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1 Introduction

In this paper, we perform a limit analysis for a class of convolution functionals that may be interpreted as
describing macroscopic features of biological systems. Indeed, the study of macroscopic properties for com-
plex biological systems and models of population dynamics can be reduced to studying the evolution of
the so-called one-point correlation function describing the population density in the system. An important
feature of the corresponding equation is that it is non-local with respect to spatial variables, and that the
non-local operator is of convolution type; see [10, 13] for further details. On a fixed domain Q, the energy of
such a system in the stationary regime is given by

1
gd+2

J a(%)(u(y) - u(x))? dy dx, (1.1)
axQ

where a is a convolution kernel with good integrability properties.
We note thatif u € C1(Q), then u(y) — u(x) = (Vu(x), y - x) and, using the change of variables y = x + &£,

gd1+2 J a( 22 )(vue0,y - x))? dy dx - J j a@O(Vu(), §)? dEdx ase — 0

QxQ Q R4

so that the quadratic functional

J(AVu,Vu)dx, with (Az,z>=Ja($)((z,.f))zd$, (1.2)

Q R4
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gives an approximation of (1.1), or conversely, (1.1) gives a more general form of quadratic energies allowing
for interactions between points at scale €. In terms of I'-convergence, this computation can be reworked as
a I'-limit and the corresponding convergence of minimum problems. The convergence of the corresponding
operators, also with periodic perturbations of the convolution kernel, has been studied in [15].

In the case of inhomogeneous media with a periodic microstructure and with zones where we do not
have interactions, the model may be set in a perforated domain, where the energies are integrated only on the
complement of a “perforation”. In the corresponding equations, we will obtain a homogeneous (non-local)
Neumann boundary condition on the perforation. A general periodically perforated domain is obtained by
intersecting Q with a periodic connected Lipschitz set Es = §E with small period §. In the case of energies
of convolution type, the relevant scale of the period 6 is of order €. Indeed, otherwise, if € < §, then we may
apply a separation of scales argument and reduce to the classical problem of the asymptotic description of
perforated domain for the quadratic form (1.2), while if § < &, the effect of the perforation is averaged out
giving as a limit the energy in (1.2) multiplied by the constant |E n (0, 1)¢| (i.e., the constant density of the
weak limit of ysg). We will then directly consider energies of the form

1 —
Fw-—o | a(Y Jaw) - uey dydx

(QNE,)X(QNE,)

(i.e., with 6 = €). In order to avoid technicalities, we will restrict to the simplified case of “compact perfora-
tions”, i.e., when E = R? \ (K, + Z4), where K is a Lipschitz compact set such that (Ko + j) N (Ko +j') = 0 if
j,j' e z%andj +j'.
In the asymptotic analysis of usual (quadratic) integral functionals on perforated domains, one considers
energies
E:.(u) = j (AVu, Vu) dx
QnE,

or the corresponding elliptic differential operators with Neumann conditions on the perforation boundary.
Early homogenization results for such operators were obtained in [8, 12, 14, 16], from which many other
works on the topic followed. The key argument in the asymptotic analysis both of energies and operators
is an extension lemma, which allows to extend functions in H!(Q n E;) to functions in H*(Q') for Q' cc Q
controlling the H! and L? norms of the extension with those of the original function in the perforated domain
independently of € (see [1, 5]). In this way, we may define an le0 -limit of sequences of functions with bounded
energy as the limit of their extensions. Our first result is a similar extension theorem, which can be stated
as follows: for a fixed rg > 0, there exist r > 0 and a constant C such that, for every fixed Q' and for each
function u with bounded energy, there exists an extension v of function u that satisfies for all sufficiently
small € the inequality

V() - v(x)? dy dx < C j (u(y) - u(x)? dy dx. (1.3)
Q'xQNN{|x—y|<er} (QNE)X(QNE)N{|ly—x|<ero}

The construction of the extended function v can be achieved by a “reflection” argument close to 0E. Note
however that the estimate of the energy is a little trickier than in the usual “local” case since, for the extended
function, we will have interactions between the function inside and outside the perforation.

Under the assumption that

there exist a constant ¢ > 0 and rg > 0 such that a(z) > cif |z| < rg, (1.4)

the term on the right-hand side of (1.3) can be estimated in terms of F¢(u). Note that if hypothesis (1.4) fails,
the set of points (x, y) € E x Ewith a(y — x) # 0 may be composed of disconnected components and as a result
no controlled extension be possible.

Since, unlike for the usual Dirichlet integrals, inequality (1.3) does not imply the boundedness of the
extensions in H', in order to conclude the argument, the extension theorem must be coupled with a com-
pactness result for non-perforated energies (see [7]), now applied to the extended functions, which allows
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to conclude that, from each sequence with equibounded energy, we can extract a subsequence such that the
corresponding extensions converge in leOC to some u € H(Q).
Once this result is obtained, we can compute the I'-limit of F, with respect to the convergence described

above. The limit is a “classical” local quadratic energy

Fhom () = [ (AnonVit, V) dx,
Q
with domain H(Q), where Apop, is a symmetric matrix given by the cell-problem formula

(AnomZ, 2) = inf{ J J a@®W(y + & - w(y))? dé dy : w(y) — (2, ) is 1-periodic}. (1.5)
(0,1)4nE E

It must be noted that, in formula (1.5), the inner integral is performed on the whole E, highlighting that
long-range interactions cannot be neglected. The treatment of these long-range interactions is the source of
most of the technical points in the proof of the homogenization results. In order to control them, we have to
make some assumption on the decay of a, which we state as

1

0< a({) < CW (1.6)

for some k > 0. Note that this is slightly more restrictive than assuming the finiteness of second moments of a,
which is a necessary condition by (1.2).

