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Abstract

We study the homogenization of the following nonlinear Dirichlet variational problem:

inf

{ ∫
Ωε

{
1

pε(x)
|∇u|pε(x) + 1

pε(x)
|u|pε(x) − f (x)u

}
dx: u ∈ W

1,pε(·)
0

(
Ωε

)}

in a perforated domain Ωε = Ω \ F ε ⊂ R
n, n � 2, where ε is a small positive parameter that characterizes the scale of the

microstructure. The non-standard exponent pε(x) is assumed to be an oscillating continuous function in Ω̄ such that, for any
ε > 0, 1 < pε(x) � n in Ω; for any x, y ∈ Ω , |pε(x) − pε(y)| � ωε(|x − y|) with limτ→0 ωε(τ) ln(1/τ) = 0; and converges
uniformly in Ω to a function p0 which satisfies the same properties. Moreover, we assume that pε(x) � p0(x) in Ω . Denoting uε

a minimizer in the above variational problem, without any periodicity assumption, for a large range of perforated domains we find,
by means of the variational homogenization technique, the global behavior of uε as ε tends to zero. It is shown that uε extended by
zero in F ε , converges weakly in W1,p0(·)(Ω) to the solution of the following nonlinear variational problem:

min

{∫
Ω

{
1

p0(x)
|∇u|p0(x) + 1

p0(x)
|u|p0(x) + c(x,u) − f (x)u

}
dx: u ∈ W

1,p0(·)
0 (Ω)

}
,

where the function c(x,u) is defined in terms of the local characteristic of Ωε . This result is then illustrated with a periodic and
a non-periodic examples.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions l’homogénéisation du problème variationnel de Dirichlet nonlinéaire suivant :

inf

{ ∫
Ωε

{
1

pε(x)
|∇u|pε(x) + 1

pε(x)
|u|pε(x) − f (x)u

}
dx: u ∈ W

1,pε(·)
0

(
Ωε

)}
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dans un domaine perforé Ωε = Ω \ F ε ⊂ R
n, n � 2, où ε > 0 est un petit paramètre qui caractérise la taille des perforations.

La fonction puissance pε(x) est nonstandard et supposée être une fonction continue et oscillante dans Ω̄ . Elle vérifie, pour tout
ε > 0, 1 < pε(x) � n dans Ω , pour tout x, y ∈ Ω , |pε(x) − pε(y)| � ωε(|x − y|) avec limτ→0 ωε(τ) ln(1/τ) = 0 ; et elle est
uniformément convergente dans Ω vers une fonction p0 qui vérifie les mêmes propriétés. De plus, on suppose que pε(x) � p0(x)

dans Ω . On note uε une solution du problème de minimisation variationnel ci-dessus, sans hypothèse de périodicité et pour
différents milieux perforés, on trouve le problème limite décrivant le comportement global de uε lorsque ε tend vers zéro, en
utilisant la technique de l’homogénéisation variationnelle. On montre que uε , prolongée par zéro dans F ε , converge faiblement
dans W1,p0(·)(Ω), quand ε tend vers zéro, vers la solution u du problème variationel nonlinéaire suivant :

min

{∫
Ω

{
1

p0(x)
|∇u|p0(x) + 1

p0(x)
|u|p0(x) + c(x,u) − f (x)u

}
dx: u ∈ W

1,p0(·)
0 (Ω)

}
,

où la fonction c(x,u) est définie à partir des caractéristiques géométriques locales du domaine Ωε . Enfin, nous présentons deux
exemples, un périodique et l’autre nonpériodique, pour illustrer les résultats obtenus.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we study the homogenization of the following nonlinear problem:

−div
(∣∣∇uε

∣∣pε(x)−2∇uε
) + ∣∣uε

∣∣pε(x)−2
uε = f (x) in Ωε, uε ∈ W

1,pε(·)
0

(
Ωε

)
, (1.1)

where ε is a small positive parameter, Ωε = Ω \ F ε is a perforated domain in R
n (n � 2) with Ω being a bounded

Lipschitz domain, and pε is a smooth positive oscillating function in Ω satisfying some conditions which will be
specified in Section 3, and uniformly converging in Ω to a smooth function p0. f is a given function. Equations of
such type are called pε(x)-Laplacian equations with non-standard growth conditions.

In recent years, there has been an increasing interest in the study of such equations (in the case where there is
no dependence on the small parameter) motivated by their applications to the mathematical modeling in continuum
mechanics. These equations arise, for example, from the modeling of non-Newtonian fluids with thermo-convective
effects (see, e.g., [7,9]), the modeling of electro-rheological fluids (see, e.g., [30,31]), the thermistor problem (see,
e.g., [39]), the problem of image recovery (see, e.g., [24]), and the motion of a compressible fluid in a heterogeneous
anisotropic porous medium obeying to the nonlinear Darcy law (see, e.g., [8,11]).

Eq. (1.1) is an idealized model for a variety of interesting physical problems; we motivate our work by describing
one of them. We consider a steady flow of a compressible barotropic gaz through a porous medium. The nonlinear
Darcy law with the continuity equation lead to the equation given by [10]

−div
(
K(x)|∇u|p(x)−2∇u

) + R(x)|u|p(x)−2u = f (x, t). (1.2)

u stands for the fluid pressure, f is a source term and K , p, R are characteristic functions of the heterogeneous porous
medium. For more details on the formulation of such problems see for instance [10,13]. We refer to [10,11,17,18] and
the references therein for a detailed analysis of such equations.

In the present paper we deal with the Dirichlet boundary value problem for the nonlinear equation (1.1). More
precisely, we consider the corresponding variational problem:

inf

{∫
Ωε

{
1

pε(x)
|∇u|pε(x) + 1

pε(x)
|u|pε(x) − f (x)u

}
dx: u ∈ W

1,pε(·)
0

(
Ωε

)}
. (1.3)

The homogenization of the Dirichlet boundary value problem was studied for the first time in [25] and then it was
revisited by many authors (see, e.g., [12,15,16,20,26,33], and the references therein). Note also that the homogeniza-
tion of nonlinear elliptic equations is a long-standing problem and a number of methods have been developed. There is
an extensive literature on this subject. We will not attempt a review of the literature here, but merely mention a few ref-
erences, see for instance [2,14,16,29], and the references therein. Let us mention that the homogenization problems for
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the Lagrangians with variable exponents were first studied in [22,34–37] (see also the book [38]) which focus on the
variational functionals with non-standard growth conditions. In particular, the homogenization and Γ -convergence
problems for Lagrangians with variable rapidly oscillating exponents p(x) were considered in [35,36]. Variational
functionals with non-standard growth conditions have also been considered in the book [14], namely Chapter 21 of
this book focuses on the Γ -convergence of such functionals in Lp spaces. The Dirichlet homogenization problem
and related questions for Lagrangians of pε(x) growth in W 1,pε(·)(Ωε), where Ωε is a perforated domain, have been
studied recently in [3–6].

Following the approach developed in [20], instead of a classical periodicity assumption on the structure of the
perforated domain Ωε , we impose certain conditions on the so-called local energy characteristics associated with the
boundary value problem (1.1). It will be shown that the asymptotic behavior, as ε → 0, of the solution uε is described
by the following variational problem:

inf

{∫
Ω

{
1

p0(x)
|∇u|p0(x) + 1

p0(x)
|u|p0(x) + c(x,u) − f (x)u

}
dx: u ∈ W

1,p0(·)
0 (Ω)

}
, (1.4)

where the function c(x,u) is calculated by the local energy characteristic of Ωε .
The proof of the main result is based on the variational homogenization technique which is nowadays widely

used in the homogenization theory (see, e.g., [14,26,38] and the references therein). Let us also mention that another
non-periodic homogenization approach was proposed recently in [28] for nonlinear monotone operators.

The paper is organized as follows. In Section 2, for the sake of completeness, we recall the definition and the main
results on the Lebesgue and Sobolev spaces with variable exponents which will be used in the sequel. In Section 3
we state the problem and formulate the main result which will be proved in Section 4. Two examples of periodic and
locally periodic structures are considered in Section 5.

2. Sobolev spaces with variable exponents

In this section we introduce the function spaces used throughout the paper and describe their basic properties, see
for instance [19,21,27,32].

We assume that Ω is a bounded Lipschitz domain in R
n and the function p(x) satisfies the following conditions:

1 < p(−) = inf
Ω

p(x) � p(x) � sup
Ω

p(x) = p(+) < +∞ with p(+) � n. (2.1)

For all x, y ∈ Ω ,∣∣p(x) − p(y)
∣∣ � ω

(|x − y|) with lim
τ→0

ω(τ) ln

(
1

τ

)
= 0. (2.2)

1. By Lp(·)(Ω) we denote the space of measurable functions f in Ω such that

Ap(·)(f ) =
∫
Ω

∣∣f (x)
∣∣p(x)

dx < +∞.

