j @

@xj
�u"

���
S"
1

¼ �F
� x2
"
,
x3
"

�
,

ð1Þ

where Aij
kl, 1� i, j, k, l� 3, is an elasticity tensor which is defined on B and satisfies the

standard symmetry and uniform ellipticity conditions, n(x)¼ (n1(x), n2(x), n3(x))
t is

the exterior unit normal on �",

�f"ðxÞ ¼

f1ðx1Þ

"2f2ðx1Þ

"2f2ðx1Þ

0
B@

1
CAþ f4ðx1Þ

0

�x3="

x2="

0
B@

1
CA,

and f1(x), f2(x), f3(x) and f4(x) are smooth scalar functions. �u" ¼ ðu", 1, u", 2, u", 3Þ
t is

the vector of unknown functions to be determined.
Throughout this work we assume that the tensor aijklð�Þ, extended to the

complement of B by 0, is 1-periodic in �1 and possesses the following symmetry

conditions:

aijklðS2�Þ ¼ ð�1Þ
�2kþ�2iþ�2lþ�2j aijklð�Þ, aijklðS3�Þ ¼ ð�1Þ

�3kþ�3iþ�3lþ�3j aijklð�Þ, ð2Þ

where

S1� ¼ ð��1, �2, �3Þ
t, S2� ¼ ð�1,��2, �3Þ

t, S3� ¼ ð�1, �2,��3Þ
t:

The set B is also invariant with respect to S2 and S3. Under the above assumptions,

for any "40 problem (1) has a unique solution. Our aim is to describe the limit

behaviour of this solution u", as "! 0. For presentation simplicity later on we

assume that 1/" is integer.
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2. Auxiliary problems

We begin by defining the resultant force and moment for the force �Fðx2" ,
x3
" Þ acting on

the right base S "1 of the rod B". Namely, we set

�W ¼ ð�1,�2,�3,M1,M2,M3Þ
t

with

�i ¼

Z
S "
1

Fi

� x2
"
,
x3
"

�
dx2 dx3, i ¼ 1, 2, 3,

and

M1 ¼

Z
S "
1

�
x3F2

�x2
"
,
x3
"

�
� x2F3

� x2
"
,
x3
"

��
dx2 dx3,

M2 ¼

Z
S "
1

�
x1F3

�x2
"
,
x3
"

�
� x3F1

� x2
"
,
x3
"

��
dx2 dx3,

M3 ¼

Z
S "
1

�
x2F1

�x2
"
,
x3
"

�
� x1F2

� x2
"
,
x3
"

��
dx2 dx3:

Now we introduce a number of auxiliary ‘cell’ problems stated in the domain

Q¼ {�2B : 05 �15 1}. The symbol
P

stands for the lateral boundary of Q:P
¼ f� 2 @B : 05 �1 5 1g, and S0 ¼ f� 2 B : �1 ¼ 0g. We will solve these auxiliary

problems in the space of 1-periodic in �1 functions. The first problem reads

@

@�i

�
Aijð�Þ

@

@�j
N1

�
¼ �

@

@�i
Ai1ð�Þ, � 2 Q,

nkA
kjð�Þ

@

@�j
N1

���
�
¼ �nkA

k1:

According to [2,3], this problem has a periodic in �1 solution. Notice that N1(�) is a
3� 3 matrix. The following three auxiliary problems can be obtained by substituting

the formal asymptotic expansion for �u" in the original equation (1) and by collecting