This homogenization theorem is achieved by first using the blow-up method of Fonseca and Miiller [6,
11], and then reducing to one-periodic interactions by a convexity argument. The use of formula (1.5) allows
the construction of a recovery sequence for which we can control long-range interactions. It is worth remark-
ing that the use of the blow-up method is possible thanks to the “vanishing non-locality” of the energies. We
note the analogy with the results on “perforated” discrete domains (i.e., defined on scaled periodic lattices
with some missing sites) studied in [4, Section 3].

2 Setting of the problem

We consider a convolution kernel a: R? — R* with j]Rd a(é) d¢ > 0 and such that (1.6) holds for some x > 0.
We suppose that K is a compact subset of R? with Lipschitz boundary such that (Ko +j) N (Ko +j') = 0 if
j,j' € Z% andj # j'. We then define the perforated domain

E =R\ (Ko + 29).

Let Q be an open subset of R%. Foralle > 0and u € L2(Q \ €E), we set

e = o [ [ (2 ) -uey? dyax. 2.1)

QNeE QNeE
Equivalently, we will write

SRR O LR e

QNeE QNeE ¢
= gdl+2 J I a(g)(u(x+§)—u(x))2 dé dx
QNeE QNeE-x

=

QneE 1(QneE-x)

this last version being useful when integrability properties of a are used.

In the following, we will prove extension, compactness and convergence properties for the functionals F,
under hypothesis (1.4). Note that if such a hypothesis is removed, the functionals F. may be “degenerate”,
as shown in Example 4.3.
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2.1 Notation

o Unless otherwise stated, C denotes a generic strictly positive constant independent of the parameters of
the problem taken into account.

e Qr= [—%, %]d denotes the d-dimensional coordinate cube centered in 0 and with side-length T.

e | t] denotes the integer part of t € IR.

o xa denotes the characteristic function of the set A.

« Forall t > 0, we denote Q(t) = {x € Q : dist(x, 0Q) > t}.

2.2 Preliminaries for “solid domains”

In this section, we consider “solid domains”, i.e., the case when the perforation is not present. In the follow-
ing, we will extend functions from Q n €E to the whole Q maintaining the boundedeness of some convolution
energy. In this way, we will be able to use arguments for functions defined on solid domains.

2.2.1 A compactness theorem

Let Q be an open set with Lipschitz boundary. The following result, proved in [7], shows that families of

functions that have bounded energies of type (1.1) are compact in leoc(Q).

Theorem 2.1 (Compactness theorem). Let Q be an open set with Lipschitz boundary, and assume that, for
a family {Weleso, We € L?(Q), the estimate

2
FET (we) == ) dédx < C

J (wg(x +&é) —we(x)

£
Q(ke) {1&l=<r}

is satisfied with some k > 0 and r > 0. Assume moreover that the family {w.} is bounded in L>(Q). Then, for any
sequence ¢j such that ; > 0 and €j — 0 as j — oo and for any open subset Q' € Q, the set {w,}jcn is relatively
compact in L?(Q') and all its limit points are in H (Q).

2.2.2 Treatment of boundary data

In this section, we prove a classical lemma that allows to match boundary data. For future reference, we prove
it for general integrands b, which only satisfy an estimate from above. In the following, it will be applied to

be(x,y) = b(x,y) = xe)xe(y)ax - y). (2.2)

With this requirement of generality in mind, let b.: Q x Q — R be Borel functions satisfying

1

0<he(x,y) s C———,
e( y) (1+|x—y|)d+2+"

(2.3)

and set

by _ Xy 2
PR = i [ [ o5 2w - uoy? ay ax
Q0
Proposition 2.2 (Treatment of boundary values). Let A be a bounded open set with Lipschitz boundary, and
let v, — vinL*(A) withv € H'(A). For every § > 0, there exist vfl converging to v in L?(A) such that
Vi =vinA\A(®6), V5 =vyinA(26),

lim sup(Fp(v§) - Fp(vy)) < 0(1) asé — 0.
n—0
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Proof. With fixed N e Nandk € {1,..., N} (to be determined below), let
. N/ . k-1
d(x) = mm{max{O, §<dlst(x, 04) — 6(1 + N >>}, 1}

sothat¢ =0in A\ A(6(1+5})), ¢ =1in A(B(1 + £)), and |Ve| < ¥.
We define vg = ¢vy + (1 - ¢)v. Upon writing

VE(Y) = vE(X) = p) (V) = vy(x)) + (1 = p)(V(Y) = V() + (P(¥) — p()) (v (x) — v(x)),

we can estimate F f’l (vg) by examining separately the sets
B=a(s(1+y))<a(s(1+ )
B, = (A\A((
2= (a(o(1+ %
Bl = (AX(A(5(1+ N
s a(o(1+ £) ,
BQ:(A\A(&(H ;[1>>>><A(6<1+§).

