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HOMOGENIZATION OF L\'EVY-TYPE OPERATORS WITH
OSCILLATING COEFFICIENTS\ast 

M. KASSMANN\dagger , A. PIATNITSKI\ddagger , AND E. ZHIZHINA\S 

Abstract. The paper deals with homogenization of L\'evy-type operators with rapidly oscillating
coefficients. We consider cases of periodic and random statistically homogeneous micro-structures
and show that in the limit we obtain a L\'evy-operator. In the periodic case we study both symmetric
and non-symmetric kernels whereas in the random case we only investigate symmetric kernels. We
also address a nonlinear version of this homogenization problem.
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1. Introduction. The paper deals with a homogenization problem for L\'evy-type
operators in L2(\BbbR d). We consider operators of the form

L\varepsilon u(x) =

\int 
\BbbR d

u(y) - u(x)

| x - y| d+\alpha 
\Lambda \varepsilon (x, y) dy (x \in \BbbR d) ,(1.1)

where \alpha \in (0, 2) is fixed and \varepsilon > 0 is a small parameter. We will study various
assumptions on the function (x, y) \mapsto \rightarrow \Lambda \varepsilon (x, y). Throughout the article we assume

\gamma  - 1 \leq \Lambda \varepsilon (x, y) \leq \gamma (x, y \in \BbbR d)(1.2)

for some \gamma > 1, which can be seen as an ellipticity assumption. Particular cases
that we cover include \Lambda \varepsilon (x, y) = \Lambda 

\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
, resp., \Lambda \varepsilon (x, y) = \Lambda 

\bigl( 
x
\varepsilon , y
\bigr) 
+\Lambda 

\bigl( 
x, y\varepsilon 

\bigr) 
, where

(\xi , \eta ) \mapsto \rightarrow \Lambda (\xi , \eta ) is symmetric and periodic both in \xi and in \eta . Note that we also
deal with some classes of nonsymmetric kernels and of random symmetric kernels.
Moreover, the approach allows us to treat nonlinear nonlocal operators such as the
fractional p-Laplace operator.

Given \varepsilon > 0, we first introduce a positive self-adjoint extension of the operator
 - L\varepsilon and then study the following homogenization problem:

Find an operator L0 such that for any m > 0 and for any f \in L2(\BbbR d)
the solutions u\varepsilon of the equations  - L\varepsilon u\varepsilon +mu\varepsilon = f converge, as \varepsilon \rightarrow 0,
to the solution of the equation  - L0u+mu = f .

Given \varepsilon > 0, the operator L\varepsilon describes a jump process in a nonhomogeneous
medium with a periodic microstructure. For \Lambda \varepsilon = 1 this operator coincides, up
to a multiplicative constant, with the fractional Laplacian ( - \Delta )\alpha /2, which is the
infinitesimal generator of the rotationally symmetric \alpha -stable process [34, section
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6.31]. As we show in this work, the computation of the homogenization limit for a
nonlocal operator of fractional order \alpha of differentiability is rather different from the
corresponding object for differential operators. In the symmetric case, it turns out
that the effective jump rate is given as a simple average, whereas this is easily seen to
be false for differential operators. In the nonsymmetric case treated in Theorem 1.4,
however, we face similar phenomena as in the case of local differential operators.

Let us explain our motivation for the current study. Problems related to homoge-
nization of diffusion-type operators, i.e., partial differential operators of second order,
have been studied for several decades. We do not explicitly mention the fundamental
works in this direction, but we refer the interested reader to the monographs [23, 10,
5, 6, 9, 38]. One important feature in this field is that the effective diffusion constants
in the limit do not appear as the mean, resp., average of the diffusion coefficients in
the \varepsilon -problems. In this work we show that this is different when studying integro-
differential operators of order \alpha \in (0, 2) as considered in (1.1). This suggests that
the order of the two limits \alpha \rightarrow 2 - (after suitable normalization) and \varepsilon \rightarrow 0+ might
make a difference. This observation provides one motivation for the current work.

