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Abstract: We prove a homogenization theorem for quadratic convolution energies defined in perforated
domains. The corresponding limit is a Dirichlet-type quadratic energy, whose integrand is defined by a non-
local cell-problem formula. The proof relies on an extension theorem from perforated domains belonging to
a wide class containing compact periodic perforations.
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1 Introduction
In this paper, we perform a limit analysis for a class of convolution functionals that may be interpreted as
describing macroscopic features of biological systems. Indeed, the study of macroscopic properties for com-
plex biological systems and models of population dynamics can be reduced to studying the evolution of
the so-called one-point correlation function describing the population density in the system. An important
feature of the corresponding equation is that it is non-local with respect to spatial variables, and that the
non-local operator is of convolution type; see [10, 13] for further details. On a fixed domain Ω, the energy of
such a system in the stationary regime is given by

1
εd+2
∫

Ω×Ω

a( y − xε )
(u(y) − u(x))2 dy dx, (1.1)

where a is a convolution kernel with good integrability properties.
We note that if u ∈ C1(Ω), then u(y) − u(x) ≈ ⟨∇u(x), y − x⟩ and, using the change of variables y = x + εξ ,

1
εd+2
∫

Ω×Ω

a( y − xε )
(⟨∇u(x), y − x⟩)2 dy dx → ∫

Ω

∫
ℝd

a(ξ)(⟨∇u(x), ξ⟩)2 dξ dx as ε → 0

so that the quadratic functional

∫
Ω

⟨A∇u, ∇u⟩ dx, with ⟨Az, z⟩ = ∫
ℝd

a(ξ)(⟨z, ξ⟩)2 dξ, (1.2)
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gives an approximation of (1.1), or conversely, (1.1) gives amore general form of quadratic energies allowing
for interactions between points at scale ε. In terms of Γ-convergence, this computation can be reworked as
a Γ-limit and the corresponding convergence of minimum problems. The convergence of the corresponding
operators, also with periodic perturbations of the convolution kernel, has been studied in [15].

In the case of inhomogeneous media with a periodic microstructure and with zones where we do not
have interactions, themodelmay be set in a perforated domain, where the energies are integrated only on the
complement of a “perforation”. In the corresponding equations, we will obtain a homogeneous (non-local)
Neumann boundary condition on the perforation. A general periodically perforated domain is obtained by
intersecting Ω with a periodic connected Lipschitz set Eδ = δE with small period δ. In the case of energies
of convolution type, the relevant scale of the period δ is of order ε. Indeed, otherwise, if ε ≪ δ, then we may
apply a separation of scales argument and reduce to the classical problem of the asymptotic description of
perforated domain for the quadratic form (1.2), while if δ ≪ ε, the effect of the perforation is averaged out
giving as a limit the energy in (1.2) multiplied by the constant |E ∩ (0, 1)d| (i.e., the constant density of the
weak limit of χδE). We will then directly consider energies of the form

Fε(u) =
1

εd+2
∫

(Ω∩Eε)×(Ω∩Eε)

a( y − xε )
(u(y) − u(x))2 dy dx

(i.e., with δ = ε). In order to avoid technicalities, we will restrict to the simplified case of “compact perfora-
tions”, i.e., when E = ℝd \ (K0 +ℤd), where K0 is a Lipschitz compact set such that (K0 + j) ∩ (K0 + j) = 0 if
j, j ∈ ℤd and j ̸= j.

In the asymptotic analysis of usual (quadratic) integral functionals on perforated domains, one considers
energies

Eε(u) = ∫
Ω∩Eε

⟨A∇u, ∇u⟩ dx

or the corresponding elliptic differential operators with Neumann conditions on the perforation boundary.
Early homogenization results for such operators were obtained in [8, 12, 14, 16], from which many other
works on the topic followed. The key argument in the asymptotic analysis both of energies and operators
is an extension lemma, which allows to extend functions in H1(Ω ∩ Eε) to functions in H1(Ω) for Ω ⊂⊂ Ω
controlling the H1 and L2 norms of the extensionwith those of the original function in the perforated domain
independently of ε (see [1, 5]). In thisway,wemaydefine an L2loc-limit of sequences of functionswith bounded
energy as the limit of their extensions. Our first result is a similar extension theorem, which can be stated
as follows: for a fixed r0 > 0, there exist r > 0 and a constant C such that, for every fixed Ω and for each
function u with bounded energy, there exists an extension v of function u that satisfies for all sufficiently
small ε the inequality

∫
(Ω×Ω)∩{|x−y|≤εr}(v(y) − v(x))

2 dy dx ≤ C ∫
(Ω∩Eε)×(Ω∩Eε)∩{|y−x|<εr0}

(u(y) − u(x))2 dy dx. (1.3)

The construction of the extended function v can be achieved by a “reflection” argument close to ∂Eε. Note
however that the estimate of the energy is a little trickier than in the usual “local” case since, for the extended
function, we will have interactions between the function inside and outside the perforation.

Under the assumption that

there exist a constant c > 0 and r0 > 0 such that a(z) ≥ c if |z| ≤ r0, (1.4)

the term on the right-hand side of (1.3) can be estimated in terms of Fε(u). Note that if hypothesis (1.4) fails,
the set of points (x, y) ∈ E × Ewith a(y − x) ̸= 0maybe composed of disconnected components and as a result
no controlled extension be possible.

Since, unlike for the usual Dirichlet integrals, inequality (1.3) does not imply the boundedness of the
extensions in H1, in order to conclude the argument, the extension theorem must be coupled with a com-
pactness result for non-perforated energies (see [7]), now applied to the extended functions, which allows
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to conclude that, from each sequence with equibounded energy, we can extract a subsequence such that the
corresponding extensions converge in L2loc to some u ∈ H1(Ω).

Once this result is obtained, we can compute the Γ-limit of Fε with respect to the convergence described
above. The limit is a “classical” local quadratic energy

Fhom(u) = ∫
Ω

⟨Ahom∇u, ∇u⟩ dx,

with domain H1(Ω), where Ahom is a symmetric matrix given by the cell-problem formula

⟨Ahomz, z⟩ = inf{ ∫
(0,1)d∩E

∫
E

a(ξ)(w(y + ξ) − w(y))2 dξ dy : w(y) − ⟨z, y⟩ is 1-periodic}. (1.5)

It must be noted that, in formula (1.5), the inner integral is performed on the whole E, highlighting that
long-range interactions cannot be neglected. The treatment of these long-range interactions is the source of
most of the technical points in the proof of the homogenization results. In order to control them, we have to
make some assumption on the decay of a, which we state as

0 ≤ a(ξ) ≤ C 1
(1 + |ξ|)d+2+κ

(1.6)

for some κ > 0. Note that this is slightlymore restrictive than assuming the finiteness of secondmoments of a,
which is a necessary condition by (1.2).

This homogenization theorem is achieved by first using the blow-up method of Fonseca and Müller [6,
11], and then reducing to one-periodic interactions by a convexity argument. The use of formula (1.5) allows
the construction of a recovery sequence for which we can control long-range interactions. It is worth remark-
ing that the use of the blow-up method is possible thanks to the “vanishing non-locality” of the energies. We
note the analogy with the results on “perforated” discrete domains (i.e., defined on scaled periodic lattices
with some missing sites) studied in [4, Section 3].