We have

1 I bn(f, z)(vfl(y) ; vzm)z dxdy - % J bn({, X)(VU(Y);VU(X))Z txdy < P,
B

1 j bn(f, Z)(vg(y) - vg(x)>2 dxdy = %Bj b,](f, %)(M)Z dx dy

I %)(M)z dxdy < w(AQ29)),
A(28)xA(28)

with w(s) —» 0as s — 0. We set
se-a(o(1 5 ) (o )

2

L] (5D B2V v aray < N

and note that

Xy 2 2
b <—,—>|x— [“(vy —v)“dxd
J- AT ity y

d "
rl SkXA rl rl SkXA
<C5_2 j(v,,—v)zdx.
Sk
We then have
5 5
1 x y\/ V) —vp00\2 ij X y\(Vn(y)—vpx)
ndjb <n n><—n ) drdy<C.g b”(n n><—n ) dx dy
B; SixA
1 v(y) - v(x)\?
ot J b YW VOOV v a
nds ) ”(n n)( n ) y
KX

NZ
+ Cﬁ J(vn —v)%dx.
Sk
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We may now choose k € {1, ..., N} such that

ﬂid J bn(%,%>(M)zdxdy+nid J bn(%,%xw)zdxdys%(Fg(vn)+F2(v))
SixA SixA

so that s s
1 Vp(y) —vp(x) C
— J b,1<£, X)(ny—n) dxdy < — Nt C > J(v,] —v)? dx.
n nn n 6
B3 Sk
The same argument proves the same estimate for the integral on Bj.
As for By, note that, for (x, y) € B4, wehave |y — x| > % so that, using the growth assumption (2.3) on by,

we obtain s s
1 x Y\ Va¥) = vy(0)\2 N2
F J brl(ﬁ’ E)(T) dXdyS CWTI .
By,

The estimate for the contribution of B, is completely analogous.
Gathering all estimates above, we have

b s b C N2 5 2+d+x
Fn(vn) ‘Fn(Vn) < w(A(20)]) + N + Cﬁ J(Vn v dx+C——— Serdie ne.
A
Letting n — 0 and using the arbitrariness of N, we obtain the claim. O

Remark 2.3. We may generalize the proposition above by fixing as boundary data, instead of a fixed
v e H'(A), a sequence wy, converging weakly to vin H 1(A) and satisfying

lim sup
n—0

1 wy(x + 1é) — wy(x)\?
| e n ) e waon
U {&:x+néeU}

forall open sets U, where w(t) — Oast — 0.In this case, by defining vg = ¢vy + (1 - ¢p)w;, in the proof above,
we can obtain that the v} converging to v in L?(A) satisfy v§ = wy in A \ A(6) and v§ = v, in A(26).

3 An extension theorem

The following result states that any function u defined on the perforated domain Q N €E can be extended to
a function defined on the whole domain Q such that, upon restricting to the interior of the domain (more
precisely, to points at distance greater than some multiple of €), a reference convolution energy of the exten-
sion is bounded by F¢(u) and the L?-norm of the extension is bounded by the L2-norm of u on the perforated
domain. This result mirrors the analog where F; is the Dirichlet energy on the perforated domain and the
reference convolution energy is replaced with the Dirichlet energy on the solid domain [1].

Definition 3.1. We say that an open subset ¥ of R has a uniformly Lipschitz continuous boundary if there exist
constants L > 0 and p1, p> > 0 such that, for any point x € 0F, there exists a set $ which, up to translation
by x and rotation, is of the form (-p1, pl)d‘1 x (=p2, p2) such that $ N F is the sub-graph of an L-Lipschitz
function defined on (—p1, p1)4~!

Notice that we can assume without loss of generality that the L-Lipschitz function in the last definition takes
on values in the interval (— pzz , 5).

Theorem 3.2 (Extension theorem). Let E be an open subset of RY with the following properties:
(1) R?\ E is a union of bounded open sets in RY;

(2) the diameters of these sets are uniformly bounded;

(3) the distance between any two distinct sets is bounded from below by a positive constant;
(4) the boundary of the set E is uniformly Lipschitz continuous in the sense of Definition 3.1.
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Let Q be an open set with Lipschitz boundary. For each ry > 0, there exist k > 0 and r > 0 such that, for all
u € L?>(Q n €E), there exists v € L%(Q) such that

v=uonQneE, G.1)
_ 2 _ 2
(M) dydx<C J (M) dy dx, (3.2)
Q(ke)xQ(ke)n{|x—y|<er} (QNeE)X(QNeE)N{|x-y|<ero}
J lv|?dx < C J lu)? dx. (3.3)
Q(ke) QneE

Note that if (1.4) holds, then (3.2) implies that

j J(w)zdwmcmu).

Q(ke) {I§]<r}
Our arguments rely on the following statement.

Lemma 3.3. Let A be a connected bounded Lipschitz set. For any r > 0, there exists a constant ¢, > 0 such that
the following inequality holds:

j (u() - u(®)? dé dn < ¢, j (u(n) - u(&)? dé dn. (3.4)

AxA (AxA)N{(&n):1§-nl<r}

IfL, p1, p; are constants as in Definition 3.1, then the constant c, depends on A only through its diameter and
such constants.

Proof of Lemma 3.3. Since, for any function u, the integral on the right-hand side of (3.4) is an increasing
function of r, it is sufficient to prove (3.4) for r positive and small enough.

Since A has a Lipschitz boundary and is connected, with fixed r > 0, there existsr; € (O, %r) andv € (0, 1]
that only depends on the Lipschitz constant of A such that, for any two points n’, "’ € A, there is a discrete
path from n' ton", i.e.,aset of pointsn’' = 1o, N1, ..., NN, N = Nn+1, that possesses the following properties:
(a) |)’l]'+1 _rl]l =n fOl‘j =0,1,...,N;

(b) forallj=1,...,N,theball By, (1;) = {n € RY : In — njl < vrq}is contained in A;

(c) there exists N = N(rq, diam(A)) such that N < N forall ', n" € A.