The space Lp(·)(Ω) equipped with the norm

‖f ‖Lp(·)(Ω) = inf

{
λ > 0: Ap(·)

(
f

λ

)
� 1

}
(2.3)

becomes a Banach space.
2. The following inequalities hold⎧⎪⎨⎪⎩

min
(‖f ‖p(−)

Lp(·)(Ω)
,‖f ‖p(+)

Lp(·)(Ω)

)
� Ap(·)(f ) � max

(‖f ‖p(−)

Lp(·)(Ω)
,‖f ‖p(+)

Lp(·)(Ω)

)
,

min
(
A

1
p(−)

p(·) ,A

1
p(+)

p(·)
)
� ‖f ‖Lp(·)(Ω) � max

(
A

1
p(−)

p(·) ,A

1
p(+)

p(·)
)
.

(2.4)
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3. Let f ∈ Lp(·)(Ω), g ∈ Lq(·)(Ω) with

1

p(x)
+ 1

q(x)
= 1, 1 < p(−) � p(x) � p(+) < ∞, 1 < q(−) � q(x) � q(+) < +∞.

Then the Hölder’s inequality holds∫
Ω

|fg|dx � 2‖f ‖Lp(·)(Ω)‖g‖Lq(·)(Ω). (2.5)

4. According to (2.5), for every 1 � q = const < p(−) � p(x) < +∞
‖f ‖Lq(Ω) � C‖f ‖Lp(·)(Ω) with the constant C = 2‖1‖

L
p(·)

p(·)−q (Ω)

. (2.6)

It is straightforward to check that for domains Ω such that measΩ < +∞,

‖1‖Lp(·)(Ω) � 2 max
{[measΩ]2/p(−)

, [measΩ]1/2p(+)}
. (2.7)

5. The space W 1,p(·)(Ω), p(·) ∈ [p(−), p(+)] ⊂ ]1,+∞[, is defined by

W 1,p(·)(Ω) = {
f ∈ Lp(·)(Ω): |∇f | ∈ Lp(·)(Ω)

}
.

If condition (2.2) is satisfied, W 1, p(·)
0 (Ω) is the closure of the set C∞

0 (Ω) with respect to the norm of W 1, p(·)(Ω).

If the boundary of Ω is Lipschitz-continuous and p(x) satisfies (2.2), then C∞
0 (Ω) is dense in W

1, p(·)
0 (Ω). The

norm in the space W
1,p(·)
0 is defined by

‖u‖
W

1,p(·)
0

=
∑

i

‖Diu‖Lp(·)(Ω) + ‖u‖Lp(·)(Ω).

If the boundary of Ω is Lipschitz and p ∈ C0(Ω), then the norm ‖ · ‖
W

1,p(·)
0 (Ω)

is equivalent to the norm

‖̃u‖
W

1,p(x)
0 (Ω)

=
∑

i

‖Diu‖Lp(·)(Ω). (2.8)

6. If p ∈ C0(Ω), then W 1,p(·)(Ω) is separable and reflexive.
7. If p,q ∈ C0(Ω),

p∗(x) =
{

p(x)n
n−p(x)

if p(x) < n,

+∞ if p(x) > n,
and 1 < q(x) � sup

Ω

q(x) < inf
Ω

p∗(x),

then the embedding W
1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and compact.

8. Friedrich’s inequality is valid in the following form: if p(x) satisfies conditions (2.1)–(2.2), then there exists a
constant C > 0 such that for every f ∈ W

1,p(·)
0 (Ω)

‖f ‖Lp(·)(Ω) � C‖∇f ‖Lp(·)(Ω). (2.9)

3. Statement of the problem and the main result

Let Ω be a bounded domain in R
n (n � 2) with sufficiently smooth boundary. Let F ε be a closed subset in Ω .

Here ε is a small parameter characterizing the scale of the microstructure. We assume that F ε is distributed in an
asymptotically regular way in Ω , i.e., for any ball V (y, r) of radius r centered at y ∈ Ω and ε > 0 small enough
(ε � ε0(r)), V (y, r) ∩ F ε 
= ∅ and V (y, r) ∩ (Ω \ F ε) 
= ∅. We set

Ωε = Ω \ F ε. (3.1)

Let pε = pε(x) be a continuous function defined in the domain Ω . We assume that, for any ε > 0, it satisfies the
following conditions:
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(i) this function is bounded in the following sense:

1 < p(−) � p(−)
ε ≡ min

x∈Ω

pε(x) � pε(x) � max
x∈Ω

pε(x) ≡ p(+)
ε � p(+) � n in Ω; (3.2)

(ii) for any x, y ∈ Ω , we have∣∣pε(x) − pε(y)
∣∣ � ωε

(|x − y|) with lim
τ→0

ωε(τ) ln

(
1

τ

)
= 0; (3.3)

(iii) the function pε converges uniformly in Ω to a function p0, i.e.,

lim
ε→0

‖pε − p0‖C0(Ω) = 0, (3.4)

where the limit function p0 is assumed to be bounded in the sense of the condition (2.1) and satisfies (2.2);
(iv) the function pε is such that

pε(x) � p0(x) in Ω. (3.5)

We consider the following variational problem:

min
{
J ε[u]: u ∈ W

1,pε(·)
0

(
Ωε

)}
,

J ε[u] =
∫
Ωε

{
1

pε(x)
|∇u|pε(x) + 1

pε(x)
|u|pε(x) − f (x)u

}
dx, (3.6)

where f ∈ C1(Ω). It is known from [1,10,11,17] that, for each ε > 0, there exists a unique solution (minimizer)
uε ∈ W 1,pε(·)(Ωε) of problem (3.6). Let us extend uε in F ε by zero (keeping for it the same notation). Then we obtain
the family {uε} ⊂ W 1,pε(·)(Ω). We study the asymptotic behavior of uε as ε → 0.

Instead of the classical periodicity assumption on the microstructure of the perforated domain Ωε , we impose
certain conditions on the local energy characteristic of the set F ε . To this end we introduce Kz

h an open cube centered
at z ∈ Ω with length equal to h (0 < ε  h < 1) and we set

cε,h(z, b) = inf
vε

∫
Kz

h

{
1

pε(x)

∣∣∇vε
∣∣pε(x) + h−p(+)−γ S

(
vε − b

)}
dx, (3.7)

where γ > 0,

S
(
vε − b

) = ∣∣vε − b
∣∣pε(x) + ∣∣vε − b

∣∣p0(x)
, (3.8)

and the infimum is taken over vε ∈ W 1,pε(·)(Ω) that equal zero in F ε . We assume that:

(C.1) there exists a continuous function c(x, b) such that for any x ∈ Ω , and any b ∈ R, and a certain γ = γ0 > 0,

lim
h→0

lim
ε→0

h−ncε,h(z, b) = lim
h→0

lim
ε→0

h−ncε,h(z, b) = c(x, b);

(C.2) there exists a constant A independent of ε such that, for any x ∈ Ω ,

lim
h→0

lim
ε→0

h−ncε,h(z, b) � A
(
1 + |b|p0(x)

)
.

The examples of the functions pε(x) and the domains Ωε which satisfy all the above conditions, will be given in
Section 5.

The main result of the paper is the following.

Theorem 3.1. Let conditions (i)–(iv) on the function pε and conditions (C.1)–(C.2) on the local characteristic be
satisfied. Then uε the solution (minimizer) of the variational problem (3.6) (extended by zero in F ε) converges weakly
in W 1,p0(·)(Ω) to u the solution (minimizer) of
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inf

{∫
Ω

{
1

p0(x)
|∇u|p0(x) + 1

p0(x)
|u|p0(x) + c(x,u) − f (x)u

}
dx: u ∈ W

1,p0(·)
0 (Ω)

}
. (3.9)

Remark 1. The condition (C.1) and the definition of the local energy characteristic cε,h(z, b) imply that
meas[F ε ∩Kx

h ] = o(hn) for sufficiently small ε (ε � ε̃(h)), uniformly with respect to z ∈ Ω . Therefore, meas F ε → 0
as ε → 0.

Notation. In what follows C, C1, C2, etc. are generic constants independent of ε.

4. Proof of Theorem 3.1

It follows from (3.6), (2.4), and the regularity properties of the functions f , pε that∥∥uε
∥∥

W 1,pε(·)(Ωε)
� C. (4.1)

We extend uε by zero to the set F ε and consider {uε} as a sequence in the space W 1,pε(·)(Ω). It follows from (4.1)
that ∥∥uε

∥∥
W 1,pε(·)(Ω)

� C. (4.2)

Condition (iv) and (4.2) immediately imply that∥∥uε
∥∥

W 1,p0(·)(Ω)
� C. (4.3)

Hence, one can extract a subsequence {uε, ε = εk → 0} that converges weakly to a function u ∈ W 1,p0(·)(Ω). We will
show that u = u(x) is the solution of the variational problem (3.9). The proof will be done in two mains steps.