2 Setting of the problem
We consider a convolution kernel a : ℝd → ℝ+ with ∫ℝd a(ξ) dξ > 0 and such that (1.6) holds for some κ > 0.
We suppose that K0 is a compact subset of ℝd with Lipschitz boundary such that (K0 + j) ∩ (K0 + j) = 0 if
j, j ∈ ℤd and j ̸= j. We then define the perforated domain

E = ℝd \ (K0 +ℤd).

Let Ω be an open subset ofℝd. For all ε > 0 and u ∈ L2(Ω \ εE), we set

Fε(u) =
1

εd+2
∫

Ω∩εE

∫
Ω∩εE

a( y − xε )
(u(y) − u(x))2 dy dx. (2.1)

Equivalently, we will write

Fε(u) =
1
εd
∫

Ω∩εE

∫
Ω∩εE

a( y − xε )(
u(y) − u(x)

ε )
2
dy dx

=
1

εd+2
∫

Ω∩εE

∫
Ω∩εE−x

a( ξε )
(u(x + ξ) − u(x))2 dξ dx

= ∫
Ω∩εE

∫
1
ε (Ω∩εE−x)

a(ξ)(u(x + εξ) − u(x)ε )
2
dξ dx,

this last version being useful when integrability properties of a are used.
In the following, wewill prove extension, compactness and convergence properties for the functionals Fε

under hypothesis (1.4). Note that if such a hypothesis is removed, the functionals Fε may be “degenerate”,
as shown in Example 4.3.
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2.1 Notation

∙ Unless otherwise stated, C denotes a generic strictly positive constant independent of the parameters of
the problem taken into account.

∙ QT = [− T2 ,
T
2 ]

d denotes the d-dimensional coordinate cube centered in 0 and with side-length T.
∙ ⌊t⌋ denotes the integer part of t ∈ ℝ.
∙ χA denotes the characteristic function of the set A.
∙ For all t > 0, we denote Ω(t) = {x ∈ Ω : dist(x, ∂Ω) > t}.

2.2 Preliminaries for “solid domains”

In this section, we consider “solid domains”, i.e., the case when the perforation is not present. In the follow-
ing, wewill extend functions fromΩ ∩ εE to thewholeΩmaintaining the boundedeness of some convolution
energy. In this way, we will be able to use arguments for functions defined on solid domains.

2.2.1 A compactness theorem

Let Ω be an open set with Lipschitz boundary. The following result, proved in [7], shows that families of
functions that have bounded energies of type (1.1) are compact in L2loc(Ω).

Theorem 2.1 (Compactness theorem). Let Ω be an open set with Lipschitz boundary, and assume that, for
a family {wε}ε>0, wε ∈ L2(Ω), the estimate

Fkε,rε (wε) := ∫
Ω(kε)

∫
{|ξ|≤r}

(
wε(x + εξ) − wε(x)

ε )
2
dξ dx ≤ C

is satisfied with some k > 0 and r > 0. Assumemoreover that the family {wε} is bounded in L2(Ω). Then, for any
sequence εj such that εj > 0 and εj → 0 as j →∞ and for any open subset Ω ⋐ Ω, the set {wεj }j∈ℕ is relatively
compact in L2(Ω) and all its limit points are in H1(Ω).

2.2.2 Treatment of boundary data

In this section,we prove a classical lemma that allows tomatch boundary data. For future reference, we prove
it for general integrands bε which only satisfy an estimate from above. In the following, it will be applied to

bε(x, y) = b(x, y) = χE(x)χE(y)a(x − y). (2.2)

With this requirement of generality in mind, let bε : Ω × Ω → ℝ be Borel functions satisfying

0 ≤ bε(x, y) ≤ C
1

(1 + |x − y|)d+2+κ
, (2.3)

and set
Fbε (u) =

1
εd+2
∫
Ω

∫
Ω

bε(
x
ε
, y
ε)
(u(y) − u(x))2 dy dx.

Proposition 2.2 (Treatment of boundary values). Let A be a bounded open set with Lipschitz boundary, and
let vη → v in L2(A) with v ∈ H1(A). For every δ > 0, there exist vδη converging to v in L2(A) such that

vδη = v in A \ A(δ), vδη = vη in A(2δ),

lim sup
η→0
(Fbη(vδη) − Fbη(vη)) ≤ o(1) as δ → 0.
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Proof. With fixed N ∈ ℕ and k ∈ {1, . . . , N} (to be determined below), let

ϕ(x) = min{max{0, Nδ (dist(x, ∂A) − δ(1 +
k − 1
N ))}

, 1}

so that ϕ = 0 in A \ A(δ(1 + k−1
N )), ϕ = 1 in A(δ(1 + k

N )), and |∇ϕ| ≤
N
δ .

We define vδη = ϕvη + (1 − ϕ)v. Upon writing

vδη(y) − vδη(x) = ϕ(y)(vη(y) − vη(x)) + (1 − ϕ(y))(v(y) − v(x)) + (ϕ(y) − ϕ(x))(vη(x) − v(x)),

we can estimate Fbη(vδη) by examining separately the sets

B1 = A(δ(1 +
k
N ))
× A(δ(1 + kN )),

B2 = (A \ A(δ(1 +
k − 1
N )))

× (A \ A(δ(1 + k − 1N )))
,

B3 = (A(δ(1 +
k − 1
N ))
\ A(δ(1 + kN ))) × A,

B3 = (A × (A(δ(1 +
k − 1
N ))
\ A(δ(1 + kN )))) \ B3,

B4 = A(δ(1 +
k
N ))
× (A \ A(δ(1 + k − 1N )))

,

B4 = (A \ A(δ(1 +
k − 1
N )))

× A(δ(1 + kN )).

We have

1
ηd
∫
B1

bη(
x
η
, y
η)(

vδη(y) − vδη(x)
η )

2
dx dy = 1

ηd
∫
B1

bη(
x
η
, y
η)(

vη(y) − vη(x)
η )

2
dx dy ≤ Fbη(vη),

1
ηd
∫
B2

bη(
x
η
, y
η)(

vδη(y) − vδη(x)
η )

2
dx dy = 1

ηd
∫
B2

bη(
x
η
, y
η)(

v(y) − v(x)
η )

2
dx dy

≤
1
ηd
∫

A(2δ)×A(2δ)

bη(
x
η
, y
η)(

v(y) − v(x)
η )

2
dx dy ≤ ω(|A(2δ)|),

with ω(s)→ 0 as s → 0. We set

Sk = A(δ(1 +
k − 1
N ))
\ A(δ(1 + kN ))

and note that

1
ηd
∫

Sk×A

bη(
x
η
, y
η)(

ϕ(y) − ϕ(x)
η )

2
(vη − v)2 dx dy ≤

N2

δ2
1

ηd+2
∫

Sk×A

bη(
x
η
, y
η)
|x − y|2(vη − v)2 dx dy

≤ CN
2

δ2
∫
Sk

(vη − v)2 dx.