Indeed, since A is a bounded Lipschitz set, it has a uniformly Lipschitz continuous boundary. Then there
exists a constant r, = ro(L, p1, p2, 1) > O such that r, < %r, ry < ﬁ min(p1, p2) and the set

Ay, = {x € A : dist(x, 04) > 1y}

is connected. We choose r; = % and denote Z4 = {z ¢ %Zd : z € Ay, }. By construction, B,, (x) ¢ A forany
X € Ay,, and for any z; and z; in Z,, there exists a path z; = 11, ...,y = 22 in Z4 such that [nj.1 - njl < 11
and N < (di%lm))d. Also, by construction, for any x € A \ A,,, there exists a path x = fjo, . . ., ] such that
g € Za, 1fj+1 — fjl <711, N < 16(L + 1)d, and Bﬁ(ﬁj) cAforallj=1,...,N. This implies the existence
of a path that has properties (a)-(c).

Writing u(&o) — u(én+1) = u(éo) — u(é1) + u(ér) —--- —u(éy) + u(én) — u(én+1), where &; denotes a point

in By, (j) for 1 <j < N, we get

(u(&) - u(&n+1))* d&o dén

(ANByy, (0'))X(ANByy, (™))

S | | [u(®) - u() + u(@) - -+
Bur (1) Bury (0n) (ANByry ' DX(ANByry 1M)  — (&) + u(éy) — u(n)}? déo déyq déy . . . dé&;
N+1
s [ [ Y ) - u)) e - ddo

ANByy, (o) ANByy, (My+1) J=1
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N+1

_CN+1) Y | (&) - u(§1))? d& g+
J=1 (4nB,y, (1))X(ANBur, (1))

< C(N+1)? I (u(n) - u(£))* dé dn.

(AxA)N{(§,m):1§-nl<r}

Covering A with a finite number of balls of radius vr; and summing up the last inequality over all pairs of
these balls gives the desired estimate (3.4). O

Proof of Theorem 3.2. We apply our arguments separately to each connected component of R? \ E. With fixed
7 > 0 chosen below, we consider a connected component K of R? \ E and set

A:={& e RY\K: dist(¢,0K) < 7} and A* := {£ € K : dist(¢, oK) < 1}.

Since K is bounded and Lipschitz, we may fix T > 0 small enough and an invertible mapping R from
Ato A* such that 2[R(&") - R(EM)| < 18" - & < 2|R(&") - R(&")| forall &', &" € A. Slightly abusing the nota-
tion, we call this mapping a reflection. In what follows, for the sake of brevity, we use the notation éx = R-1 é)
for& e A*.

We set

o1 -1

= o J u(R1(8) dE.
A*

Let ¢ bea C*® function such that0 < ¢ < 1, ¢ = 1in A and in a neighborhood of 0K, ¢ = 0 in a neighborhood

of 0A* \ oK.

We define v(¢) as follows:
u(é) if¢ e A,
V(&) = 1 pOuR (@) + (1 - p(®)ia if& € A*,
ua ifé e K\ A*.

Letting k = diam(Q;) = Vd and r = min(ro, k, T), we have

(v(p) - V(&)? dE dn = j (u(n) - u(®)? dE dn, (3.5)
(AxA)n{|{-n|<r} (AxA)n{|§-n|<r}
oR
o) - v dgdn = | o ~u@y |52 g dn < Cx [ o -u@) dgan. - G.o
(AXA*)n{|&-n|<r} AxA AxA

Here we have used the fact that the Jacobian |a?)z_(o| is a bounded function, |af§_(o| < Cx. Next, taking into

¢ ¢
account the relation

v(&) —v(n) = (9(&) — (M) (g — u(éx)) + (M u(ér) —u(nx)) ifneA*, &eA*,
we obtain

(v(n) - v()*d&dn < J (fia - u(ég))* d& dn + I (u(nx) - u(éx))* d& dn.

(A*xA")N{|E-n|<r} A*xA* A*xA*

Since iiy4 is the average of the function u(éx) over A*, then

(a - u(@)? dgdn =3 [ @orm - @)y d dn.
A*xA* A*xA*
This yields
(vin) - v(§)? dg dn < €, [ () - u()? g an. (3.7)

(A*xA")N{lE-nl<n) AxA



DE GRUYTER A. Braides and A. Piatnitski, Convolution energies homogenization =— 359

Finally,

() - V() d€ dn < j j«o(f»Z(aA) ~ u(En)? dE dn

A* {EeK\A*:|E-n|<r} K\A* A*
<K\ A% j(aA) u(ER))? de
A*
K\ A%] ,
< Corp | (utp ~u(@)? dg an.

AxA
Combining the last inequality with (3.5), (3.6) and (3.7), we conclude that
(v - v dé dn < C [ (utm) - u()? d dn.
(KUA)x(KUA)N{|E-nl<r} AXA

We may now apply Lemma 3.3. By (3.4), we obtain

v -veydsdnsc | - u@) ddn.

((KUA)x(KUA))n{|§-nl<r} (AxA)n{I§-nl<r}

After rescaling, this inequality reads

vop-verdsdnsc | won-u)? dgn.

(e(KUA)xe(KUA)N{|Z—n]<er} (eAxeA)n{|E-n|<er)

Summing up the last inequality over all the inclusions in Q(ke), we obtain (3.1) and (3.2). Inequality (3.3) is
a straightforward consequence of the definition of v. O

4 Homogenization

We now state and prove a homogenization result using I'-convergence [2, 3, 9]. To this end, we have first to
specify the convergence with respect to which we compute the I'-limit. The choice is driven by the compact-
ness theorem (Theorem 2.1) coupled with the extension result in the previous section.