like powers of " (see Section 3 for the details). These problems read

@

@�i

�
Aijð�Þ

@N2

@�j

�
¼ �

� @
@�i

�
Ai1ð�ÞN1ð�Þ

�
þ A1jð�Þ

@N1

@�i
ð�Þ þ A11ð�Þh2

�
, � 2 Q,

nkA
kjð�Þ

@N2

@�j

���
�
¼ �nkA

k1N1,

ð3Þ

and

@

@�i

�
Aij @N3

@�j

�
¼ �

� @
@�i

�
Ai1N2

�
þ A1j @N2

@�i
þ A11N1 þ h3

�
, � 2 Q,

nkA
kjð�Þ

@N3

@�j

���
�
¼ �nkA

k1N2 ð4Þ

1566 D. Lukkassen et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
0
 
4
 
J
a
n
u
a
r
y
 
2
0
1
0



and

@

@�i

�
Aij @N4

@�j

�
¼ �

� @
@�i

�
Ai1N3

�
þ A1j @N3

@�i
þ A11N2 þ h4

�
, � 2 Q,

nkA
kjð�Þ

@N4

@�j

���
�
¼ �nkA

k1N3; ð5Þ

here N1(�),N2(�),N3(�) and N4(�) are 3� 3 matrices whose entries are 1-periodic in

�1, and h2, h3 and h4 are constant 3� 3 matrices. The latter matrices have been

introduced in order to make problems (3)–(5) solvable. Writing down the

compatibility conditions for problem (3)–(5), one can check that the matrices

h2–h4 are uniquely determined. The following statement holds [2]:

LEMMA 1 Under the symmetry conditions (2) the matrices h2–h4 take the form

h2 ¼

ĉ1 0 0

0 0 0

0 0 0

0
B@

1
CA, h3 ¼

H 0 0

0 0 0

0 0 0

0
B@

1
CA, h4 ¼

0 0 0

0 ĉ2 0

0 0 ĉ3

0
B@

1
CA:

Moreover,

ĉ1¼
1

jQj

Z
Q

A1jð�Þ
�@N1

@�j
ð�Þþ �1jE

�� �
11

d�, H¼
1

jQj

Z
Q

A1jð�Þ
@N2

@�j
ð�Þþ �1jN1ð�Þ

	 
� �
11

d�,

ĉ2¼
1

jQj

Z
Q

A1jð�Þ
�@N3

@�j
ð�Þþ �1jN2ð�Þ

�� �
22

d�,

ĉ3¼
1

jQj

Z
Q

A1jð�Þ
�@N3

@�j
ð�Þþ �1jN2ð�Þ

�� �
33

d�,

where the symbol E stands for the unit matrix.

Other two auxiliary problems are as follows:

@

@�i

�
Aijð�Þ

@ �R

@�j

�
¼ 0,

nkA
kjð�Þ

@ �R

@�j

���
�
¼ �nkA

kj @
�Z

@�j

ð6Þ

with �Z¼ (0, �3�1,��2�1)
t, and

@

@�i

�
Aijð�Þ

@ �K1

@�j

�
¼ �A1j @

�G

@�j
�
@ ðA1j �GÞ

@�j
,

nkA
kjð�Þ

@ �K1

@�j

���
�
¼ �nkA

k1 �G

ð7Þ

with �G¼ (0,��3, �2)
t. Is it easy to check that the compatibility conditions for both

above problems are fulfilled and thus these problems are solvable in the space of

1-periodic in �1 functions.
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3. Asymptotic expansion

We write down an approximate solution in the form

v"ðxÞ ¼

C3x1

V1x
2
1 þ C1x

3
1 þ V3x1x3

V2x
2
1 þ C2x

3
1 � V3x1x2

0
B@

1
CAþ "N1

� x
"

� C3

2V1x1 þ 3C1x
2
1

2V2x1 þ 3C2x
2
1

0
B@

1
CA

þ "V3

R1

�
x
"

�
R2

�
x
"

�
R3

�
x
"

�
0
B@

1
CAþ "2N2

�x
"

� 0

2V1 þ 6C1x1

2V2 þ 6C2x1

0
B@

1
CAþ "3N3

�x
"

� 0

6C1

6C2

0
B@

1
CA, ð8Þ

and define the vector function �w"(x) on S "1 as follows:

�w"ðxÞ ¼ A1j
� x
"

� @

@xj
�v"ðxÞ

����
x1¼1

: ð9Þ

For any vector function �’(x) denote

~�ið �’Þ ¼

Z
S "
1

’iðxÞdx2 dx3, i ¼ 1, 2, 3;

and

~M1ð �’Þ ¼

Z
S "
1

ðx3’2ðxÞ � x2’3ðxÞÞdx2 dx3,

~M2ð �’Þ ¼

Z
S "
1

ð�x3’1ðxÞ þ x1’3ðxÞÞdx2 dx3,

~M3ð �’Þ ¼

Z
S "
1

ðx2’1ðxÞ � x1’2ðxÞÞdx2 dx3:

Consider the system of equations

~�ið �w"Þ ¼ �i, ~Mið �w"Þ ¼Mi: ð10Þ

One can easily see that this system of equations is a linear system with respect to the

unknowns C1, C2, C3 and V1, V2, V3. For brevity we denote

Lij ¼

n
A1k

� @N1

@�k
þ �1kE

�o
ij
, Pij ¼

n
A1k

� @N2

@�k
þ �1kN1

�o
ij
,

Sij ¼

n
A1k

� @N3

@�k
þ �1kN2

�o
ij
, Qi ¼

n
�A1k

@ �R

@�k

o
i
:

After straightforward computations, we can find the coefficients of system (10). It

reads

�11 0 0 0 0 0

0 �22 0 �24 0 0

0 0 �33 0 �35 0

0 0 0 0 0 �46

0 0 �53 0 �55 0

0 �62 0 �64 0 0

0
BBBBBBBB@

1
CCCCCCCCA

C3

C1

C2

V1

V2

V3

0
BBBBBBBB@

1
CCCCCCCCA
¼

�1

�2

�3

M1

M2

M3

0
BBBBBBBB@

1
CCCCCCCCA

ð11Þ
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with

�11 ¼

Z
S1

L11ð0, �̂Þd�̂, �22 ¼ 6"

Z
S1

P22ð0, �̂Þd�̂ þ 6"2
Z
S1

S22ð0, �̂Þd�̂,

�24 ¼ 2"

Z
S1

P22ð0, �̂Þd�̂, �33 ¼ 6"

Z
S1

P33ð0, �̂Þd�̂ þ 6"2
Z
S1

S33ð0, �̂Þd�̂,

�35 ¼ 2"

Z
S1

P33ð0, �̂Þd�̂,

�46 ¼ �

Z
S1

ð�22 þ �
2
3Þd�̂ þ

Z
S1

�
Q2ð0, �̂Þ�3 �Q3ð0, �̂Þ�2

�
d�̂,

�53 ¼ 6"

Z
S1

�
P13ð0, �̂Þ�3 � P33ð0, �̂Þ�1

�
d�̂ þ 6"2

Z
S1

�
S13ð0, �̂Þ�3 � S33ð0, �̂Þ�1

�
d�̂,

�55 ¼ 2"

Z
S1

�
P13ð0, �̂Þ�3 � P33ð0, �̂Þ�1

�
d�̂,

�62 ¼ 6"

Z
S1

�
P12ð0, �̂Þ�2 � P22ð0, �̂Þ�1

�
d�̂ þ 6"2

Z
S1

�
S12ð0, �̂Þ�2 � S22ð0, �̂Þ�1

�
d�̂ ð12Þ

and �̂ ¼ ð�2, �3Þ.

Remark 1 Formally speaking, since the forces F(x2/", x3/") in (1) are applied at S"1,

we have to compute the coefficients �ij at the cross-section S1=" ¼ f� 2 B : �1 ¼ 1="g.
However, taking into account the fact that �v" satisfies the equation

@

@xi
Aij x

"

� � @

@xj
�v"

	 

¼ 0 in B", nkA

kj x

"

� � @

@xj
�v"j@Bc

¼ 0,

we conculde that the quantities ~�ið �w"Þ and ~Mið �w"Þ do not change if in (9) we replace
the cross-section {x1¼ 1} with any other cross-section of B". This yields (12).