We then have

1
ηd
∫
B3

bη(
x
η
, y
η)(

vδη(y) − vδη(x)
η )

2
dx dy ≤ C 1

ηd
∫

Sk×A

bη(
x
η
, y
η)(

vη(y) − vη(x)
η )

2
dx dy

+ C 1
ηd
∫

Sk×A

bη(
x
η
, y
η)(

v(y) − v(x)
η )

2
dx dy

+ CN
2

δ2
∫
Sk

(vη − v)2 dx.
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Wemay now choose k ∈ {1, . . . , N} such that

1
ηd
∫

Sk×A

bη(
x
η
, y
η)(

vη(y) − vη(x)
η )

2
dx dy + 1

ηd
∫

Sk×A

bη(
x
η
, y
η)(

v(y) − v(x)
η )

2
dx dy ≤ 1

N
(Fbη(vη) + Fbη(v))

so that
1
ηd
∫
B3

bη(
x
η
, y
η)(

vδη(y) − vδη(x)
η )

2
dx dy ≤ C

N
+ CN

2

δ2
∫
Sk

(vη − v)2 dx.

The same argument proves the same estimate for the integral on B3.
As for B4, note that, for (x, y) ∈ B4, we have |y − x| ≥ δ

N so that, using the growth assumption (2.3) on bη,
we obtain

1
ηd
∫
B4

bη(
x
η
, y
η)(

vδη(y) − vδη(x)
η )

2
dx dy ≤ CN

2+d+κ

δ2+d+κ
ηk .

The estimate for the contribution of B4 is completely analogous.
Gathering all estimates above, we have

Fbη(vδη) − Fbη(vη) ≤ ω(|A(2δ)|) +
C
N
+ CN

2

δ2
∫
A

(vη − v)2 dx + C
N2+d+κ

δ2+d+κ
ηk .

Letting η → 0 and using the arbitrariness of N, we obtain the claim.

Remark 2.3. We may generalize the proposition above by fixing as boundary data, instead of a fixed
v ∈ H1(A), a sequence wη converging weakly to v in H1(A) and satisfying

lim sup
η→0
∫
U

∫
{ξ:x+ηξ∈U}

1
(1 + |ξ|)d+2+κ

(
wη(x + ηξ) − wη(x)

η )
2
dξ dx ≤ ω(|U|)

for all open setsU,whereω(t)→ 0 as t → 0. In this case, bydefining vδη = ϕvη + (1 − ϕ)wη in theproof above,
we can obtain that the vδη converging to v in L2(A) satisfy vδη = wη in A \ A(δ) and vδη = vη in A(2δ).

3 An extension theorem
The following result states that any function u defined on the perforated domain Ω ∩ εE can be extended to
a function defined on the whole domain Ω such that, upon restricting to the interior of the domain (more
precisely, to points at distance greater than some multiple of ε), a reference convolution energy of the exten-
sion is bounded by Fε(u) and the L2-norm of the extension is bounded by the L2-norm of u on the perforated
domain. This result mirrors the analog where Fε is the Dirichlet energy on the perforated domain and the
reference convolution energy is replaced with the Dirichlet energy on the solid domain [1].

Definition 3.1. Wesay that an open subsetF ofℝd has auniformly Lipschitz continuous boundary if there exist
constants L > 0 and ρ1, ρ2 > 0 such that, for any point x ∈ ∂F, there exists a set 𝕊 which, up to translation
by x and rotation, is of the form (−ρ1, ρ1)d−1 × (−ρ2, ρ2) such that 𝕊 ∩ F is the sub-graph of an L-Lipschitz
function defined on (−ρ1, ρ1)d−1.

Notice that we can assume without loss of generality that the L-Lipschitz function in the last definition takes
on values in the interval (− ρ22 ,

ρ2
2 ).

Theorem 3.2 (Extension theorem). Let E be an open subset ofℝd with the following properties:
(1) ℝd \ E is a union of bounded open sets inℝd;
(2) the diameters of these sets are uniformly bounded;
(3) the distance between any two distinct sets is bounded from below by a positive constant;
(4) the boundary of the set E is uniformly Lipschitz continuous in the sense of Definition 3.1.
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Let Ω be an open set with Lipschitz boundary. For each r0 > 0, there exist k > 0 and r > 0 such that, for all
u ∈ L2(Ω ∩ εE), there exists v ∈ L2(Ω) such that

v = u on Ω ∩ εE, (3.1)

∫
Ω(kε)×Ω(kε)∩{|x−y|≤εr}

(
v(y) − v(x)

ε )
2
dy dx ≤ C ∫

(Ω∩εE)×(Ω∩εE)∩{|x−y|≤εr0}

(
u(y) − u(x)

ε )
2
dy dx, (3.2)

∫
Ω(kε)

|v|2 dx ≤ C ∫
Ω∩εE

|u|2 dx. (3.3)

Note that if (1.4) holds, then (3.2) implies that

∫
Ω(kε)

∫
{|ξ|≤r}

(
v(x + εξ) − v(x)

ε )
2
dξ dx ≤ CFε(u).

Our arguments rely on the following statement.

Lemma 3.3. Let A be a connected bounded Lipschitz set. For any r > 0, there exists a constant cr > 0 such that
the following inequality holds:

∫
A×A

(u(η) − u(ξ))2 dξ dη ≤ cr ∫
(A×A)∩{(ξ,η):|ξ−η|≤r}

(u(η) − u(ξ))2 dξ dη. (3.4)

If L, ρ1, ρ2 are constants as in Definition 3.1, then the constant cr depends on A only through its diameter and
such constants.

Proof of Lemma 3.3. Since, for any function u, the integral on the right-hand side of (3.4) is an increasing
function of r, it is sufficient to prove (3.4) for r positive and small enough.

SinceA has aLipschitz boundary and is connected,withfixed r > 0, there exists r1 ∈ (0, 12 r) and ν ∈ (0, 1]
that only depends on the Lipschitz constant of A such that, for any two points η, η ∈ A, there is a discrete
path from η to η, i.e., a set of points η = η0, η1, . . . , ηN , η = ηN+1, that possesses the followingproperties:
(a) |ηj+1 − ηj| ≤ r1 for j = 0, 1, . . . , N;
(b) for all j = 1, . . . , N, the ball Bνr1 (ηj) = {η ∈ ℝd : |η − ηj| ≤ νr1} is contained in A;
(c) there exists N̄ = N̄(r1, diam(A)) such that N ≤ N̄ for all η, η ∈ A.
Indeed, since A is a bounded Lipschitz set, it has a uniformly Lipschitz continuous boundary. Then there
exists a constant r2 = r2(L, ρ1, ρ2, r) > 0 such that r2 < 1

2 r, r2 <
1
2d min(ρ1, ρ2) and the set

Ar2 = {x ∈ A : dist(x, ∂A) > r2}

is connected.We choose r1 = r2
8(L+1) anddenote ZA = {z ∈

r1
√d
ℤd : z ∈ Ar2 }. By construction, Br1 (x) ⊂ A for any

x ∈ Ar2 , and for any z1 and z2 in ZA, there exists a path z1 = η1, . . . , ηN = z2 in ZA such that |ηj+1 − ηj| ≤ r1
and N ≤ ( diam(A)r1 )

d. Also, by construction, for any x ∈ A \ Ar2 , there exists a path x = ̃η0, . . . , ̃ηÑ such that
̃ηÑ ∈ ZA, | ̃ηj+1 − ̃ηj| ≤ r1, Ñ ≤ 16(L + 1)d, and B r1

2(L+1) ( ̃ηj) ⊂ A for all j = 1, . . . , Ñ. This implies the existence
of a path that has properties (a)–(c).