Definition 4.1. We say that a sequence {u.} in L?(Q n €E) converges to u € L2(Q) if there exists a sequence
{tig} in L2(Q) of extended functions with ii = u, in Q N €E converging to u € leoc(Q)'

Note that the limit u does not depend on the extensions {ii.} since it is also the weak leoc(Q) limit of the
sequence |Q1 N E| " Yypue.

Theorem 4.2. Let Q be an open set with Lipschitz boundary, and let F. be given by (2.1). Then F. I'-converge
with respect to the convergence u. — u in Definition 4.1 to the functional

Fhom(u) = j<Ahom\7u, Vu) dx (4.1)
Q

with domain H*(Q), where Anom is a symmetric matrix given by the cell-problem formula

(AhomZ, 2) = inf{ J J a(x - y)(w(x) - wy))? dxdy : w(y) — (z,y) is 1-periodic}. (4.2)
(0,1)4nE E

From this theorem, thanks to the compactness results of the previous sections and the validity of Poincaré
inequalities (see [7, Corollary 4.2]), we deduce the convergence of minimum problems with forcing terms
and/or boundary data.

The example below shows that if condition (1.4) is not satisfied, then the homogenization theorem may
not hold.
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Example 4.3. We fix § < z, consider the 1-periodic connected set E in R2 such that EN Q; = Q1 \ Q;_s and
seta = X((,1)+q,)- Note that the set

{x € R? : there exists £ such that a(x + &) # 0} = En (E + (0, 3) + Qs)

is contained in the collection of horizontal stripes {x € R? : dist(x,, Z) < 26}. This implies that functions
which are constant in each of those stripes have zero energy, and as a consequence, the I'-limit is zero on all
L? functions u = u(xy, x) = u(x,) independent of the first variable and in particular it cannot be represented
asin (4.1).

We subdivide the proof of Theorem 4.2 into a lower bound (Proposition 4.4) and an upper bound (Proposi-
tion 4.10). The proof of the lower bound is itself split into several steps. Moreover, formula (4.2) is obtained
by remarking that the limit energy density is a quadratic form (Remark 4.7).

Proposition 4.4 (Lower bound). For all sequences u. — u, we have liminf,_,o F¢(u;) > Fhom(u).

Proof. We fix a sequence u, — u with bounded F¢(u.). Upon using the extension Theorem 3.2 and the com-
pactness Theorem 2.1, we may suppose that u, — uin LIOC(Q) and that u € HY(Q).

In order to prove the lower bound, we use a variation of the Fonseca—Miiller blow-up technique [11]. In
the proof below, we describe the general outline of the method (see also [6] for more details on the application
of the blow-up technique to homogenization). The proof of the claims which are particular of our problem are
postponed to separate propositions.

We define the measures

= [ [ et ) e gy

£
ANeE {&:x+e&eQneE}

Since pg(A) = Fc(u,), these measures are equibounded, and we may suppose that they converge weakly* to
some measure u. We now fix an arbitrary Lebesgue point x, for u and Vu, and set z = Vu(xo). The lower-bound
inequality is proved if we show that

du
—(x0) = (AhomZz, 2).
dx( 0) ( hom >
Upon a translation argument, it is not restrictive to suppose that xo = 0, that 0 is a Lebesgue point of

all u, (upon passing to a subsequence) and that u.(0) = u(0) = 0. We note that, for almost all p > 0, we have
Ha(Qp) i H(Qp). Since

H(Qp)
paic p?

(0)

we may choose (upon passing to a subsequence) p = p. > € such that

d (Q
y (O) £H0+ y ;) P)

We trivially have

§e(Qp) 2 J j a({)(w)z dE dx

QpneE {&:x+e8e€QyneE}

_ 2
. [ J ““’(M) dE dx.
QslgjneE {f:xH:ferl%JnsE}

In order to ease the notation, we will directly suppose that g € N so that our claim is proven if we show that
Ue(x + €&) — ug(x)

1 2
lim — J J a(§)<f> d& dx > (Anomz, 2). (4.3)
e—0t
QpneE {&:x+e8e€QyneE}
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We now change variables and set

Ve(y) = @ fory € Q;.

Note that, since @ converges to (z,y) as p — 0, as we have assumed that u(0) = 0, and we also have

assumed that u.(0) = 0, we may choose p = p. above so that v, — (z, y) in L?(Qy).

Claim 1. For all 6 > 0, there exists a sequence vg such that vg(y) ={(z,y)yon Q1 \ Qi1_s and
_ 2

id J’ J’ a(f)(ug(x+£? ug(x)) de dx

p QpNEE {§:x+e&€QpneE}

6 ey _ 0

2
) dédy +o(1) asé — Ouniformlyine.

€ e £ € 4
Qm;E {.{.y+;{eQm;E}

The proof of this claim is obtained by Proposition 2.2, applied with b, asin (2.2), A = Q; and n = f).
Thanks to Claim 1, (4.3) is proved if we show that

o V(y + 58) —v(y)\2
lllsl‘l_}(l)‘lfmln{ J £)<f) dédy :v(y)=(z,y)yonQq \ Q1_5} > (AhomZz, 2) .-
QNEE {§iy+£E€QunEE} P

We actually have that the liminf above may be turned into a limit and equality holds. This is stated in the two
following claims, in which we use the change of variables T = ’E’. Recall that T € IN.