4.1. Step 1. Upper bound

Let {xα} be a periodic grid in Ω with a period h′ = h − h1+γ /p(+)
(ε  h  1, 0 < γ < p(+)). Let us cover the

domain Ω by the cubes Kα
h of length h > 0 centered at the points xα . We associate with this covering a partition

of unity {ϕα}: 0 � ϕα(x) � 1; ϕα(x) = 0 for x /∈ Kα
h ; ϕα(x) = 1 for x ∈ Kα

h \ ⋃
β 
=α K

β
h ;

∑
α ϕα(x) = 1 for x ∈ Ω ;

|∇ϕα(x)| � Ch−1−γ /p(+)
.

Now let vε
α = vε

α(x) be a function minimizing the functional (3.7)–(3.8) with b = bα and z = xα , where bα will be
specified later. It follows from condition (C.1) that, as h → 0,

lim
ε→0

∫
Kα

h ∩Ωε

1

pε(x)

∣∣∇vε
α

∣∣pε(x)
dx = O

(
hn

); lim
ε→0

∫
Kα

h ∩Ωε

S
(
vε
α − bα

)
dx = O

(
hn+p(+)+γ

)
. (4.4)

Moreover, condition (iv) implies that

lim
ε→0

∫
Kα

h ∩Ωε

∣∣∇vε
α

∣∣p0(x)
dx = O

(
hn

)
as h → 0. (4.5)

Denote by Kα
h′ and Πα

h the cube of length h′ centered at the point xα , and the set Kα
h \ Kα

h′ , respectively. It follows
from condition (C.1) of Theorem 3.1 that, as h → 0,

lim
ε→0

∫
Πα

h ∩Ωε

1

pε(x)

∣∣∇vε
α

∣∣pε(x)
dx = o

(
hn

); lim
ε→0

∫
Πα

h ∩Ωε

S
(
vε
α − bα

)
dx = o

(
hn+p(+)+γ

)
. (4.6)

Moreover, condition (iv) implies that

lim
ε→0

∫
Πα∩Ωε

∣∣∇vε
α

∣∣p0(x)
dx = o

(
hn

)
as h → 0. (4.7)
h
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Fig. 1. The set Bα(ε,h;ϑ) and the function vε
α .

Fig. 2. The function V ε
α .

Now let w be a smooth function in Ω such that w(x) = 0 on ∂Ω and let Kθ denotes a subset of the cubes Kα
h

covering Ω such that |w(x)| > θ > 0 for any x ∈ Kα
h . We set

bα = w
(
xα

)
for Kα

h ∈ Kθ and bα = 1 for Kα
h /∈ Kθ .

For any Kα
h , we also define the set (see Fig. 1)

Bα(ε,h;ϑ) = {
x ∈ Kα

h : vε
α(x) signbα � |bα| − ϑ

}
(4.8)

and the function (see Fig. 2)

V ε
α (x) =

{
vε
α(x) in Bα(ε,h;ϑ);

bϑ
α ≡ (|bα| − ϑ) signbα in Kα

h \ Bα(ε,h;ϑ),
(4.9)

where 0 < ϑ  θ/2  1.
Now let us estimate meas Bα(ε,h;ϑ). For ε sufficiently small, from (4.5), we have

ϑp(−)

meas Bα(ε,h;ϑ) �
∫

Bα(ε,h;ϑ)∩Ωε

∣∣vε
α − bα

∣∣pε(x)
dx �

∫
Kα

h ∩Ωε

∣∣vε
α − bα

∣∣pε(x)
dx � Chn+p(+)+γ .

We set ϑ = h. Then

lim
ε→0

meas Bα(ε,h;ϑ) = O
(
hn+(p(+)−p(−))+γ

) = o
(
hn

)
as h → 0. (4.10)

In the domain Ωε we introduce the function

wε
h(x) = w(x) +

∑
α

w(x)

bϑ
α

(
V ε

α (x) − bϑ
α

)
ϕα(x). (4.11)

From the definition of the functions {ϕα} and (4.9) we have that wε ∈ W
1,pε(·)(Ωε).
h 0
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Since uε is the solution of the variational problem (3.6) then we have

J ε
[
uε

]
� J ε

[
wε

h

]
. (4.12)

Let us estimate the right-hand side of the inequality (4.12). It is clear that

J ε
[
wε

h

]
�

∑
α

∫
Kα

h′∩Ωε

Fε

(
x,wε

h,∇wε
h

)
dx +

∑
α,β

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣Fε

(
x,wε

h,∇wε
h

)∣∣dx, (4.13)

where

Fε(x,u,∇u) = 1

pε(x)
|∇u|pε(x) + 1

pε(x)
|u|pε(x) − f (x)u. (4.14)

First, we consider the second term on the right-hand side of (4.13). It follows from the definition of the partition of
unity {ϕα} that for any intersection Kα

h ∩ K
β
h the number of terms in the sum over α,β is finite and does not depend

on ε. Then to estimate the second term on the right-hand side of (4.13) it is sufficient to consider the following integral:

jε
[
wε

h

] =
∫

(Kα
h ∩K

β
h )∩Ωε

{
1

pε

∣∣∣∣∇(
w + w

bϑ
α

(
V ε

α − bϑ
α

)
ϕα

)∣∣∣∣pε

+ 1

pε

∣∣∣∣w + w

bϑ
α

(
V ε

α − bϑ
α

)
ϕα

∣∣∣∣pε

− f (x)

(
w + w

bϑ
α

(
V ε

α − bϑ
α

)
ϕα

)}
dx

≡ jε1
[
wε

h

] + jε2
[
wε

h

] + jε3
[
wε

h

]
. (4.15)

For the first term on the right-hand side of (4.15) we have

jε1
[
wε

h

] =
∫

(Kα
h ∩K

β
h )∩Ωε

1

pε(x)

∣∣∣∣∇(
w + w

bϑ
α

(
V ε

α − bϑ
α

)
ϕα

)∣∣∣∣pε(x)

dx

� C1

∫
(Kα

h ∩K
β
h )∩Ωε

|∇w|pε(x) dx + C1

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣∣∣∇w
1

bϑ
α

(
V ε

α − bϑ
α

)
ϕα

∣∣∣∣pε(x)

dx

+ C1

∫
(Kα

h ∩K
β
h )∩Ωε

1

pε(x)

∣∣∣∣ w

bϑ
α

∇vε
αϕα

∣∣∣∣pε(x)

dx + C1

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣∣∣ w

bϑ
α

(
V ε

α − bϑ
α

)∇ϕα

∣∣∣∣pε(x)

dx. (4.16)

First, it is clear that

lim
ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

|∇w|pε(x) dx = o
(
hn

)
as h → 0. (4.17)

For the second term on the right-hand side of (4.16), from (4.6), we have, as h → 0,

lim
ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣∣∣∇w
1

bϑ
α

(
V ε

α − bϑ
α

)
ϕα

∣∣∣∣pε

dx � C2 lim
ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣vε
α − bα

∣∣pε dx = o
(
hn

)
. (4.18)

For the third term on the right-hand side of (4.16), from (4.6), we have, as h → 0,

lim
ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

1

pε

∣∣∣∣ w

bϑ
α

∇vε
αϕα

∣∣∣∣pε

dx � C3 lim
ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

1

pε

∣∣∇vε
α

∣∣pε dx = o
(
hn

)
. (4.19)

Finally, for the fourth term on the right-hand side of (4.16), from (4.6) and the properties of ϕα , we have
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lim
ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣∣∣ w

bϑ
α

(
V ε

α − bϑ
α

)∇ϕα

∣∣∣∣pε(x)

dx

� C4h
−p(+)−γ lim

ε→0

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣vε
α − bα

∣∣pε(x)
dx = o

(
hn

)
as h → 0. (4.20)

Thus, from (4.15)–(4.20) we get

lim
h→0

lim
ε→0

jε1
[
wε

h

] = 0. (4.21)

In a similar way we can estimate the integrals jε2[wε
h], jε3[wε

h]. Therefore, for the second term on the right-hand side
of (4.13), we get

lim
h→0

lim
ε→0

∑
α,β

∫
(Kα

h ∩K
β
h )∩Ωε

∣∣Fε

(
x,wε

h,∇wε
h

)∣∣dx = 0. (4.22)

Consider now the first term on the right-hand side of (4.13). First, let us denote:

Bα
1 (ε,h) = (

Kα
h′ ∩ Ωε

) ∩ Bα(ε,h;ϑ) and Bα
2 (ε,h) = (

Kα
h′ ∩ Ωε

) \ Bα
1 (ε,h), (4.23)

where the set Bα(ε,h;ϑ) is defined in (4.8) with ϑ = h. Then wε
h(x) = w(x) in Bα

2 (ε,h) and∫
Bα

2 (ε,h)

Fε

(
x,wε

h,∇wε
h

)
dx =

∫
Bα

2 (ε,h)

Fε(x,w,∇w)dx =
∫

Bα
2 (ε,h)

F0(x,w,∇w)dx + I ε
F , (4.24)

where

F0(x,w,∇w) = 1

p0(x)
|∇w|p0(x) + 1

p0(x)
|w|p0(x) − f (x)w (4.25)

and

I ε
F =

∫
Bα

2 (ε,h)

{
Fε(x,w,∇w) − F0(x,w,∇w)

}
dx. (4.26)

Moreover, it follows from (3.4) that

lim
ε→0

∣∣I ε
F

∣∣ = 0. (4.27)

Therefore, from (4.24)–(4.27) and the regularity properties of the functions w, f , we have

lim
ε→0

∫
Bα

2 (ε,h)

Fε

(
x,wε

h,∇wε
h

)
dx �

∫
Kα

h′

F0(x,w,∇w)dx + o
(
hn

)
as h → 0. (4.28)

Let us consider now the integral over the set Bα
1 (ε,h) (Kα

h ∈ Kθ ). In the set Bα
1 (ε,h) the function wε

h has the form:

wε
h(x) = w(x) + w(x)

bϑ
α

(
vε
α − bϑ

α

)
in Bα

1 (ε,h). (4.29)

Therefore, we have∫
Bα

1 (ε,h)

Fε

(
x,wε

h,∇wε
h

)
dx =

∫
Bα

1 (ε,h)

1

pε

∣∣∇wε
h

∣∣pε dx +
∫

Bα
1 (ε,h)

{
1

pε

∣∣wε
h

∣∣pε − wε
hf

}
dx. (4.30)

Now it follows from the regularity properties of the functions w, f , the estimate for the measure of the set Bα(ε,h;ϑ)

(see (4.10)) and the boundedness of the function vε
α on the set Bα(ε,h;ϑ) that
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lim
ε→0

∣∣∣∣ ∫
Bα

1 (ε,h)

{
1

pε(x)

∣∣wε
h

∣∣pε(x) − wε
h(x)f (x)

}
dx

∣∣∣∣ = o
(
hn

)
as h → 0. (4.31)

Therefore, from (4.30), (4.31) we obtain

lim
ε→0

∫
Bα

1 (ε,h)

Fε

(
x,wε

h,∇wε
h

)
dx = lim

ε→0

∫
Bα

1 (ε,h)

1

pε(x)

∣∣∇wε
h

∣∣pε(x)
dx + o

(
hn

)
as h → 0. (4.32)

Consider now the integral on the right-hand side of (4.32). We have∫
Bα

1 (ε,h)

1

pε(x)

∣∣∇wε
h

∣∣pε(x)
dx

=
∫

Bα
1 (ε,h)

1

pε(x)

∣∣∣∣∇(
w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)

dx

+
∫

Bα
1 (ε,h)

1

pε(x)

{∣∣∣∣∇(
w + w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)

−
∣∣∣∣∇(

w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)}
dx. (4.33)

To estimate the second term on the right-hand side of (4.33) we make use of the following inequality:∣∣(ξ + η)pε(·) − ξpε(·)∣∣ � Aη
(
1 + ξpε(·)−1 + ηpε(·)−1), (4.34)

where ξ, η � 0 and A = A(p(−),p(+)) is a constant. We have∣∣∣∣ ∫
Bα

1 (ε,h)

1

pε(x)

{∣∣∣∣∇(
w + w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)

−
∣∣∣∣∇(

w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)}
dx

∣∣∣∣
� C5

{
meas Bα

1 (ε,h) +
∫

Bα
1 (ε,h)

∣∣vε
α − bα

∣∣pε(x)−1
dx +

∫
Bα

1 (ε,h)

∣∣∇vε
α

∣∣pε(x)−1
dx

}
. (4.35)

Consider the second term on the right-hand side of (4.35). Since vε
α is bounded in Bα

1 (ε,h), then

lim
ε→0

∫
Bα

1 (ε,h)

∣∣vε
α − bα

∣∣pε(x)−1
dx = o

(
hn

)
as h → 0. (4.36)

Finally, we consider the third term on the right-hand side of (4.35). To this end we define the following sets

Bα
1,<(ε,h) = {

x ∈ Bα
1 (ε,h):

∣∣∇vε
α

∣∣ � με,h

}; Bα
1,>(ε,h) = {

x ∈ Bα
1 (ε,h):

∣∣∇vε
α

∣∣ > με,h

}
,

where

με,h = με,h(x) = h
− (p(+)−p(−))

pε(x)−1 . (4.37)

Then ∫
Bα

1,<(ε,h)

∣∣∇vε
α

∣∣pε(x)−1
dx � meas Bα

1 (ε,h)h−(p(+)−p(−))

and it follows from the definition of the set Bα
1 (ε,h), (4.23), and (4.10) that

lim
ε→0

∫
Bα (ε,h)

∣∣∇vε
α

∣∣pε(x)−1
dx = o

(
hn

)
as h → 0. (4.38)
1,<
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Furthermore, in the set Bα
1,>(ε,h) we have that

με,h

∣∣∇vε
α

∣∣pε(x)−1
<

∣∣∇vε
α

∣∣pε(x)

therefore∫
Bα

1,>(ε,h)

∣∣∇vε
α

∣∣pε(x)−1
dx �

∫
Bα

1,>(ε,h)

1

με,h

∣∣∇vε
α

∣∣pε(x)
dx. (4.39)

Now it follows from (4.39), (4.4), and (4.37) that

lim
ε→0

∫
Bα

1,>(ε,h)

∣∣∇vε
α

∣∣pε(x)−1
dx = o

(
hn

)
as h → 0. (4.40)

Finally, from (4.38), (4.40) we conclude that the third term on the right-hand side of (4.35) satisfies the estimate:

lim
ε→0

∫
Bα

1 (ε,h)

∣∣∇vε
α

∣∣pε(x)−1
dx = o

(
hn

)
as h → 0. (4.41)

With (4.36) the inequality (4.41) means that the second term on the right-hand side of (4.33) is of order o(hn) as
h → 0. Thus∫

Bα
1 (ε,h)

1

pε(x)

∣∣∇wε
h

∣∣pε(x)
dx =

∫
Bα

1 (ε,h)

1

pε(x)

∣∣∣∣∇(
w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)

dx + o
(
hn

)
as h → 0. (4.42)

Then we can conclude that, as h → 0,

lim
ε→0

∫
Bα

1 (ε,h)

1

pε(x)

∣∣∣∣∇(
w

bϑ
α

(
vε
α − bϑ

α

))∣∣∣∣pε(x)

dx = lim
ε→0

∫
Bα

1 (ε,h)

1

pε(x)

∣∣∇vε
α

∣∣pε(x)
dx + o

(
hn

)
. (4.43)

Now from (4.32), (4.33), (4.42), and (4.43) we have

lim
ε→0

∫
Bα

1 (ε,h)

Fε

(
x,wε

h,∇wε
h

)
dx = lim

ε→0

∫
Bα

1 (ε,h)

1

pε(x)

∣∣∇vε
α

∣∣pε(x)
dx + o

(
hn

)
as h → 0. (4.44)

Finally, from (4.28), (4.44), and (3.7)–(3.8), for any Kα
h ∈ Kθ , we get

lim
ε→0

∫
Kα

h′∩Ωε

Fε

(
x,wε

h,∇wε
h

)
dx �

∫
Kα

h′∩Ω

F0(x,w,∇w)dx + lim
ε→0

cε,h
(
xα,w

(
xα

)) + o
(
hn

)
(4.45)

as h → 0.
In a similar way, for any Kα

h /∈ Kθ , we can obtain the following inequality:

lim
ε→0

∫
Kα

h′∩Ωε

Fε

(
x,wε

h,∇wε
h

)
dx �

∫
Kα

h′∩Ω

F0(x,w,∇w)dx + j (θ)O
(
hn

) + o
(
hn

)
as h → 0, (4.46)

where j (θ) → 0 as θ → 0.
Now we take the union in (4.45) and (4.46) over the corresponding cubes and pass to the limit first as ε → 0, then

as h → 0, and, finally, as θ → 0. The relations (4.13), (4.22), and condition (C.1) of Theorem 3.1 imply that

lim
h→0

lim
ε→0

J ε
[
wε

h

]
� Jhom[w] ≡

∫
Ω

{
F0(x,w,∇w) + c(x,w)

}
dx. (4.47)

Therefore, we have
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lim
ε→0

J ε
[
uε

]
� Jhom[w]. (4.48)

This inequality was obtained under the assumption that w ∈ C∞
0 (Ω). It remains true for any w ∈ W

1,p0(·)
0 (Ω) due

to the density of C∞
0 (Ω) in W

1,p0(·)
0 (Ω) (see Section 2) and the following lemma.