Writing u(ξ0) − u(ξN+1) = u(ξ0) − u(ξ1) + u(ξ1) − ⋅ ⋅ ⋅ − u(ξN) + u(ξN) − u(ξN+1), where ξj denotes a point
in Bνr1 (ηj) for 1 ≤ j ≤ N, we get

∫
(A∩Bνr1 (η))×(A∩Bνr1 (η))

(u(ξ0) − u(ξN+1))2 dξ0 dξN+1

= (νr1)−dN ∫
Bνr1 (η1)

⋅ ⋅ ⋅ ∫
Bνr1 (ηN )

∫
(A∩Bνr1 (η))×(A∩Bνr1 (η))

{u(ξ) − u(ξ1) + u(ξ1) − ⋅ ⋅ ⋅

− u(ξN) + u(ξN) − u(η)}2 dξ0 dξN+1 dξN . . . dξ1

≤ (N + 1)(νr1)−dN ∫
A∩Bνr1 (η0)

⋅ ⋅ ⋅ ∫
A∩Bνr1 (ηN+1)

N+1
∑
j=1
(u(ξj) − u(ξj−1))2 dξN+1 . . . dξ0
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= C(N + 1)
N+1
∑
j=1

∫
(A∩Bνr1 (ηj))×(A∩Bνr1 (ηj−1))

(u(ξj) − u(ξj−1))2 dξj dξj−1

≤ C(N̄ + 1)2 ∫
(A×A)∩{(ξ,η):|ξ−η|≤r}

(u(η) − u(ξ))2 dξ dη.

Covering A with a finite number of balls of radius νr1 and summing up the last inequality over all pairs of
these balls gives the desired estimate (3.4).

Proof of Theorem 3.2. Weapply our arguments separately to each connected component ofℝd \ E.With fixed
τ > 0 chosen below, we consider a connected component K ofℝd \ E and set

A := {ξ ∈ ℝd \ K : dist(ξ, ∂K) < τ} and A⋆ := {ξ ∈ K : dist(ξ, ∂K) < τ}.

Since K is bounded and Lipschitz, we may fix τ > 0 small enough and an invertible mapping R from
A to A⋆ such that 1

2 |R(ξ
) − R(ξ )| ≤ |ξ  − ξ | ≤ 2|R(ξ ) − R(ξ )| for all ξ , ξ  ∈ A. Slightly abusing the nota-

tion,we call thismapping a reflection. Inwhat follows, for the sake of brevity, we use the notation ξR = R−1(ξ)
for ξ ∈ A⋆.

We set
̄uA =

1
|A⋆| ∫

A⋆ u(R
−1(ξ)) dξ.

Let φ be a C∞ function such that 0 ≤ φ ≤ 1, φ = 1 in A and in a neighborhood of ∂K, φ = 0 in a neighborhood
of ∂A⋆ \ ∂K.

We define v(ξ) as follows:

v(ξ) =
{{{
{{{
{

u(ξ) if ξ ∈ A,
φ(ξ)u(R−1(ξ)) + (1 − φ(ξ)) ̄uA if ξ ∈ A⋆,
̄uA if ξ ∈ K \ A⋆.

Letting k = diam(Q1) = √d and r = min(r0, k, τ), we have

∫
(A×A)∩{|ξ−η|≤r}

(v(η) − v(ξ))2 dξ dη = ∫
(A×A)∩{|ξ−η|≤r}

(u(η) − u(ξ))2 dξ dη, (3.5)

∫
(A×A⋆)∩{|ξ−η|≤r}(v(η) − v(ξ))

2 dξ dη ≤ ∫
A×A

(u(η) − u(ζ))2

∂R(ζ)
∂ζ

dζ dη ≤ CR ∫

A×A

(u(η) − u(ζ))2 dζ dη. (3.6)

Here we have used the fact that the Jacobian 
∂R(ζ)
∂ζ
 is a bounded function, 

∂R(ζ)
∂ζ
 ≤ CR. Next, taking into

account the relation

v(ξ) − v(η) = (φ(ξ) − φ(η))( ̄uA − u(ξR)) + φ(η)(u(ξR) − u(ηR)) if η ∈ A⋆, ξ ∈ A⋆,

we obtain

∫
(A⋆×A⋆)∩{|ξ−η|≤r}(v(η) − v(ξ))

2 dξ dη ≤ ∫
A⋆×A⋆ ( ̄uA − u(ξR))

2 dξ dη + ∫
A⋆×A⋆ (u(ηR) − u(ξR))

2 dξ dη.

Since ̄uA is the average of the function u(ξR) over A⋆, then

∫
A⋆×A⋆ ( ̄uA − u(ξR))

2 dξ dη = 12 ∫
A⋆×A⋆ (u(ηR) − u(ξR))

2 dξ dη.

This yields
∫

(A⋆×A⋆)∩{|ξ−η|≤r}(v(η) − v(ξ))
2 dξ dη ≤ C2R ∫

A×A

(u(η) − u(ξ))2 dξ dη. (3.7)
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Finally,

∫
A⋆ ∫
{ξ∈K\A⋆:|ξ−η|≤r}(v(η) − v(ξ))

2 dξ dη ≤ ∫
K\A⋆ ∫A⋆ (φ(ξ))

2( ̄uA) − u(ξR))2 dξ dη

≤ |K \ A⋆| ∫
A⋆ ( ̄uA) − u(ξR))

2 dξ

≤ CR
|K \ A⋆|
|A⋆| ∫

A×A

(u(η) − u(ξ))2 dξ dη.

Combining the last inequality with (3.5), (3.6) and (3.7), we conclude that

∫
((K∪A)×(K∪A))∩{|ξ−η|≤r}

(v(η) − v(ξ))2 dξ dη ≤ C ∫
A×A

(u(η) − u(ξ))2 dξ dη.

Wemay now apply Lemma 3.3. By (3.4), we obtain

∫
((K∪A)×(K∪A))∩{|ξ−η|≤r}

(v(η) − v(ξ))2 dξ dη ≤ C ∫
(A×A)∩{|ξ−η|≤r}

(u(η) − u(ξ))2 dξ dη.

After rescaling, this inequality reads

∫
(ε(K∪A)×ε(K∪A))∩{|ξ−η|≤εr}

(v(η) − v(ξ))2 dξ dη ≤ C1 ∫
(εA×εA)∩{|ξ−η|≤εr}

(u(η) − u(ξ))2 dξ dη.

Summing up the last inequality over all the inclusions in Ω(kε), we obtain (3.1) and (3.2). Inequality (3.3) is
a straightforward consequence of the definition of v.

4 Homogenization
We now state and prove a homogenization result using Γ-convergence [2, 3, 9]. To this end, we have first to
specify the convergence with respect to which we compute the Γ-limit. The choice is driven by the compact-
ness theorem (Theorem 2.1) coupled with the extension result in the previous section.