Claim 2. There exists the limit
. 1 . 2
fhom(2) = T€N1’1%1L+m Td mm{ J I a®)(wy +& -w(y))-dédy :
QrnE {gty+{€QrnE} w(y) = (z,y) on Qr \ Q(1-4)T for some & > O}.
The proof of this asymptotic homogenization formula is given in Proposition 4.6.
Claim 3. We have fhom(2) = fo(z), where fo(z) is given by (4.2).
The proof of this claim is given by Proposition 4.9. O

Proposition 4.5. Let N € N, and let a function w be such that (w —(z,y)) is N-periodic in each coordinate
direction and
w(y) =(z,y)on Qn \ Qu-sn forsome 6 > 0.

Then
a®w(y + &) - w(y))* d& dy
QnNE {§:y+&€E\Qy}
< C; J J a(®)(w(y + & —w(y))? dé dy + CNT168)z% + Cﬂ (4.4)
T T §2+drr K §2+d+x ’ :

QNNE {§:y+§€QnNE}
with C independent of N for N large.
Proof. Using the extension Theorem 3.2, we may suppose that w is defined in the whole R? and it satisfies
wy+o-woldidysc [ [ a@uwyro-weldidy  (45)
Qn {§:§€Q1, y+§€Qn} QnNE {§:y+§€ENQn}

with C independent of N for N large. Note that we may suppose that the extension estimate holds with ¢ € Q;
upon a change of variables, and N§ > 1.
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We have to estimate

> | @y o-wonrdeay

JEZNO} QunE (£:y+£€EN(Nj+ Q)

We subdivide the estimate into several computations. We first consider the indices for the 3¢ — 1 cubes neigh-
boring Qu, i.e., j with |jllo = 1. For such indices, we separately estimate the energy of the interactions with
the “interior” of the cube Qy. Note that, for such interactions |¢] > §N, using the decay assumption (2.3) and
the periodicity of w(y) - (z, y), we get

a(®)(w(y + &) - w(y))* d€ dy
Q-5 NNE {&:y+£€EN(Nj+Qn)}

- | a©wly + & - w(y))® dé dy
Qq-5)NNE {&]&26N, y+£€EN(Nj+Qy)}

C ' '
= (6N)2+d+x j J (W(y + & = jN) — w(y) + N{z, j))* d& dy
Qu-s)NNE {&:y+&-jNeENQy}

C
< (5N)2+d+x J J ((W()’ + n) - W()/))2 + N2|Z|2) drl dy
QnNE {&:y+neENQy}

We now use the estimate

j j (wly + 1) - w(y)) dn dy
QnNE {n:y+neENQy}
< J J (w(y +n) - w(y))* dn dy
Qn {n€Qn:y+neQn}

| (B 'y

2
1
))) dndy
Qn {n€Qn:y+neQn}

] B (lenk) o) e

Qv fneQuiy+neQy)  *=1

< N2+ j j(w(y +8) - w(y)? dé dy
Qn Q;

< N*¢ j J a(Ow(y + & - w(y)* d& dy (4.6)
QnNE {&y+&€ENQy}

by (4.5). Plugging this estimate in the previous one, we then have

a@wly + & - w(y))* d¢ dy
Qu-syNNE {§:y+§€EN(Nj+Qn)}

C N
s s || a@myso-wontdsay oo

QnNE {§:y+§€ENQn}

d-x
(4.7)

A completely analogous argument shows that

a(§)w(y + &) - w(y))* d¢ dy
QNNE {&:y+&e(EN(Nj+Qn))\Qa+s)n}

C N
< W J. J a(®)w(y +¢) - W()/))z dgdy + CW'

QNNE {&:y+&€ENQy}

d-x
(4.8)
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To complete the estimate on the cubes neighboring Qy;, it remains to estimate the interactions between pairs
of points “close to the boundary” of Qy, where w(y) = (z, y). For such interactions, we have

a(®wy +§) - w(y))* d¢ dy
(QN\Q1-5)N)NE {&:y+E€EN(Q+5)nv\Qn)}
< J J a(®)|z1218 dé dy < CNO1612[2. 4.9)
(QN\Q-8)N)NE {&:y+&€EN(Q1+5v\Qn)}

It remains to estimate the interactions between points in Qy and in “non-neighboring” cubes jN + Qy
with [jlleo = 2. Using the decay estimate (2.3) on a, we obtain

j a@wly + & - wiy))? d dy

J€Z4lileo=1 QunE (£:y+£€ENGN+Qu))

1 1
= 2+d+K Z 1312+d+x j ,[ (w(y +¢&) - W(Y))Z dé dy. (4.10)
N ez sz V1 .
JeZ4 \jlloo> QnNE {&y+&€EN(jN+Qp)}
Proceeding as in (4.6), we then get
y I j a@wiy + & - w(y))® dé dy
J€2Nileo21 QunE £y +£€ENGN+Qy)}
1 1
<Cw 2 j|2+d+e J J a(Qw(y + & - w(y))* d¢ dy. (4.11)
jeza\{0} J QNNE {&:y+&€ENQy}

Taking into account estimates (4.7)—(4.11), we finally get

a(®)(w(y + & - w(y))* d€ dy

QNNE {é:y+&€E\Qn}
o ! 2 4t dy + CN41o1zP 4 ¢ N
(g we) | ] a0y o-won? agdy s onlon + e
QnNE {&:y+&€ENQy}
which yields (4.4). O

Proposition 4.6 (Asymptotic homogenization formula). There exists the limit

. 1 .
from(@) = | lim g mln{ j J a@)(w(y + &) - w(y)* d¢ dy :
QuNE {§ty+5€QnnE} w(y) = (z,y) on Qn \ Qu-s)n for some § > 0}. (4.12)

Proof. With fixed N € N and w as in (4.12), we extend w to a N-periodic function with a slight abuse of
notation. Moreover, if S > N, we define

w(y) ify € Qsn,
ws(y) = L
(z,y) otherwisein Qs.