LEMMA 2 The matrix {�ij} does not degenerate:

detðf�ijgÞ 6¼ 0:

Proof The statement will be proved later on in this section. g

Denote A¼ {�ij}
�1. According to the last lemma this matrix is well defined.

Remark 1 If the constants C1, C2, C3 and V1, V2, V3 satisfy the system (10), then all

the resultant forces and moments of the difference �u" � �v" are equal to zero at S "1 .

Assume that �f"(x)¼ 0 in (1). Then the following statement holds.

THEOREM 1 Let (C3,C1,C2,V1,V2,V3) be a solution of system (11). Then the
difference between a solution �u" to problem (1) and the function �v" defined in (8) admits

the representation

�u"ðxÞ � �v"ðxÞ ¼ �U ð1Þ" ðxÞ þ
�U ð2Þ" ðxÞ þOðe�c0="Þ,

where c04 0, �U ð1Þ" and �U ð2Þ" are boundary layer functions in the vicinity of the end

points of the rod, that is

j �U ð1Þ" ðxÞj � Ce��x1=", j �U ð2Þ" ðxÞj � Ce� ðx1�1Þ="

for some �4 0.
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Remark 3 As was shown in [2,3], in the case of non-zero distributed forces �f" and

Dirichlet boundary conditions on the bases of B", the asymptotic expansion of a

solution contains infinitely many terms.

Proof Taking into account the Equations (3)–(7), one can easily check that the

function v"(x) satisfies the equation and the lateral boundary condition in (1) so that:

@

@xi

�
Aij
� x
"

� @

@xj
ð �u" � �v"Þ

�
¼ 0

nkA
kj
� x
"

� @

@xj
ð �u" � �v"Þ

���
�"

¼ 0:

ð13Þ

However, �v" does not satisfy the boundary condition imposed on the butt cross

sections. We can only assert that

ð �u" � �v"Þ
���
S"
0

¼ "N1

�x
"

� C3

0

0

0
BBB@

1
CCCAþ "V3

R1ð
x
"Þ

R2ð
x
"Þ

R3ð
x
"Þ

0
BBB@

1
CCCAþ "2N2

�x
"

� 0

2V1

2V2

0
BBB@

1
CCCA

þ "3N3

� x
"

� 0

6C1

6C2

0
BBB@

1
CCCA ð14Þ

A1j @

@xj
ð �u" � �v"Þ

���
S "
1

¼ �F
� x2
"
,
x3
"

�
� �w"ðxÞ, ð15Þ

with �w" defined in (9); it is not difficult to write down an explicit formula for �w",

however, as this formula is very long, we do not present it here. We only note that �w"

has the form �w"ðxÞjS "
1
¼ "0 �w0ðx

0

" Þ þ " �w1ðx
0

" Þ þ "
2 �w2ðx

0

" Þ, and that the resultant forces

and moments of forces of the functions ð �Fðx
0

" Þ � �w0ðx
0

" ÞÞ, �w1ðx
0

" Þ and �w2ðx
0

" Þ on the butt

end S "1 are equal to zero.

Then according to Theorem 3 in [2] there is a solution of problem

@

@xi

�
Aijð yÞ

@

@xj
�L0
"

�
¼ 0 y 2 fy 2 B : �15 y1 5 1="g

nkA
kjð yÞ

@

@xj
�L0
"

���
�
¼ 0

A1j @

@yj
�L0
"

���
y1¼1="

¼ �Fð y 0 Þ � �w0ð y 0 Þ,

ð16Þ

which satisfies the estimate

k �L0
"kL2ðfy2B:ðY0�1Þ5y15Y0gÞ

� C expð�� ð1="� Y0ÞÞ ð17Þ

for any Y0� 1/"; here � is a positive constant which only depends on the coefficients