Definition 4.1. We say that a sequence {uε} in L2(Ω ∩ εE) converges to u ∈ L2(Ω) if there exists a sequence
{ ̃uε} in L2(Ω) of extended functions with ̃uε = uε in Ω ∩ εE converging to u ∈ L2loc(Ω).

Note that the limit u does not depend on the extensions { ̃uε} since it is also the weak L2loc(Ω) limit of the
sequence |Q1 ∩ E|−1χεEuε.

Theorem 4.2. Let Ω be an open set with Lipschitz boundary, and let Fε be given by (2.1). Then Fε Γ-converge
with respect to the convergence uε → u in Definition 4.1 to the functional

Fhom(u) = ∫
Ω

⟨Ahom∇u, ∇u⟩ dx (4.1)

with domain H1(Ω), where Ahom is a symmetric matrix given by the cell-problem formula

⟨Ahomz, z⟩ = inf{ ∫
(0,1)d∩E

∫
E

a(x − y)(w(x) − w(y))2 dx dy : w(y) − ⟨z, y⟩ is 1-periodic}. (4.2)

From this theorem, thanks to the compactness results of the previous sections and the validity of Poincaré
inequalities (see [7, Corollary 4.2]), we deduce the convergence of minimum problems with forcing terms
and/or boundary data.

The example below shows that if condition (1.4) is not satisfied, then the homogenization theorem may
not hold.
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Example 4.3. We fix δ < 1
4 , consider the 1-periodic connected set E in ℝ2 such that E ∩ Q1 = Q1 \ Q1−δ and

set a = χ((0, 12 )+Qδ). Note that the set

{x ∈ ℝ2 : there exists ξ such that a(x + ξ) ̸= 0} = E ∩ (E + (0, 12 ) + Qδ)

is contained in the collection of horizontal stripes {x ∈ ℝ2 : dist(x2,ℤ) < 2δ}. This implies that functions
which are constant in each of those stripes have zero energy, and as a consequence, the Γ-limit is zero on all
L2 functions u = u(x1, x2) = u(x2) independent of the first variable and in particular it cannot be represented
as in (4.1).

We subdivide the proof of Theorem 4.2 into a lower bound (Proposition 4.4) and an upper bound (Proposi-
tion 4.10). The proof of the lower bound is itself split into several steps. Moreover, formula (4.2) is obtained
by remarking that the limit energy density is a quadratic form (Remark 4.7).

Proposition 4.4 (Lower bound). For all sequences uε → u, we have lim infε→0 Fε(uε) ≥ Fhom(u).

Proof. We fix a sequence uε → u with bounded Fε(uε). Upon using the extension Theorem 3.2 and the com-
pactness Theorem 2.1, we may suppose that uε → u in L2loc(Ω) and that u ∈ H

1(Ω).
In order to prove the lower bound, we use a variation of the Fonseca–Müller blow-up technique [11]. In

the proof below,we describe the general outline of themethod (see also [6] formore details on the application
of the blow-up technique to homogenization). The proof of the claimswhich are particular of our problem are
postponed to separate propositions.

We define the measures

με(A) = ∫
A∩εE

∫
{ξ:x+εξ∈Ω∩εE}

a(ξ)(uε(x + εξ) − uε(x)ε )
2
dξ dx.

Since με(A) = Fε(uε), these measures are equibounded, and we may suppose that they converge weakly∗ to
somemeasure μ.Wenowfixan arbitrary Lebesguepoint x0 for u and∇u, and set z = ∇u(x0). The lower-bound
inequality is proved if we show that

dμ
dx
(x0) ≥ ⟨Ahomz, z⟩.

Upon a translation argument, it is not restrictive to suppose that x0 = 0, that 0 is a Lebesgue point of
all uε (upon passing to a subsequence) and that uε(0) = u(0) = 0. We note that, for almost all ρ > 0, we have
με(Qρ)→ μ(Qρ). Since

dμ
dx
(0) = lim

ρ→0+ μ(Qρ)
ρd

,

we may choose (upon passing to a subsequence) ρ = ρε ≫ ε such that

dμ
dx
(0) = lim

ε→0+ με(Qρ)
ρd

.

We trivially have

με(Qρ) ≥ ∫
Qρ∩εE

∫
{ξ:x+εξ∈Qρ∩εE}

a(ξ)(uε(x + εξ) − uε(x)ε )
2
dξ dx

≥ ∫
Qε⌊ ρε ⌋∩εE

∫
{ξ:x+εξ∈Qε⌊ ρε ⌋∩εE}

a(ξ)(uε(x + εξ) − uε(x)ε )
2
dξ dx.

In order to ease the notation, we will directly suppose that ρ
ε ∈ ℕ so that our claim is proven if we show that

lim
ε→0+ 1

ρd
∫

Qρ∩εE

∫
{ξ:x+εξ∈Qρ∩εE}

a(ξ)(uε(x + εξ) − uε(x)ε )
2
dξ dx ≥ ⟨Ahomz, z⟩. (4.3)
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We now change variables and set

vε(y) =
uε(ρy)

ρ
for y ∈ Q1.

Note that, since u(ρy)
ρ converges to ⟨z, y⟩ as ρ → 0, as we have assumed that u(0) = 0, and we also have

assumed that uε(0) = 0, we may choose ρ = ρε above so that vε → ⟨z, y⟩ in L2(Q1).

Claim 1. For all δ > 0, there exists a sequence vδε such that vδε (y) = ⟨z, y⟩ on Q1 \ Q1−δ and

1
ρd
∫

Qρ∩εE

∫
{ξ:x+εξ∈Qρ∩εE}

a(ξ)(uε(x + εξ) − uε(x)ε )
2
dξ dx

≥ ∫
Q1∩ ερ E

∫
{ξ:y+ ερ ξ∈Q1∩ ερ E}

a(ξ)(
vδε (y + ε

ρ ξ) − v
δ
ε (y)

ε
ρ

)
2
dξ dy + o(1) as δ → 0 uniformly in ε.

The proof of this claim is obtained by Proposition 2.2, applied with bε as in (2.2), A = Q1 and η = ε
ρ .

Thanks to Claim 1, (4.3) is proved if we show that

lim inf
ε→0

min{ ∫
Q1∩ ερ E

∫
{ξ:y+ ερ ξ∈Q1∩ ερ E}

a(ξ)(
v(y + ε

ρ ξ) − v(y)
ε
ρ

)
2
dξ dy : v(y) = ⟨z, y⟩ on Q1 \ Q1−δ} ≥ ⟨Ahomz, z⟩.

We actually have that the liminf above may be turned into a limit and equality holds. This is stated in the two
following claims, in which we use the change of variables T = ρ

ε . Recall that T ∈ ℕ.

Claim 2. There exists the limit

fhom(z) = lim
T∈ℕ, T→+∞

1
Td

min{ ∫
QT∩E

∫
{ξ:y+ξ∈QT∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy :

w(y) = ⟨z, y⟩ on QT \ Q(1−δ)T for some δ > 0}.

The proof of this asymptotic homogenization formula is given in Proposition 4.6.

Claim 3. We have fhom(z) ≥ f0(z), where f0(z) is given by (4.2).

The proof of this claim is given by Proposition 4.9.