We can write

a()(ws(y + &) - ws(y))? dé dy

QsnE {&:y+&€QsnE}
-y | a@osty+ o -ws? g dy
Iilleo<L ] (iN+Qu)NE {E:y+E€QsE)
N j j a@)(ws(y + &) - ws(y))? dé dy

(Qs\Q § ININE {§ty+E€QsnE}
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-y | a(©)wly + & - w(y))* dé dy
lilloo<L % 1 (iN+Qu)nE (§Y+£€0, 3 .oy E)

v Y | a(§)ws(y + & - ws(y))? dé dy
IiloSL 3 | jN+Qu)NE (EY+£€(Q5\Q, 5y, o0)E}

v | a©ws(y + ) - ws(y))? dé dy
(Q5\Q/§ WINE {§iy+£€(Q5\Q, § y_n)"E}

_ | | a@orsty+ 9 -ws)? g ay
Wleo<L % 1=1(Q5\Qy $ 1wINE {£y+£€GN+QwINE}

sy | aOwsy + - wsy)? dédy.  (4.13)

||j||oo:l%J(QS\QL%JN)ﬁE {.{:y+§eQL%JN,ENn(jMQN)nE}

By Proposition 4.5 and the periodicity of w, we have

a(Q)(w(y + &) - w(y))* d¢ dy
(N+Qn)NE {f:y+§’eQL%JN+6NnE}

1
< (1 + C<W + Nd‘16|z|2>> J J a()(w(y + &) - w(y))? dé¢ dy. (4.14)
QNNE {é:y+&€QnnE}
Furthermore,

a(®)(ws(y + &) - ws(y))> d& dy
(@\QU§ INE §7+£€(Q5\Q, 3 s}

- | a(&)((z, &) dE dy

(Qs\Q; $ jn)NE {f=y+f€(Qs\Ql%JN,5N)ﬂE}

<105\ Qg poullzl [ a®Ig dg
IRd
< CS4 (N + 6)|z)%. (4.15)

Again, using the periodicity of w(y) - (z, y) and the decay assumption (2.3) on a, we can estimate

Y | | a@osy+o-wson?dgay
"j””ﬂ%J’l(Qs\Q[%JN)ﬂE {&y+&€(iN+QN)NE}
DD | [ wowrp-cnrasay
Willoo <L J=1 1klloo =L 1+1 (kN-+ Qu)NE {&:y+E€(iN+Qu)NE}
) > J J aQ)w(y +&) - (z,y + & + (z,&)* d& dy
Wloo=L$ 11 Ikleo=L§ 1+1 (N + DN (£y+£ €N+ Qu)NE)
<2 ) > J J a@)((wy + & - (z,y+ ) +121°181*) d€ dy

lilosl$1-1 IIkIIm=L%J+1(kN+QN)nE {&y+£€(iN+Qn)NE}

2 Y Y | a@e e M) - ) I+ (- HNP) d dy

WlleoSL S 11 ko= § 141 QuE (&1y+££QuNE}

< c([%J + 1)d_1( J W) - (z, ) + |z|2Nd). (4.16)

QNNE
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As for the last term in (4.13), we can use the same argument, noting that we have |¢| > 6N, which, using the
decay estimate (2.3) on a, gives

>y o | a©ws(y + ) - ws(y))? dé dy
Wleo=L 5 1(Qs\Q\'$ 1wINE 1E7+£€0Q, 5 1y oy NUN+QNINE}
S a1 1 2 2\d
<o(|5]+1) W( J W) - (2, V) + 22N ) (4.17)
QNNE

If, for t > 0 and u € L2(Q;), we set
1
sw-— [ | a@uy+p-umaay
Q¢NE {&y+&€QnE}

then, gathering estimates (4.14)—(4.17), we have

NG C 1 1
gsws) < —| = | (1+ 55— )gv(W) + =blz1* + C=(N + 8)|z|?
Sd N 62+d+KNK N S

*%‘X@J”)W“W)( | oy -z v 1zrwe).

QnNE
If we set
1 .
fos@) = gminf [ [ a@vty+d-wo)? dgdy:
QsNE {§ty+§€QsnE} w(y) = (z,y) on Qs \ Q(1-5)s for some § > 0},
this implies that

. C 1. 5
lgnlfgopfs(z) < (1 + m)gN(W) + N5|Z| .

By the arbitrariness of w and &, we then obtain lim sups_, ., fs(z) < liminfy_,;c fn(2), which proves the
claim. O

Remark 4.7. Note that fhom is a quadratic form, and hence there exists a symmetric matrix Apom such that
fhom(2) = (AhomZ, z). Indeed, let w1 and w; be test functions in (4.12) for z; an z,, then, using w; + w, and
wi — w3 as test functions, we get the inequality

2(fhom(21) + fhom(22)) = fhom(21 + 22) + fhom(21 — 22).

A symmetric argument shows that the converse inequality, and then the equality, holds, giving the claim (see
[5, Remark 7.12]).

Remark 4.8. Thanks to Proposition 4.5, fhom can be equivalently written
. 1 . 2
fhom(2) = TeNy;n_} o T4 mm{ J J a@)w(y + & —w(y))” dg dy :
QrNE {&y+{eRINE} w(y) - (z, y) T-periodic,
W(y) = (z,y) on Qr\ Qu-sr for some 6 > 0},

where the second integral is extended to the whole R? N E.