Aij(y) and domain B.
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Similarly, the problems

@

@xi

�
Aijð yÞ

@

@xj
�L1
"

�
¼ 0 y 2 fy 2 B : �15 y1 5 1="g

nkA
kjð yÞ

@

@xj
�L1
"

���
�
¼ 0

A1j @

@yj
�L1
"

���
y1¼1="

¼ �w1ð y 0 Þ

and

@

@xi

�
Aijð yÞ

@

@xj
�L2
"

�
¼ 0 y 2 fy 2 B : �15 y1 5 1="g

nkA
kjð yÞ

@

@xj
�L2
"

���
�
¼ 0

A1j @

@yj
�L2
"

���
y1¼1="

¼ �w2ð y 0 Þ,

have solutions which satisfy the exponential estimates similar to (17).
We proceed with another end of the rod. Consider an auxiliary problem

@

@xi

�
Aijð yÞ

@

@xj
�W 1
�
¼ 0 y 2 fy 2 B : y1 4 0g

nkA
kjð yÞ

@

@xj
�W 1
���
�
¼ 0

�W 1
���
y1¼0
¼ �1ð y 0 Þ,

ð18Þ

with

�1ð y 0 Þ ¼ N1ð0, y
0 Þ

C3

0

0

0
B@

1
CAþ "V3

R1ð0, y
0 Þ

R2ð0, y
0 Þ

R3ð0, y
0 Þ

0
B@

1
CA:

According to [4,10], the last problem has a solution �(y) which possesses a finite
energy. In the class of functions having finite energy this solution is unique and
stabilizes at the exponential rate to a rigid displacement as y1!1. Clearly,
functions N1 and R can be chosen in such a way that they inherit the symmetries of
domain B and coefficients Aij

kl. Then the solution � also possesses these symmetries.
The only rigid displacement compatible with the mentioned symmetries is a constant
displacement in the first coordinate direction. Now, by adding a proper constant
vector to N1 we achieve the relation

k �W 1kL2ð y2B:Y0�y1�Y0þ1Þ � C expð��Y0Þ, �4 0: ð19Þ

In exactly the same way one can construct exponential boundary layers �W2 and �W3

which correct the terms of order "2 and "3 in the boundary condition (14) at 0.
By construction, the function

�v" þ �L0
"

�x
"

�
þ " �L1

"

� x
"

�
þ "2 �L2

"

� x
"

�
þ " �W 1

�x
"

�
þ "2 �W2

�x
"

�
þ "3 �W3

� x
"

�
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satisfies the equation and the lateral boundary conditions in (1) exactly, while the
boundary conditions at the butt ends of the rod are satisfied up to exponentially
small discrepancies. The desired statement of Theorem 1 follows now from (17), (19)
and similar estimates for L1

" , L
2
" , W

2, W3 and from the fact that the Korn inequality
holds in the domain B" with a constant which does not exceed C"�2, see [4,10]. g

Proof of Lemma 2 Assume, to the contrary, that det({�ij})¼ 0. Then, there is a
non-trivial vector (C1,C2,C3,V1,V2,V3)

t such that the function �w"(x
0) defined by (8)

and (9), has zero resultant forces and moments of forces at S "1 . Then, in the same
way as in the proof of Theorem 1, one can show that there are exponential boundary
layers L0

"

�
x
"

�
þ "L1

"

�
x
"

�
þ "2L2

"

�
x
"

�
and "W 1

�
x
"

�
þ "2W2

�
x
"

�
þ "3W3

�
x
"

�
such that

function

�v" �
�
L0
"

� x
"

�
þ "L1

"

�x
"

�
þ "2L2

"

�x
"

��
�

�
"W 1

� x
"

�
þ "2W2

�x
"

�
þ "3W3

� x
"