Lemma 4.1. The functional Jhom is continuous in the space W 1,p0(·)(Ω).

Proof. It is similar to the proof of Lemma 3.2 of [5]. �
4.2. Step 2. Lower bound

Let u ∈ W 1,p0(·)(Ω) be a weak limit in W 1,p0(·)(Ω) of the sequence {uε} ⊂ W
1,pε(·)
0 (Ωε) ∩ W

1,p0(·)
0 (Ωε) =

W
1,pε(·)
0 (Ωε) (extended by zero in F ε) by a subsequence ε = εk . Let us show that

lim
ε=εk→0

J ε
[
uε

]
� Jhom[u], (4.49)

where the functional Jhom is defined in (4.47).
First we will obtain some auxiliary results. In what follows we will use the notation:

W
(
Ω, F ε

) = {
u ∈ W 1,pε(·)(Ωε

) ∣∣ u = 0 in F ε
}
.

The following result holds.

Lemma 4.2. Let w be an arbitrary function from the space W
1,p0(·)
0 (Ω) such that

‖w‖W 1,p0(·)(Ω) < 1 (4.50)

and let the conditions of Theorem 3.1 be fulfilled. Then there exists a sequence of functions {Wε} ⊂ W(Ω, F ε) which
converges weakly to the function w in W 1,p0(·)(Ω) and satisfies the following estimate∥∥Wε

∥∥
W 1,pε(·)(Ω)

� C
(‖w‖W 1,p0(·)(Ω)

)1/p(−)

. (4.51)

Proof. Since C1
0(Ω) is dense in the space W

1,p0(·)
0 (Ω), then it is sufficient to prove the lemma for w ∈ C1

0(Ω).

Let wε
h be the function defined in (4.11). Due to (4.4)–(4.7) wε

h ∈ W
1,pε(·)
0 (Ωε). Repeating the proof of the inequal-

ity (4.48) one can show that∫
Ω

1

pε(x)

∣∣∇wε
h

∣∣pε(x)
dx � 2

∫
Ω

{
1

p0(x)
|∇w|p0(x) + c(x,w)

}
dx (4.52)

for sufficiently small θ , h, and ε (θ < θ̃ , h � h̃(w, θ), ε � ε̃(h)).
Let us estimate the right-hand side of (4.52). Using conditions (C.1), (C.2) of Theorem 3.1 and the properties of

the function p0 = p0(x) we have∫
Ω

{
1

p0(x)
|∇w|p0(x) + c(x,w)

}
dx � C1

∫
Ω

{|∇w|p0(x) + |w|p0(x) + |w|}dx, (4.53)

where C1 is a constant independent of w. Now it follows from (4.50) and (2.4) that∫
Ω

{|∇w|p0(x) + |w|p0(x)
}
dx � ‖w‖p

(−)
0

W 1,p0(·)(Ω)
, (4.54)

where

p
(−)
0 = min p0(x). (4.55)
x∈Ω
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From Hölder’s inequality (2.5), we get∫
Ω

|w|dx � C2‖w‖Lp0(·)(Ω), (4.56)

where

C2 = 2‖1‖
L

p′
0(·)

(Ω)
with p′

0(·) = p0(·)
p0(·) − 1

.

Now it follows from (4.50), (4.54), and (4.56) that∫
Ω

{
1

p0(x)
|∇w|p0(x) + c(x,w)

}
dx � C3‖w‖W 1,p0(·)(Ω). (4.57)

Consider now the left-hand side of (4.52). From (2.4), (2.9), and (3.2) we have∫
Ω

1

pε(x)

∣∣∇wε
h

∣∣pε(x)
dx � C4

∫
Ω

∣∣∇wε
h

∣∣pε(x)
dx � C5 min

{∥∥wε
h

∥∥p
(−)
ε

W 1,pε(·)(Ω)
,
∥∥wε

h

∥∥p
(+)
ε

W 1,pε(·)(Ω)

}
. (4.58)

Then it follows from (4.52), (4.57), and (4.58) that

min
{∥∥wε

h

∥∥p
(−)
ε

W 1,pε(·)(Ω)
,
∥∥wε

h

∥∥p
(+)
ε

W 1,pε(·)(Ω)

}
� C6‖w‖W 1,p0(·)(Ω). (4.59)

To obtain the estimate for ‖wε
h‖W 1,pε(·)(Ω) we consider two different cases. First we suppose that

min
{∥∥wε

h

∥∥p
(−)
ε

W 1,pε(·)(Ω)
,
∥∥wε

h

∥∥p
(+)
ε

W 1,pε(·)(Ω)

} = ∥∥wε
h

∥∥p
(−)
ε

W 1,pε(·)(Ω)
.

Then ∥∥wε
h

∥∥
W 1,pε(·)(Ω)

� C7
(‖w‖W 1,p0(·)(Ω)

)1/p
(−)
ε . (4.60)

Now if

min
{∥∥wε

h

∥∥p
(−)
ε

W 1,pε(·)(Ω)
,
∥∥wε

h

∥∥p
(+)
ε

W 1,pε(·)(Ω)

} = ∥∥wε
h

∥∥p
(+)
ε

W 1,pε(·)(Ω)

then ∥∥wε
h

∥∥
W 1,pε(·)(Ω)

� C8
(‖w‖W 1,p0(·)(Ω)

)1/p
(+)
ε . (4.61)

Therefore, from (4.50), (4.60), and (4.61), for sufficiently small θ,h, and ε (θ < θ̃ , h � h̃(w, θ), ε � ε̃(h)), we obtain
that ∥∥wε

h

∥∥
W 1,pε(·)(Ω)

� C9
(‖w‖W 1,p(·)(Ω)

)1/p(−)

. (4.62)

We set Wε(x) = wε
h(x), where h = h(ε) = 1/m for ε̃(1/(m + 1)) < ε � ε̃(1/m), m = 1,2, . . . . It is clear that

h(ε) → 0 as ε → 0, and Wε satisfies (4.62). Thus the inequality (4.51) is proved. Finally, using the explicit form
of the function wε

h, given by (4.11), it is easy to check that the sequence {wε} converges weakly in W 1,p0(·)(Ω) to the
function w. This completes the proof of Lemma 4.2. �

Now let us prove (4.49). Let u ∈ W
1,p0(·)
0 (Ω) be a weak limit in W 1,p0(·)(Ω) of the sequence {uε} ⊂ W

1,pε(·)
0 (Ωε)∩

W
1,p0(·)
0 (Ωε) (extended by zero in F ε) by a subsequence ε = εk . For any δ > 0, we introduce a function uδ ∈ C1

0(Ω)

such that

‖u − uδ‖W 1,p0(·)(Ω) < δ. (4.63)

It follows from Lemma 4.2 that there exists a sequence {wε
δ } ⊂ W(Ω, F ε) which converges weakly in W 1,p0(·)(Ω) to

the function (u − uδ). We set
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uε
δ = uε + wε

δ . (4.64)

Therefore, by (4.63) and Lemma 4.2 we have

lim
δ→0

lim
ε=εk→0

∥∥uε
δ − uε

∥∥
W 1,pε(·)(Ωε)

= 0. (4.65)

Using this inequality we can easily show that

lim
δ→0

lim
ε=εk→0

∣∣J ε
[
uε

δ

] − J ε
[
uε

]∣∣ = 0. (4.66)

Moreover, it follows from Lemma 4.1 and (4.63) that

lim
δ→0

Jhom[uδ] = Jhom[u]. (4.67)

Thus, we can easily see that to obtain (4.49), it is sufficient to prove the inequality:

lim
ε=εk→0

J ε
[
uε

δ

]
� Jhom[uδ]. (4.68)

Let us prove (4.68). To this end let us cover the space R
n by cubes Kα

h centered at the points xα forming a periodic,
with the period h, grid in R

n and with nonintersecting interiors. Let us introduce the following notation:

Ω±
θ = {x ∈ Ω | ±uδ > θ > 0}; Ω±

θ,h =
{⋃

α

Kα
h

∣∣∣ Kα
h ⊂ Ω±

θ

}
;

Ωθ = Ω+
θ ∪ Ω−

θ ; Ωθ,h = Ω+
θ,h ∪ Ω−

θ,h; Oθ = Ω \ Ωθ ;
Ωε

θ = Ωθ ∩ Ωε; Ωε
θ,h = Ωθ,h ∩ Ωε; Oε

θ = Oθ ∩ Ωε.