Proposition 4.5. Let N ∈ ℕ, and let a function w be such that (w − ⟨z, y⟩) is N-periodic in each coordinate
direction and

w(y) = ⟨z, y⟩ on QN \ Q(1−δ)N for some δ > 0.

Then

∫
QN∩E

∫
{ξ:y+ξ∈E\QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤ C 1
δ2+d+κNκ ∫

QN∩E

∫
{ξ:y+ξ∈QN∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy + CNd−1δ|z|2 + C Nd−κ

δ2+d+κ
, (4.4)

with C independent of N for N large.

Proof. Using the extension Theorem 3.2, we may suppose that w is defined in the wholeℝd and it satisfies

∫
QN

∫
{ξ:ξ∈Q1 , y+ξ∈QN }

(w(y + ξ) − w(y))2 dξ dy ≤ C ∫
QN∩E

∫
{ξ:y+ξ∈E∩QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy, (4.5)

with C independent of N for N large. Note that wemay suppose that the extension estimate holds with ξ ∈ Q1
upon a change of variables, and Nδ > 1.



362 | A. Braides and A. Piatnitski, Convolution energies homogenization

We have to estimate

∑
j∈ℤd\{0}

∫
QN∩E

∫
{ξ:y+ξ∈E∩(Nj+QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy.

We subdivide the estimate into several computations.We first consider the indices for the 3d − 1 cubes neigh-
boring QN , i.e., j with ‖j‖∞ = 1. For such indices, we separately estimate the energy of the interactions with
the “interior” of the cube QN . Note that, for such interactions |ξ| ≥ δN, using the decay assumption (2.3) and
the periodicity of w(y) − ⟨z, y⟩, we get

∫
Q(1−δ)N∩E ∫

{ξ:y+ξ∈E∩(Nj+QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

= ∫
Q(1−δ)N∩E ∫

{ξ:|ξ|≥δN, y+ξ∈E∩(Nj+QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤
C

(δN)2+d+κ
∫

Q(1−δ)N∩E ∫
{ξ:y+ξ−jN∈E∩QN }

(w(y + ξ − jN) − w(y) + N⟨z, j⟩)2 dξ dy

≤
C

(δN)2+d+κ
∫

QN∩E

∫
{ξ:y+η∈E∩QN }

((w(y + η) − w(y))2 + N2|z|2) dη dy.

We now use the estimate

∫
QN∩E

∫
{η:y+η∈E∩QN }

(w(y + η) − w(y))2 dη dy

≤ ∫
QN

∫
{η∈QN :y+η∈QN }

(w(y + η) − w(y))2 dη dy

= ∫
QN

∫
{η∈QN :y+η∈QN }

(
N
∑
k=1
(w(y + η kN )

− w(y + η k − 1N )))
2
dη dy

≤ ∫
QN

∫
{η∈QN :y+η∈QN }

N
N
∑
k=1
(w(y + η kN )

− w(y + η k − 1N ))
2
dη dy

≤ N2+d ∫
QN

∫
Q1

(w(y + ξ) − w(y))2 dξ dy

≤ N2+dC ∫
QN∩E

∫
{ξ:y+ξ∈E∩QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy (4.6)

by (4.5). Plugging this estimate in the previous one, we then have

∫
Q(1−δ)N∩E ∫

{ξ:y+ξ∈E∩(Nj+QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤
C

δ2+d+κNκ ∫
QN∩E

∫
{ξ:y+ξ∈E∩QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy + C Nd−κ

δ2+d+κ
. (4.7)

A completely analogous argument shows that

∫
QN∩E

∫
{ξ:y+ξ∈(E∩(Nj+QN ))\Q(1+δ)N } a(ξ)(w(y + ξ) − w(y))

2 dξ dy

≤
C

δ2+d+κNκ ∫
QN∩E

∫
{ξ:y+ξ∈E∩QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy + C Nd−κ

δ2+d+κ
. (4.8)
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To complete the estimate on the cubes neighboring QN , it remains to estimate the interactions between pairs
of points “close to the boundary” of QN , where w(y) = ⟨z, y⟩. For such interactions, we have

∫
(QN\Q(1−δ)N )∩E ∫

{ξ:y+ξ∈E∩(Q(1+δ)N\QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤ ∫
(QN\Q(1−δ)N )∩E ∫

{ξ:y+ξ∈E∩(Q(1+δ)N\QN )}

a(ξ)|z|2|ξ|2 dξ dy ≤ CNd−1δ|z|2. (4.9)

It remains to estimate the interactions between points in QN and in “non-neighboring” cubes jN + QN
with ‖j‖∞ ≥ 2. Using the decay estimate (2.3) on a, we obtain

∑
j∈ℤd ,‖j‖∞≥1 ∫QN∩E

∫
{ξ:y+ξ∈E∩(jN+QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤
1

N2+d+κ ∑
j∈ℤd ,‖j‖∞≥2

1
|j|2+d+κ

∫
QN∩E

∫
{ξ:y+ξ∈E∩(jN+QN )}

(w(y + ξ) − w(y))2 dξ dy. (4.10)

Proceeding as in (4.6), we then get

∑
j∈ℤd ‖j‖∞≥1 ∫QN∩E

∫
{ξ:y+ξ∈E∩(jN+QN )}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤ C 1
Nκ ∑

j∈ℤd\{0}

1
|j|2+d+κ

∫
QN∩E

∫
{ξ:y+ξ∈E∩QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy. (4.11)

Taking into account estimates (4.7)–(4.11), we finally get

∫
QN∩E

∫
{ξ:y+ξ∈E\QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤ C( 1
δ2+d+κNκ +

1
Nκ ) ∫

QN∩E

∫
{ξ:y+ξ∈E∩QN }

a(ξ)(w(y + ξ) − w(y))2 dξ dy + CNd−1δ|z|2 + C Nd−κ

δ2+d+κ
,

which yields (4.4).

Proposition 4.6 (Asymptotic homogenization formula). There exists the limit

fhom(z) = lim
N∈ℕ, N→+∞

1
Nd min{ ∫

QN∩E

∫
{ξ:y+ξ∈QN∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy :

w(y) = ⟨z, y⟩ on QN \ Q(1−δ)N for some δ > 0}. (4.12)

Proof. With fixed N ∈ ℕ and w as in (4.12), we extend w to a N-periodic function with a slight abuse of
notation. Moreover, if S ≥ N, we define

wS(y) =
{
{
{

w(y) if y ∈ Q⌊ SN ⌋N ,
⟨z, y⟩ otherwise in QS .