��
satisfies, up to an exponentially small discrepancy, the homogeneous equation and
boundary conditions in (1). Due to the Korn inequality [4], this implies that �v" is
exponentially small in any interior subdomain of B". This contradicts our
assumption that the vector (C1,C2,C3,V1,V2,V3)

t is non-trivial. g

4. Example of numerical computation of effective torsion rigidity

Let the region B�R3 occupying the rod-structure be a hexagonal bar with
cylindrical holes as illustrated in Figure 1, where the material inside is homogeneous
and isotropic. As seen from the figure, the set B is periodic in the �1 variable (the
longitudinal direction) with respect to some interval I ¼ ð0, �01Þ.

The set Y¼ {� 2B : �12 I} corresponds to a period of the rod-structure, and is
referred to as the Y-cell. The hexagonal section has side-length d and is centred at the
�1-axis. Moreover, the cylindrical hole which is surrounded by the Y-cell, has centre
at ð�01=2, 0, 0Þ, radius r, and is directed upwards parallel with the �2-axis. The
boundary @Y of Y with outward unit-normal n¼ (n1, n2, n3) consists of the two

Figure 1. Hexagonal bar with cylindrical holes.
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disjoint parts S and � given by S ¼ Sð0Þ [ Sð�01Þ and �¼ @Y\S, where S(t) denotes

the vertical section SðtÞ ¼ f� ¼ ð�1, �2, �3Þ2 �Y, �1¼ tg. Moreover, let H1
per,1ðYÞ denote

the closure in the usual Sobolev space H1(Y), of the set C1per,1ðYÞ of all smooth vector

valued functions ’¼ (’1, ’2, ’3) which is I-periodic in the �1 variable.
Let v¼ (0, ��1�3,���1�2) where � is some constant (the relative twist). In order to

calculate the effective torsion rigidity we have to solve the following problem: Find

u¼ vþw, where w 2 H1
per,1ðYÞ such thatZ

Y

eð’Þ � �ðuÞd� ¼ 0 for all ’ 2 H1
per,1ðY Þ: ð20Þ

The corresponding strain energy W is given by

W ¼
1

2

Z
Y

eðuÞ � �ðuÞd�. ð21Þ

By (20), we observe that

W ¼
1

2

Z
Y

eðvÞ � �ðuÞd�. ð22Þ

The resultant torsion moment M about the �1-axis of the stress vector

(�13(u), �23(u), �33(u)) applied to some arbitrary section S(�1) is given by

M ¼

Z
Sð�1Þ

��2�31ðuÞ þ �3�21ðuÞð Þd�2 d�3:

It is possible to prove that M is constant along the rod-structure (a proof of this fact

can be found in [12]). Hence, by (22)

M ¼
1

�01

Z
Y

��2�31ðuÞ þ �3�21ðuÞð Þd� ¼
2

�01�
W: ð23Þ

Moreover, due to linearity,M is proportional to �, i.e.M¼ �D, where the constant D

is called the effective torsion rigidity. By (23),

D ¼
2

�01�
2
W: ð24Þ

Due to the symmetry of the Y-cell about the plane �1 ¼ �
0
1=2, it is possible to

prove that the periodic boundary conditions on w¼ (w1,w2,w3) can be replaced by

Neumann conditions for the displacement-component w1 and Dirichlet conditions

for w2 and w3 on S [12]. Accordingly, in the FE-program ANSYS the problem is

solved by using ‘structural problem’ with no body forces and specifying the Dirichlet

boundary conditions u2¼ v2 and u3¼ v3 on the two parallel surfaces constituting the

set S. This is certainly the same as putting w1¼ 0 (or w2¼ 0 and w3¼ 0) on S. The