Since uδ is a smooth function in Ω , then

lim
h→0

meas[Ωθ \ Ωθ,h] = 0. (4.69)

Let us rewrite J ε[uε
δ] in the following way:

J ε
[
uε

δ

] =
∫
Ωε

Fε

(
x,uε

δ,∇uε
δ

)
dx =

∫
Ωε

θ,h

Fε

(
x,uε

δ,∇uε
δ

)
dx +

∫
Ωε

θ \Ωε
θ,h

Fε

(
x,uε

δ,∇uε
δ

)
dx

+
∫

Oε
θ

Fε

(
x,uε

δ,∇uε
δ

)
dx. (4.70)

To estimate the right-hand side of (4.70) from below we use the inequality (see [23, Chapter 5]):

fε(x,∇u) − fε(x,∇v) −
n∑

i=1

∂ fε
∂uxi

(x,∇v)

(
∂u

∂xi

− ∂v

∂xi

)
� 0, (4.71)

where

fε(x,∇u) = 1

pε(x)
|∇u|pε(x).

Consider now the second term on the right-hand side of (4.70). We have∫
Ωε

θ \Ωε
θ,h

Fε

(
x,uε

δ,∇uε
δ

)
dx =

∫
Ωε

θ \Ωε
θ,h

fε
(
x,∇uε

δ

)
dx +

∫
Ωε

θ \Ωε
θ,h

1

pε(x)

∣∣uε
δ

∣∣pε(x)
dx −

∫
Ωε

θ \Ωε
θ,h

f (x)uε
δ dx

≡ iε1(δ, h, θ) + iε2(δ, h, θ) + iε3(δ, h, θ). (4.72)

According to the inequality (4.71), for the first term in the right-hand side of (4.72) we have
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iε1(δ, h, θ) �
∫

Ωε
θ \Ωε

θ,h

fε(x,∇uδ) dx +
n∑

i=1

∫
Ωε

θ \Ωε
θ,h

∂ fε
∂uxi

(x,∇uδ)

(
∂uε

δ

∂xi

− ∂uδ

∂xi

)
dx

=
∫

Ωε
θ \Ωε

θ,h

1

p0(x)
|∇uδ|p0(x) dx +

∫
Ωε

θ \Ωε
θ,h

{
1

pε(x)
|∇uδ|pε(x) − 1

p0(x)
|∇uδ|p0(x)

}
dx

+
n∑

i=1

∫
Ωε

θ \Ωε
θ,h

∂uδ

∂xi

|∇uδ|p0(x)−2
(

∂uε
δ

∂xi

− ∂uδ

∂xi

)
dx

+
n∑

i=1

∫
Ωε

θ \Ωε
θ,h

∂uδ

∂xi

{|∇uδ|pε(x)−2 − |∇uδ|p0(x)−2}(∂uε
δ

∂xi

− ∂uδ

∂xi

)
dx. (4.73)

Considering the facts that pε converges uniformly to p0, the function uε
δ converges weakly in W 1,p0(·)(Ω) (and

strongly in Lp0(·)(Ω)) to the function uδ (which is a smooth function in Ω), and the measure of the set Ωε
θ \ Ωε

θ,h

satisfies (4.69), from (4.73) we get

lim
h→0

lim
ε=εk→0

iε1(δ, h, θ) dx � 0. (4.74)

In a similar way we prove that

lim
h→0

lim
ε=εk→0

iε2(δ, h, θ) dx � 0 and lim
h→0

lim
ε=εk→0

iε3(δ, h, θ) dx � 0. (4.75)

Thus, it follows from (4.74)–(4.75) that

lim
h→0

lim
ε=εk→0

∫
Ωε

θ \Ωε
θ,h

Fε

(
x,uε

δ,∇uε
δ

)
dx � 0. (4.76)

In a similar way, for the third term on the right-hand side of (4.70), we have

lim
h→0

lim
ε=εk→0

∫
Oε

θ

Fε

(
x,uε

δ,∇uε
δ

)
dx �

∫
Oθ

F0(x,uδ,∇uδ) dx. (4.77)

Consider the first term on the right-hand side of (4.70). Let Kα
h be an arbitrary cube from Ω+

θ,h. We get

bmin
α = min

Kα
h

uδ(x) − h, bα = bmin
α − h.

Let us represent the set Kα
h ∩ Ωε as the union of three nonintersecting sets

Kα
h ∩ Ωε = ωε

1,α ∪ ωε
2,α ∪ ωε

3,α,

where

ωε
1,α = {

x ∈ Kα
h ∩ Ωε

∣∣ uε
δ < h

}; ωε
2,α = {

x ∈ Kα
h ∩ Ωε

∣∣ h � uε
δ � bmin

α

};
ωε

3,α = {
x ∈ Kα

h ∩ Ωε
∣∣ uε

δ > bmin
α

}
.

Since uε
δ ∈ W

1,pε(·)
0 (Ωε) ∩ W

1,p0(·)
0 (Ωε) converges weakly in W 1,p0(·)(Ω) to the function uδ , then one can show

that for sufficiently small ε (ε � ε̃(h)),∫
Kα

h

S
(
uε

δ − uδ

)
dx = O

(
hn+2p(+)+2γ

)
. (4.78)

Therefore,
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hp(+)

meas
[
ωε

1,α ∪ ωε
2,α

]
�

∫
ωε

1,α∪ωε
2,α

S
(
uε

δ − uδ

)
dx = O

(
hn+2p(+)+2γ

)
(4.79)

and

meas
[
ωε

1,α ∪ ωε
2,α

] = O
(
hn+p(+)+2γ

)
. (4.80)

Using the same arguments which were used to obtain (4.76), (4.77) we get

lim
ε=εk→0

∫
ωε

1,α∪ωε
3,α

Fε

(
x,uε

δ,∇uε
δ

)
dx �

∫
Kα

h

F0(x,uδ,∇uδ) dx + o
(
hn

)
as h → 0. (4.81)

To estimate the integral over the set ωε
2,α we introduce the function:

vε
α(x) =

⎧⎪⎨⎪⎩
0 in ωε

1,α ∪ (F ε ∩ Kα
h );

(uε
δ − h) in ωε

2,α;
bα in ωε

3,α.

(4.82)

Since uε
δ is bounded in ωε

2,α , then using (4.80), for sufficiently small ε (ε � ε̃(h)), we have∫
ωε

2,α

Fε

(
x,uε

δ,∇uε
δ

)
dx =

∫
Kz

h

{
1

pε

∣∣∇vε
α

∣∣pε(x)
dx + h−p(+)−γ S

(
vε
α − bα

)}
dx + o

(
hn

)
as h → 0.

Therefore, from the definition of cε,h(xα, bα),∫
ωε

2,α

Fε

(
x,uε

δ,∇uε
δ

)
dx � cε,h

(
xα, bα

) + o
(
hn

)
as h → 0. (4.83)

Thus, it follows from (4.81) and (4.83) that, for any Kα
h ⊂ Ω+

θ , as h → 0,

lim
ε=εk→0

∫
Kα

h ∩Ωε

Fε

(
x,uε

δ,∇uε
δ

)
dx �

∫
Kα

h

F0(x,uδ,∇uδ) dx + lim
ε=εk→0

cε,h
(
xα, bα

) + o
(
hn

)
. (4.84)

We can easily obtain the same inequality for any Kα
h ⊂ Ω−

θ .
Summing up these inequalities over all cubes Kα

h ⊂ Ωθ,h and passing to the limit, as h → 0, by (4.76), (4.77) and
condition (C.1) of Theorem 3.1 we get

lim
ε=εk→0

∫
Ωε

Fε

(
x,uε

δ,∇uε
δ

)
dx �

∫
Ω

F0(x,uδ,∇uδ) dx +
∫
Ωθ

c(x,u)dx. (4.85)

It is clear that
⋃

θ>0 Ωθ = {x ∈ Ω | |uδ| > 0}. It is also easy to see from the conditions of Theorem 3.1 that c(x,0) = 0.
Now we pass to the limit as θ → 0 in (4.85) and immediately obtain (4.68) and, therefore, (4.49).

Finally it follows from (4.48) and (4.49) that

Jhom[u] � Jhom[w]
for any w ∈ W 1,p0(·)(Ω) such that w = 0 on ∂Ω . This means that any weak limit of the solution of problem (3.6)
extended to the set F ε by zero, is the solution of the homogenized problem (3.9). This completes the proof of Theo-
rem 3.1.