We can write

∫
QS∩E

∫
{ξ:y+ξ∈QS∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

= ∑
‖j‖∞≤⌊ SN ⌋ ∫(jN+QN )∩E

∫
{ξ:y+ξ∈QS∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

+ ∫
(QS\Q⌊ SN ⌋N )∩E ∫

{ξ:y+ξ∈QS∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy
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= ∑
‖j‖∞≤⌊ SN ⌋ ∫(jN+QN )∩E

∫
{ξ:y+ξ∈Q⌊ SN ⌋N+δN∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

+ ∑
‖j‖∞≤⌊ SN ⌋ ∫(jN+QN )∩E

∫
{ξ:y+ξ∈(QS\Q⌊ SN ⌋N+δN )∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

+ ∫
(QS\Q⌊ SN ⌋N )∩E ∫

{ξ:y+ξ∈(QS\Q⌊ SN ⌋N−δN )∩E}
a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

+ ∑
‖j‖∞≤⌊ SN ⌋−1 ∫

(QS\Q⌊ SN ⌋N )∩E ∫
{ξ:y+ξ∈(jN+QN )∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

+ ∑
‖j‖∞=⌊ SN ⌋ ∫

(QS\Q⌊ SN ⌋N )∩E ∫
{ξ:y+ξ∈Q⌊ SN ⌋N−δN∩(jN+QN )∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy. (4.13)

By Proposition 4.5 and the periodicity of w, we have

∫
(jN+QN )∩E

∫
{ξ:y+ξ∈Q⌊ SN ⌋N+δN∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤ (1 + C( 1
δ2+d+κNκ + N

d−1δ|z|2)) ∫
QN∩E

∫
{ξ:y+ξ∈QN∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy. (4.14)

Furthermore,

∫
(QS\Q⌊ SN ⌋N )∩E ∫

{ξ:y+ξ∈(QS\Q⌊ SN ⌋N−δN )∩E}
a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

= ∫
(QS\Q⌊ SN ⌋N )∩E ∫

{ξ:y+ξ∈(QS\Q⌊ SN ⌋N−δN )∩E}
a(ξ)(⟨z, ξ⟩)2 dξ dy

≤ |QS \ Q⌊ SN ⌋N−δN ||z|
2 ∫
ℝd

a(ξ)|ξ|2 dξ

≤ CSd−1(N + δ)|z|2. (4.15)

Again, using the periodicity of w(y) − ⟨z, y⟩ and the decay assumption (2.3) on a, we can estimate

∑
‖j‖∞≤⌊ SN ⌋−1 ∫

(QS\Q⌊ SN ⌋N )∩E ∫
{ξ:y+ξ∈(jN+QN )∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

≤ ∑
‖j‖∞≤⌊ SN ⌋−1 ∑

‖k‖∞=⌊ SN ⌋+1 ∫
(kN+QN )∩E

∫
{ξ:y+ξ∈(jN+QN )∩E}

a(ξ)(w(y + ξ) − ⟨z, y⟩)2 dξ dy

≤ ∑
‖j‖∞≤⌊ SN ⌋−1 ∑

‖k‖∞=⌊ SN ⌋+1 ∫
(kN+QN )∩E

∫
{ξ:y+ξ∈(jN+QN )∩E}

a(ξ)(w(y + ξ) − ⟨z, y + ξ⟩ + ⟨z, ξ⟩)2 dξ dy

≤ 2 ∑
‖j‖∞≤⌊ SN ⌋−1 ∑

‖k‖∞=⌊ SN ⌋+1 ∫
(kN+QN )∩E

∫
{ξ:y+ξ∈(jN+QN )∩E}

a(ξ)((w(y + ξ) − ⟨z, y + ξ⟩)2 + |z|2|ξ|2) dξ dy

≤ 2 ∑
‖j‖∞≤⌊ SN ⌋−1 ∑

‖k‖∞=⌊ SN ⌋+1 ∫QN∩E

∫
{ξ:y+ξ∈QN∩E}

a(ξ + (k − j)N)((w(y) − ⟨z, y⟩)2 + |z|2|ξ + (k − j)N|2) dξ dy

≤ C(⌊ SN ⌋
+ 1)

d−1
( ∫
QN∩E

|w(y) − ⟨z, y⟩|2 + |z|2Nd). (4.16)
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As for the last term in (4.13), we can use the same argument, noting that we have |ξ| ≥ δN, which, using the
decay estimate (2.3) on a, gives

∑
‖j‖∞=⌊ SN ⌋ ∫

(QS\Q⌊ SN ⌋N )∩E ∫
{ξ:y+ξ∈Q⌊ SN ⌋N−δN∩(jN+QN )∩E}

a(ξ)(wS(y + ξ) − wS(y))2 dξ dy

≤ C(⌊ SN ⌋
+ 1)

d−1 1
δ2+d+κN2+d+κ ( ∫

QN∩E

|w(y) − ⟨z, y⟩|2 + |z|2Nd) (4.17)

If, for t > 0 and u ∈ L2(Qt), we set

gt(u) =
1
td
∫

Qt∩E

∫
{ξ:y+ξ∈Qt∩E}

a(ξ)(u(y + ξ) − u(y))2 dξ dy,

then, gathering estimates (4.14)–(4.17), we have

gS(wS) ≤
Nd

Sd
⌊
S
N ⌋

d
(1 + C

δ2+d+κNκ )gN(w) +
1
N
δ|z|2 + C1

S
(N + δ)|z|2

+ C 1
Sd
(⌊

S
N ⌋
+ 1)

d−1
(1 + 1

δ2+d+κN2+d+κ )( ∫
QN∩E

|w(y) − ⟨z, y⟩|2 + |z|2Nd).

If we set

fS(z) =
1
Sd

min{ ∫
QS∩E

∫
{ξ:y+ξ∈QS∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy :

w(y) = ⟨z, y⟩ on QS \ Q(1−δ)S for some δ > 0},

this implies that
lim sup
S→+∞

fS(z) ≤ (1 +
C

δ2+d+κNκ )gN(w) +
1
N
δ|z|2.

By the arbitrariness of w and δ, we then obtain lim supS→+∞ fS(z) ≤ lim infN→+∞ fN(z), which proves the
claim.

Remark 4.7. Note that fhom is a quadratic form, and hence there exists a symmetric matrix Ahom such that
fhom(z) = ⟨Ahomz, z⟩. Indeed, let w1 and w2 be test functions in (4.12) for z1 an z2, then, using w1 + w2 and
w1 − w2 as test functions, we get the inequality

2(fhom(z1) + fhom(z2)) ≥ fhom(z1 + z2) + fhom(z1 − z2).

A symmetric argument shows that the converse inequality, and then the equality, holds, giving the claim (see
[5, Remark 7.12]).

Remark 4.8. Thanks to Proposition 4.5, fhom can be equivalently written

fhom(z) = lim
T∈ℕ, T→+∞

1
Td

min{ ∫
QT∩E

∫
{ξ:y+ξ∈ℝd∩E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy :
w(y) − ⟨z, y⟩ T-periodic,
w(y) = ⟨z, y⟩ on QT \ Q(1−δ)T for some δ > 0},

where the second integral is extended to the wholeℝd ∩ E.

Proposition 4.9. Let f0(z) be given by (4.2). Then fhom ≥ f0.