Neumann boundary condition is automatically imposed by leaving the correspond-

ing displacements on these surfaces unspecified. This gives us a numerical solution u

which is unique within an arbitrary translation in �1-direction, i.e. within a constant

in the displacement component w1. In order to obtain a unique solution we may

specify u1 by, e.g. putting u1(0, 0, 0)¼ 0. Summing up, the problem can be solved by
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using the following Dirichlet boundary conditions (and leaving all other boundary

conditions unspecified):

u3ð0, �2, �3Þ ¼ u2ð0, �2, �3Þ ¼ 0,

u3ð�
0
1, �2, �3Þ ¼ ���

0
1�2, u2ð�

0
1, �2, �3Þ ¼ ��

0
1�3,

u1ð0, 0, 0Þ ¼ 0:

Note that D is independent of the constant �. This parameter may therefore be

chosen arbitrarily when the only purpose of the computation is to calculate effective

properties.
Below we present some numerical result obtained by using ANSYS 9.2. for �¼ 1,

� 01 ¼ 2, d¼ 1, when Young’s modulus E¼ 1 and the Poisson ratio 	¼ 0.3. The radius

r of the hole varies from 0 to 0.5. As easily seen, the volume of the rod-structure per

length is 3� 
r2
� � ffiffiffi

3
p
=2: Thus, the corresponding circular bar with the same volume

per length ratio, i.e. with radius

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p

3� 
r2ð Þ

2


s
,

has effective torsion stiffness

Ds ¼ G



2
R4 ¼

E

1þ vð Þ




4
R4 ¼


3 3� 
r2
� �2

1þ 0:3ð Þ16
2
:

In the table below we have listed D and the shape factor D/Ds for some values of r

(Figure 2).

r 0 0.05 0.10 0.15 0.20
D 0.399594 0.397647 0.391483 0.380395 0.365542
D/Ds 0.96710 0.96744 0.96763 0.96559 0.96373

r 0.25 0.30 0.35 0.40 0.45 0.50
D 0.346262 0.322931 0.297007 0.268305 0.237805 0.206581
D/Ds 0.95952 0.95266 0.94594 0.93705 0.92701 0.91749

In the computation we have chosen to use the element called solid95, which is a

three-dimensional structural solid element with 20 nodes. Figure 3 shows the mesh of

the Y-cell for r¼ 0.4.
In this case the global element size is put equal to 0.2 and the resulting mesh

consists of 4617 elements and 7448 nodes.
Figure 4 shows the computed shape of the Y-cell after deformation and Von

Mieses stresses.
Note that the shape factor D/Ds is only dependent of the ratio r/d and the Poisson

ratio 	. This follows by the fact that the computed value of the effective torsion

stiffness D for the above case d¼ 1, E¼ 1 and 	¼ 0.3 can be used to find the effective

torsion stiffness of the rod-structure of the same shape with side-length d, �01 ¼ 2d,

hole-radius equal to rd, 	¼ 0.3 and E is arbitrary, just by multiplying with Ed4. This

is quite easy to prove by putting �¼ yd and replacing the solution u of (20) by
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u0(�)¼ d 2u(y), v by v0(�)¼ d 2v(y) (¼v(�)) and Y by Y0 ¼Yd. The corresponding

energy W 0 is then

W 0 ¼
1

2

Z
Y0

e�ðv
0 Þ � ��ðu

0 Þ
� �

ð�Þd� ¼
1

2
d 2

Z
Y0

eyðvÞ � �yðuÞ
� �� �

d

�
d�

¼ d 5 1

2

Z
Y

eyðvÞ � �yðuÞ
� �

ð yÞdy ¼ d 5W, ð25Þ

where the subscripts � and y are used to indicate that the differentiation is performed

with respect to � and y, respectively. Thus, by (24) the corresponding effective torsion

Figure 3. The meshed Y-cell in the case r¼ 0.4.

Figure 2. The shape factor D/Ds.
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stiffness D0 is given by

D 0 ¼
2

�01�
2
W 0 ¼

2

2d
d 5W ¼ d 4W ¼ d 4D:
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