5. Periodic and non-periodic examples

As an application of the previous general result, we now give two examples of perforated media, where the distri-
bution of the perforated domain and the growth function are specified.

Theorem 3.1 of Section 3 provides sufficient conditions for the existence of the homogenized problem (3.9). The
goals of this section are to prove that, for appropriate examples, all the conditions of Theorem 3.1 are satisfied and to
compute the function c(x,u) in the homogenized problem (3.9) explicitly.
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5.1. A periodic example

Let Ω be a bounded domain in R
3 with sufficiently smooth boundary. Let F ε be a union of balls F ε

i (i =
1,2, . . . ,Nε) periodically distributed in the domain Ω with a period ε. We assume that the ball F ε

i is centered at
the point xi,ε and its radius rε is defined by

rε = rε3, (5.1)

where r > 0. It is clear that meas F ε → 0 as ε → 0.
We will study the following variational problem:

inf
{
J ε[u]: u ∈ W

1,pε(·)
0

(
Ωε

)}
,

J ε[u] =
∫
Ωε

{
1

pε(x)
|∇u|pε(x) + 1

pε(x)
|u|pε(x) − f (x)u

}
dx, (5.2)

where f ∈ C1(Ω), and the function pε ∈ C1(Ω) is defined as follows.

Definition 5.1. Let Bi
ε/8 and Bi

ε/4 be the balls centered at the point xi,ε and of radii ε/8 and ε/4, respectively. The
function pε is a smooth ε-periodic function in Ω such that

pε(x) =

⎧⎪⎪⎨⎪⎪⎩
2 in Bi

ε/8 (i = 1,2, . . . ,Nε);
2 + πε(|x − xi,ε|) in Bi

ε/4 \ Bi
ε/8 (i = 1,2, . . . ,Nε);

2 + ε in Ω \ ⋃
i Bi

ε/4,

(5.3)

where πε is a smooth ε-periodic function in Ω such that 0 � πε(x) � ε.

It is clear that the function pε satisfies the conditions (i)–(iv), p
(+)
ε = 2 + ε, p

(−)
ε = p(−) = 2, and it converges

uniformly in Ω to the function p0(x) = 2.
The following result holds.

Theorem 5.2. Let uε be the solution (minimizer) of the variational problem (5.2). Then uε converges weakly in H 1
0 (Ω)

to u the minimizer of the following variational problem:

inf
{
Jhom[u]: u ∈ H 1

0 (Ω)
}
,

Jhom[u] =
∫
Ω

{
1

2
|∇u|2 +

(
1

2
+ 4πr

)
|u|2 − f (x)u

}
dx. (5.4)

5.1.1. Proof of Theorem 5.2
We have to verify the conditions of Theorem 3.1 and to calculate the function c(x, b) in the condition (C.1) explic-

itly.
First we notice that the local energy characteristic (3.7) in this case has the form:

cε,h(z, b) = inf
vε

∫
Kz

h

{
1

pε(x)

∣∣∇vε
∣∣pε(x) + h−p(+)−γ S

(
vε − b

)}
dx, (5.5)

where 0 < γ < p(+),

S
(
vε − b

) = ∣∣vε − b
∣∣pε(x) + ∣∣vε − b

∣∣2
, (5.6)

and the infimum is taken over vε ∈ W 1,pε(·)(Ω) that equal zero in F ε .
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Condition (C.2). We set

αε = aε1+κ , (5.7)

where a > 0 and 0 < κ < 1. We denote by vε
b the solution of the following boundary value problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

ρ2

∂

∂ρ

(
ρ2 ∂vε

b

∂ρ

)
= 0 for rε < ρ < αε;

vε
b(rε) = b;

vε
b(αε) = 0.

(5.8)

It is clear that

vε
b(ρ) = b

1
ρ

− 1
αε

1
rε

− 1
αε

. (5.9)

Let us introduce the following function:

Wε(x) =
{

0 in Kz
h ∩ F ε;

b − ∑
i vε

b(|x − xi,ε|)ϕ(
|x−xi,ε |

αε
) in Kz

h \ F ε,
(5.10)

where ϕ(t) is a smooth positive function defined by: ϕ ∈ C2(R+) with ϕ(t) = 1 for t � 1/2; ϕ(t) = 0 for t � 1. It is
clear that Wε ∈ W 1,pε(·)(Ω) and it equals zero in F ε .

Now it follows from the definition of the functional cε,h(z, b), (5.5)–(5.6), that

cε,h(z, b) �
∫
Kz

h

{
1

pε(x)

∣∣∇Wε
∣∣pε(x) + h−p(+)−γ S

(
Wε − b

)}
dx ≡ Aε,h(z). (5.11)

Consider the first integral on the right-hand side of (5.11). According to the definition of the function pε and the
parameter αε , we have

∫
Kz

h

∣∣∇Wε
∣∣pε(x)

dx = 4π
∑

F ε
i ⊂Kz

h

( αε/2∫
rε

∣∣∣∣∂Wε

∂ρ

∣∣∣∣2

ρ2dρ +
αε∫

αε/2

∣∣∣∣∂Wε

∂ρ

∣∣∣∣2

ρ2 dρ

)
. (5.12)

Here

αε/2∫
rε

∣∣∣∣∂Wε

∂ρ

∣∣∣∣2

ρ2dρ = b2rε
(
1 + o(1)

)
as ε → 0 (5.13)

and
αε∫

αε/2

∣∣∣∣∂Wε

∂ρ

∣∣∣∣2

ρ2dρ � C2
r2
ε

αε

= C3ε
5−κ . (5.14)

Now it follows from (5.12)–(5.14) and the definition of rε , (5.1), that∫
Kz

h

∣∣∇Wε
∣∣pε(x)

dx = 4πrb2h3(1 + o(1)
)

as ε → 0. (5.15)

Consider the second term on the right-hand side of (5.11). We have that

h−p(+)−γ

∫
Kz

S
(
Wε − b

)
dx � C4h

−p(+)+3−γ α3
ε

ε3
. (5.16)
h
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Therefore, from (5.15)–(5.16) we get

lim
h→0

lim
ε→0

h−ncε,h(z, b) � 4πrb2 (5.17)

and condition (C.2) is satisfied.

Condition (C.1). Now let vε
min = vε

min(x) be the function that minimizes the functional (5.5). Let us represent this
function in the form:

vε
min(x) = Wε(x) + ζ ε(x), (5.18)

where the function Wε is defined in (5.10). Then

cε,h(z, b) =
∫
Kz

h

{
1

pε(x)

∣∣∇vε
min

∣∣pε(x) + h−p(+)−γ
∣∣vε

min − b
∣∣2

}
dx. (5.19)

We will prove that the function ζ ε gives a vanishing contribution (as ε → 0 and h → 0) in (5.19) and, therefore, the
functional (3.7) may be computed by the function Wε .

It follows from (5.15)–(5.16) that

cε,h(z, b) � Aε,h(z) = 4πrb2h3 + βε,h(z) with lim
ε→0

βε,h(z) = 0, (5.20)

where Aε,h(z) is defined in (5.11).
Now let Bi

αε
be the ball centered at xi,ε and radius αε and let Bαε = ⋃

i Bi
αε

. By the definition of the functions Wε

and pε we have

cε,h(z, b) =
∫

Kz
h∩Bαε

{
1

pε(x)

∣∣∇(
Wε + ζ ε

)∣∣pε(x) + 2h−p(+)−γ
∣∣(Wε + ζ ε

) − b
∣∣2

}
dx

+
∫

Kz
h\Bαε

{
1

pε(x)

∣∣∇ζ ε
∣∣pε(x) + h−p(+)−γ S

(
ζ ε

)}
dx. (5.21)

For the first term on the right-hand side of (5.21), from the definition of the function pε , we obtain∫
Kz

h∩Bαε

{
1

pε(x)

∣∣∇(
Wε + ζ ε

)∣∣pε(x) + 2h−p(+)−γ
∣∣(Wε + ζ ε

) − b
∣∣2

}
dx

=
∫

Kz
h∩Bαε

{
1

2

∣∣∇Wε
∣∣2 + 1

2

∣∣∇ζ ε
∣∣2 + (∇Wε,∇ζ ε

)}
dx

+ 2h−p(+)−γ

∫
Kz

h∩Bαε

{∣∣Wε − b
∣∣2 + 2

(
Wε − b

)
ζ ε + ∣∣ζ ε

∣∣2}
dx. (5.22)

Now it follows from (5.21)–(5.22) that

cε,h(z, b) = Aε,h(z) + Jε,h(z) +
∫

Kz
h∩Bαε

{(∇Wε,∇ζ ε
) + 4h−p(+)−γ

(
Wε − b

)
ζ ε

}
dx, (5.23)

where

Jε,h(z) =
∫
Kz

h

{
1

pε(x)

∣∣∇ζ ε
∣∣pε(x) + h−p(+)−γ S

(
ζ ε

)}
dx. (5.24)

Therefore, integrating by parts in the third term of the right-hand side of (5.23) and taking into account (5.20), we
get
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Jε,h(z) � 2
∫

Kz
h∩Bαε

{∣∣�Wε
∣∣ + 4h−p(+)−γ

∣∣(Wε − b
)∣∣}∣∣ζ ε

∣∣dx. (5.25)

Let ηε(x) = �Wε . Then this function equals zero everywhere in the cube Kz
h except the set Dαε = ⋃

i Di
αε

, where
Di

αε
= {x ∈ Kz

h | αε/2 < |x − xi,ε| < αε} and

ηε = �Wε = 1

ρ2

∂

∂ρ

(
ρ2 ∂Wε

∂ρ
(ρ)

)
in Di

αε
.