Proof. By Proposition 4.6, we have

fhom(z) ≥ lim sup
N∈ℕ, N→+∞

1
Nd min{ ∫

QN∩E

∫
{ξ:y+ξ∈E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy : w(y) − ⟨z, y⟩ N-periodic}. (4.18)
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We now show that the right-hand side of (4.18) is equal to f0(z). It suffices to show one inequality, the
other being trivial since 1-periodic functions are also N-periodic. To that end, given a test function w for the
problem in (4.18), it suffices to construct the 1-periodic function

w(y) = 1
Nd ∑

k∈{1,...,N}d
w(y + k),

and note that, by periodicity and convexity,

∫
Q1∩E

∫
{ξ:y+ξ∈E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

=
1
Nd ∫

QN∩E

∫
{ξ:y+ξ∈E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

≤
1
Nd

1
Nd ∑

k∈{1,...,N}d
∫

QN∩E

∫
{ξ:y+ξ∈E}

a(ξ)(w(y + k + ξ) − w(y + k))2 dξ dy

=
1
Nd

1
Nd ∑

k∈{1,...,N}d
∫

QN∩E

∫
{ξ:y+ξ∈E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy

=
1
Nd ∫

QN∩E

∫
{ξ:y+ξ∈E}

a(ξ)(w(y + ξ) − w(y))2 dξ dy.

This proves the claim.

Proposition 4.10 (Upper bound). Let f0 be given by (4.2). Then, for all u ∈ H1(Ω), there exists a sequence
uε → u such that

lim sup
ε→0

Fε(uε) ≤ ∫
Ω

f0(∇u) dx. (4.19)

Proof. By a diagonalization argument, it suffices to show that, for all η > 0, there exists uε → u such that

lim sup
ε→0

Fε(uε) ≤ ∫
Ω

f0(∇u) dx + η.

Note that the same argument as in Remark 4.7 shows that f0 is a quadratic form so that the right-hand
side of (4.19) defines a strongly continuous functional in H1(Ω). Then, by a standard density argument [2,
Remark 1.29], it suffices to consider the case when u is piecewise affine. We only consider the case when Ω
is bounded and the gradient of u takes two values since the general case only results in a heavier notation.

Upon a translation and reflection argument, we may assume that

u(x) = min{⟨z1, x⟩, ⟨z2, x⟩}.

For i ∈ {1, 2}, we then set S = {x ∈ Ω : ⟨z1 − z2, x⟩ = 0} and Ωi = {x ∈ Ω : u(x) = ⟨zi , x⟩} \ S. We may suppose
that wi are functions such that wi(y) − ⟨zi , x⟩ is 1-periodic and

∫
Q1∩E

∫
E

a(x − y)(wi(x) − wi(y))2 dx dy = f0(zi).

Then the functions uiε(x) = εwi( xε ) converge to ⟨zi , x⟩ in Ωi as ε → 0, and if we set

F iε(uiε) := ∫
Ωi∩εE

∫
1
ε ((Ωi∩εE)−x)

a(ξ)(
uiε(x + εξ) − uiε(x)

ε )
2
dξ dx,

then we have lim supε→0 F iε(uiε) ≤ |Ωi|f0(zi). To check this, for all ε > 0, define the sets of indices

Iεi = {k ∈ ℤ
d : ε(k + Q) ∩ Ωi ̸= 0} for i ∈ {1, 2}.
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Then

F iε(uiε) ≤ ∑
k∈Iεi

∫
ε(k+Q)∩εE

∫
1
ε (Ωi∩εE−x)

a(ξ)(
uiε(x + εξ) − uiε(x)

ε )
2
dξ dx

= ∑
k∈Iεi

εd ∫
(k+Q)∩E

∫
1
ε Ωi∩E−y

a(ξ)(wi(y + ξ) − wi(y))2 dξ dy

≤ ∑
k∈Iεi

εd ∫
(k+Q)∩E

∫
E−y

a(ξ)(wi(y + ξ) − wi(y))2 dξ dy

= ∑
k∈Iεi

εd ∫
Q∩E

∫
E

a(x − y)(wi(x) − wi(y))2 dξ dy

= #Iεi ε
d f0(zi) = |Ωi|f0(zi) + o(1) as ε → 0.

Given δ > 0, we may modify each sequence {uiε} to a new sequence {uδ,iε } such that

uδ,iε (x) = ⟨zi , x⟩ if dist(x, S) < δ, x ∈ Ωi , uδ,iε (x) = uiε(x) if dist(x, S) ≥ 2δ, x ∈ Ωi ,

∫
Ω1

|uδ,1ε (x)|2 dx + ∫
Ω2

|uδ,2ε (x)|2 dx ≤ C and lim sup
ε→0
(F iε(u

δ,i
ε ) − F iε(uiε)) = o(1) as δ → 0.

This can be done using the construction of Proposition 2.2,withA the intersection of a large ball containingΩ
with each of the two half spaces with S as boundary.

We then define the sequence uε(x) = uδ,iε if x ∈ Ωi , i ∈ {1, 2}. The only thing to check now is that

lim sup
ε→0

∫
Ω1∩εE

∫
1
ε (Ω2∩εE−x)

a(ξ)(u
2,δ
ε (x + εξ) − u

1,δ
ε (x)

ε )
2
dξ dx = o(1) as δ → 0. (4.20)

To that end, first set Ωδ
i = {x ∈ Ωi : dist(x, S) > δ}, and estimate

∫

Ωδ
1∩εE

∫
1
ε (Ω2∩εE−x)

a(ξ)(u
2,δ
ε (x + εξ) − u

1,δ
ε (x)

ε )
2
dξ dx

≤ ∫

Ωδ
1∩εE

∫
1
ε (Ω2∩εE−x)

1
ε2
a(ξ)(|u2,δε (x + εξ)|2 + |u

1,δ
ε (x)|2) dξ dx

≤ (∫
Ω1

|u1,δε (x)|2 dx + ∫
Ω2

|u2,δε (x)|2 dx)
1
ε2
∫

{|ξ|> δε }

a(ξ) dξ ≤ C εκ

δ2+κ
.

In the same way, we estimate the term

∫

(Ω1\Ωδ
1)∩εE

∫
1
ε (Ω

δ
2∩εE−x)

a(ξ)(u
2,δ
ε (x + εξ) − u

1,δ
ε (x)

ε )
2
dξ dx

≤ ∫
Ω1∩εE

∫
1
ε (Ω

δ
2∩εE−x)

a(ξ)(u
2,δ
ε (x + εξ) − u

1,δ
ε (x)

ε )
2
dξ dx ≤ C εκ

δ2+κ
.

Finally, using the Lipschitz continuity of u, we have

∫

(Ω1\Ωδ
1)∩εE

∫
1
ε ((Ω2\Ωδ

2)∩εE−x)

a(ξ)(u
2,δ
ε (x + εξ) − u

1,δ
ε (x)

ε )
2
dξ dx

= ∫

(Ω1\Ωδ
1)∩εE

∫
1
ε ((Ω2\Ωδ

2)∩εE−x)

a(ξ)(u(x + εξ) − u(x)ε )
2
dξ dx

≤ C ∫
(Ω1\Ωδ

1)

∫
1
ε ((Ω2\Ωδ

2)−x)

a(ξ)|ξ|2 dξ dx ≤ Cδ ∫
ℝd

a(ξ)|ξ|2 dξ dx = Cδ.
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Gathering the previous estimates and letting ε → 0, we obtain

lim sup
ε→0

∫
Ω1∩εE

∫
1
ε (Ω2∩εE−x)

a(ξ)(u
2,δ
ε (x + εξ) − u

1,δ
ε (x)

ε )
2
dξ dx ≤ Cδ,

which proves (4.20).
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