Proposition 4.9. Let fo(z) be given by (4.2). Then fhom = fo.

Proof. By Proposition 4.6, we have

from(z) > limsup id min{ I J a@)w(y + & —w(y))? dé dy : w(y) - (z,y) N'periOdiC}' (4.18)
NeN, N—+oo N QnNE {&y+E€E}
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We now show that the right-hand side of (4.18) is equal to fy(z). It suffices to show one inequality, the
other being trivial since 1-periodic functions are also N-periodic. To that end, given a test function w for the
problem in (4.18), it suffices to construct the 1-periodic function

_ 1
W= 2w,

and note that, by periodicity and convexity,

a(§)W(y + &) - w(y))* d¢ dy
QinE {¢:y+&€E}

1 _ _
- J j a(@)(Wly + &) - W(y))* & dy
QuNE (&y+€E)
1 1
< NN Z J J a(Qw(y + k+ & —w(y + k))> d¢ dy
ke(l,...N¥ unE (gy+EeE)
11
= v Y J j a&)(w(y + &) - w(y))* dé dy
ke{1,..., N}dQNﬂE{f:y+f€E}
1
—i || a9 -wonasay.
QnNE {&:y+§<E}
This proves the claim. O

Proposition 4.10 (Upper bound). Let fo be given by (4.2). Then, for all u € H'(Q), there exists a sequence
Uz — u such that

lim sup Fe(ug) < Jfo(Vu) dx. (4.19)
£—0
Q

Proof. By a diagonalization argument, it suffices to show that, for all > 0, there exists u, — u such that

limsup Fe(u,) < Jfo(Vu) dx + 1.
e—0
Q

Note that the same argument as in Remark 4.7 shows that f; is a quadratic form so that the right-hand

side of (4.19) defines a strongly continuous functional in H'(Q). Then, by a standard density argument [2,

Remark 1.29], it suffices to consider the case when u is piecewise affine. We only consider the case when Q

is bounded and the gradient of u takes two values since the general case only results in a heavier notation.
Upon a translation and reflection argument, we may assume that

u(x) = min{(z1, x), (22, X)}.

Forie {1,2},wethensetS={xeQ:(z1 —22,x) =0}and Q; = {x € Q : u(x) = (zi, x)} \ S. We may suppose
that w; are functions such that w;(y) — (z;, x) is 1-periodic and

j j a(x - y)wix) - wi(y)? dx dy = fo(z:).

QinE E
Then the functions ui(x) = ewi(g) converge to (zj, x) in Q; as € — 0, and if we set
o ul(x + &) — ul(x)\2
Fld) = J I a(HE ) dgax,
QiNeE 1 ((QineE)-x)
then we have lim sup,_,o FL(ul) < |Q;|fo(z;). To check this, for all £ > 0, define the sets of indices

F={kez?:e(k+QnQ;#0} foriel{l,?2}
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Then
(ui(x +ed) —ul(x
€

Fiul)< ¥ j I a(é) )>2d$dx

€
kel} ¢ (k+Q)neE L(QineE-x)

-yl [ | a@uuyrd-widdy

kel (k+QnE 10,nE-y

<Yl [ | a9 - w02 dsdy

keli (v Q)nE EZy
=) &l I I a(x - y)(wi(x) - wi(y))?* dé dy
kel onEE

= #1560 (z1) = |Qilfo(zi) + 0(1) ase — 0.

Given § > 0, we may modify each sequence {u.} to a new sequence {uf’i} such that

uSlx) = (zi,x) ifdist(x,S) < 8, x € Q;,  udi0 =ul(x) if dist(x, S) > 26, x € Q;,

J|u§’1(x)|2 dx + J|uf§’2(x)|2 dx<C and limsup(FLu®") - Fl(ul)) = o(1) asé — 0.

Q Q e—0
This can be done using the construction of Proposition 2.2, with A the intersection of a large ball containing Q
with each of the two half spaces with S as boundary.

We then define the sequence ug(x) = ug’i if x € Q;, i € {1, 2}. The only thing to check now is that

2,6 1.6 2

lim sup J J a({)( U (X + g? Ue (X)) dédx=o0(1) asé — 0. (4.20)
&0 QiNeE 1(QyneE-x)

To that end, first set Qf = {x € Q; : dist(x, S) > 6}, and estimate

J’ J a(a<u§’5(x+£§')—u§’5(x)>2 dE dx

&

QSneE 1 (QneE-x)

SJ j giza(‘f)uuﬁ’@(xwalz+Iui"5<x)lz)dfd"

Q8neE 1(QaneE—x)
< ([0 ax+ [2ora) L [ a@as<ct—
= € N g2 -T2+t
o8 0 1452}

In the same way, we estimate the term

[ ] ap(HERee e a0V ey,

)
(Q\Q9)NeE L(QS5neE-x)

[ (e e,

52K °

QiNeE 1(QSneE-x)

Finally, using the Lipschitz continuity of u, we have

J J‘ a(a<u§’6(x+£i)—u§’5(x))2 dE dx

(Q1\Q)NeE L((Q2\Q5)NeE-x)
u(x + €&) — u(x)\?
- | () asan
(Q1\QD)NEE L((Q2\Q)NeE-x)

<C J j a()|&1? de dx < C6 I a(8)|&1? de dx = C6.

(Q1\29) 1((2:\Q9)-x) R?
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Gathering the previous estimates and letting € — 0, we obtain

(“5’6(" €8 ~us00 )2 d& dx < C6
< = s

lim sup I J a(é)

-0
Q1neE 1(Q,neE-x)

which proves (4.20). O
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