Moreover, the following estimate holds∣∣ηε
∣∣ � C

rε

α3
ε

in Di
αε

. (5.26)

Now from (5.25), (5.26) and the Cauchy inequality we get

Jε,h(z) � C

{
rε

α3
ε

+ h−p(+)−γ

}[
α3

ε

h3

ε3

]1/2(∑
i

∫
Kz

h∩Bi
αε

∣∣ζ ε
∣∣2

dx

)1/2

. (5.27)

To estimate the integral on the right-hand side of (5.27) we make use of the following lemma.

Lemma 5.1. Let Kε be a cube centered at the point zero and of length ε and B0
αε

be a ball centered at zero and of

radius αε . Then for any v ∈ W 1,pε(·)(Kε) we have∫
B0

αε

|v|2 dx � C

{
α3

ε

ε3

∫
Kε

S(v) dx + εαε

∫
Kε

|∇v|pε(x) dx + δ(ε)

}
, (5.28)

where

δ(ε) = ε4αε. (5.29)

Proof. We make use of the following inequality (see Section 7.5 in [26]):∫
B0

αε

|v|2 dx � C

{
α3

ε

ε3

∫
Kε

|v|2 dx + εαε

∫
Kε

|∇v|2 dx

}
. (5.30)

This inequality was proved for any v ∈ H 1(Kε), therefore, it is valid for any v ∈ W 1,pε(·)(Kε), where the function pε

is given by Definition 5.1.
Consider the right-hand side of (5.30), we have

α3
ε

ε3

∫
Kε

|v|2 dx + εαε

∫
Kε

|∇v|2 dx � α3
ε

ε3

∫
Kε

S(v) dx + εαε

∫
Kε

>

|∇v|2 dx + εαε

∫
Kε

<

|∇v|2 dx, (5.31)

where Kε
> = {x ∈ Kε: |∇v| > 1} and Kε

< = {x ∈ Kε: |∇v| � 1}. Then it is clear that

εαε

∫
Kε

>

|∇v|2 dx + εαε

∫
Kε

<

|∇v|2 dx � εαε

∫
Kε

>

|∇v|pε(x) dx + ε4αε �
∫

Kε

|∇v|pε(x) dx + ε4αε.

This inequality together with (5.30), (5.31) proves the lemma. �
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Now it follows from (5.27)–(5.29) that

Jε,h(z) � Ch3/2
([

r2
ε

ε6
+ h−2p(+)−2γ α6

ε

ε6

]∫
Kε

S
(
ζ ε

)
dx +

[
r2
ε

α6
ε

α4
ε

ε2
+ h−p(+)−γ α4

ε

ε2

]∫
Kε

∣∣∇ζ ε
∣∣pε(x)

dx

+
[
h3 r2

ε

α6
ε

α3
ε

ε6
δ(ε) + h3−p(+)−γ α3

ε

ε6
δ(ε)

]) 1
2

. (5.32)

Since rε = rε3, αε = aε1+κ , and δ(ε) is given by (5.29), then, for ε sufficiently small, we have that

Jε,h(z) � Ch3/2+p(+)/2+γ /2(Jε,h(z) + o(1)
)1/2 as ε → 0, (5.33)

and, therefore,

lim
ε→0

Jε,h(z) = o
(
h3). (5.34)

This means that we can calculate the function c(x, b) from the test function Wε . We obtain that c(x, b) = 4πrb2. This
completes the proof of Theorem 5.2.

5.2. A non-periodic example

In this example, we consider a locally periodic perforated domain. More precisely, let Ω be a bounded domain in
R

3 with sufficiently smooth boundary and {xi,ε} be a periodic grid in Ω with a period ε. We define the sets F ε and
Ωε in the following way:

F ε =
⋃
i

F
r
(i)
ε

and Ωε = Ω \ F ε, (5.35)

where F
r
(i)
ε

(i = 1,2, . . . ,Nε) is the closed ball centered at the point xi,ε and of radius r
(i)
ε defined by

r(i)
ε = R

(
xi

)
ε3. (5.36)

Here R = R(x) is a strictly positive smooth function in Ω . As in the periodic case, it is clear that meas F ε → 0 as
ε → 0.

Consider the variational problem (5.2), where f ∈ C1(Ω) and the function pε is given by Definition 5.1. Following
the lines of the proof of Theorem 5.2 (with corresponding modifications) we can obtain the following result.

Theorem 5.3. Let uε be the solution of the variational problem (5.2) considered in the domain Ωε defined in (5.35).
Then uε converges weakly in H 1

0 (Ω) to u the solution of the following variational problem:

inf
{
Jhom[u]: u ∈ H 1

0 (Ω)
}
,

Jhom[u] =
∫
Ω

{
1

2
|∇u|2 +

(
1

2
+ 4πR(x)

)
|u|2 − f (x)u

}
dx. (5.37)

5.3. Some generalizations

In Sections 5.1, 5.2 the proof of (5.25) and some other inequalities relies on the fact that, in the case under consid-
eration, pε equals 2 in the neighbourhood of the inclusions F ε

i . In more general situation, for example, if we assume
that in the said neighbourhood pε is equal to a constant p > 2, the proof of similar inequalities relies on the following
statement.

Lemma 5.2. Let pε = pε(x) be a continuous function satisfying the bound

2 � p(−) � p(−)
ε ≡ min pε(x) � pε(x) � maxpε(x) ≡ p(+)

ε � p(+) � n in Ω. (5.38)

x∈Ω x∈Ω
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Then, for any vectors ξ1, ξ2 ∈ R
d (d = 1,2, . . .), there exists δ ∈ (0,1), which does not depend on ε, such that

|ξ1 + ξ2|pε(·) � |ξ1|pε(·) + δ|ξ2|pε(·) + pε(·)|ξ1|pε(·)−2(ξ1, ξ2)d , (5.39)

where (·,·)d is the scalar product in the space R
d .

Proof. Without loss of generality we may assume that ξ1 = �e1, where �e1 is the first coordinate vector in R
d . Then the

inequality (5.39) is equivalent to the following inequality:

|�e1 + ξ |pε(·) � 1 + δ|ξ |pε(·) + pε(·)ξ1, (5.40)

where ξ ≡ ξ2 and ξ1 is the first component of the vector ξ . We denote

Gpε(·)(ξ) = |�e1 + ξ |pε(·) − 1 − pε(·)ξ1.

It is clear that Gpε(·)(0) = 0 and ∇ξ Gpε(·)(ξ) = 0 for ξ = 0.
It is easy to verify that there is � > 0 such that

Gpε(·)(ξ) � 1

2
|ξ |pε(·)

for all |ξ | � � and all the functions pε satisfying condition (5.38). Therefore, it suffices to prove that

Gpε(·)(ξ) � δ|ξ |pε(·)

for all |ξ | � � . Computing the second order derivatives of the function Gpε(·), we conclude that

∂2Gpε(·)
∂2ξ

� 0

and

∂2Gpε(·)
∂2ξ

� δ1(n)I

for all ξ such that |ξ | � 1/2 with δ1(n) independent of pε . Here I is the unit matrix. For ξ ∈ B1/2, where

B1/2 =
{
ξ : |ξ | � 1

2

}
,

we have

Gpε(·)(ξ) = Gpε(·)(ξ) − Gpε(·)(0) = G′′
pε(·)(ξ̃ )|ξ |2

with ξ̃ ∈ B1/2. Thus, Gpε(·)(ξ) � δ1(n)|ξ |2. By convexity, for any ξ , 1
2 � |ξ | � � , we have

Gpε(·)(ξ) � Gpε(·)
(

1

2

ξ

|ξ |
)

�
(

1

2

)2 |ξ |2
|ξ |2 δ1(n) �

(
1

2

)2

δ1(n)
1

�2
|ξ |2.

Lemma 5.2 is proved. �
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