Another motivation comes from the fact that the stochastic processes generated
by operators of the form of (1.1) have recently been used to model phenomena with
long-range interaction, i.e., to models with a dominating nondiffusive behavior. This
applies to models in mathematical finance [13, 29, 11, 12] as well as to models in nat-
ural sciences [40, 27, 42]. Some theoretical and applied literature has suggested that
predators/foragers perform L\'evy flights when searching for prey. The disputes about
this theory seem to have stimulated interesting research about the usage of stochastic
processes in biology and ecology [41, 14, 22]. Finally, let us mention that the fractional
Laplace operator, resp., the corresponding \alpha -stable jump process appear naturally
when studying generalized Dirichlet-to-Neumann mappings [28, 8]. The present work
studies the main mathematical object in the aforementioned areas if the environment
is not homogeneous and/or isotropic. In this case one should study operators with
variable coefficients. In periodic and statistically homogeneous media this leads to
homogenization problems for such operators, which form the subject of our study.

Let us formulate our main results. We consider three different settings. Note
that throughout the paper we deal with bilinear forms, resp., weak solutions because
the expression L\varepsilon u(x) might not exist pointwisely, even for u \in C\infty 

0 (\BbbR d) and \Lambda \varepsilon as
in the aforementioned example. Some additional regularity of \Lambda \varepsilon at the diagonal
x = y would be needed otherwise. Finally, let us explain a possible extension of
our work. We study particular nonlocal operators L\varepsilon given in (1.1). Rather than
studying operators with the kernel | x  - y|  - d - \alpha , one could allow for a class of more
general kernels. One would then need to adjust the function spaces. In the end,
analogous proofs would lead to similar results.

Let us now present the three settings of our study.
(I) Symmetrizable and symmetric periodic kernels: Here we assume that \Lambda \varepsilon is a

positive function satisfying one of the following two conditions.
(P1) Product structure: We assume

\Lambda \varepsilon (x, y) = \lambda 
\Bigl( x
\varepsilon 

\Bigr) 
\mu 
\Bigl( y
\varepsilon 

\Bigr) 
(1.3)

with \lambda and \mu being 1-periodic in each coordinate direction and satisfying

\gamma  - 1 \leq \lambda (\xi ) \leq \gamma , \gamma  - 1 \leq \mu (\eta ) \leq \gamma .(1.4)
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(P2) Symmetric locally periodic kernels: We assume

\Lambda \varepsilon (x, y) = \Lambda 
\Bigl( 
x, y,

x

\varepsilon 
,
y

\varepsilon 

\Bigr) 
(1.5)

with a function \Lambda (x, y, \xi , \eta ) that is continuous in (x, y), measurable in (\xi , \eta )
for all (x, y), and periodic in \xi and in \eta with period 1 in each coordinate
direction and satisfies the following conditions:

\Lambda (x, y, \xi , \eta ) = \Lambda (y, x, \eta , \xi )
\gamma  - 1 \leq \Lambda (x, y, \xi , \eta ) \leq \gamma 

\biggr\} 
for all x, y, \xi , \eta \in \BbbR d .

In order to characterize the limit behavior of u\varepsilon we introduce an operator

L0u(x) =

\int 
\BbbR d

\Lambda eff(x, y)

\bigl( 
u(y) - u(x)

\bigr) 
| y  - x| d+\alpha 

dy ,(1.6)

where

\Lambda eff(x, y) =

\left\{         
\biggl( \int 

[0,1]d

\mu (\xi )

\lambda (\xi )
d\xi 

\biggr)  - 1\biggl( \int 
[0,1]d

\mu (\xi )d\xi 

\biggr) 2

in case (P1) ,\int 
[0,1]d

\int 
[0,1]d

\Lambda (x, y, \xi , \eta ) d\xi d\eta in case (P2) .

(1.7)

Theorem 1.1. Assume that one of the conditions (P1), (P2) holds true. Let
m > 0. Then for every f \in L2(\BbbR d) the solution u\varepsilon of

(L\varepsilon  - m)u\varepsilon = f(1.8)

converges strongly in L2(\BbbR d) and weakly in H\alpha /2(\BbbR d) to the solution u0 of

(L0  - m)u0 = f .(1.9)

Remarks.
(i) Case (P2) contains the particular case of pure periodic coefficients, which we

have mentioned above. If one assumes \Lambda \varepsilon (x, y) = \Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
with a function

\Lambda (\xi , \eta ) that is periodic both in \xi and in \eta and satisfies for all \xi , \eta \in \BbbR d the
conditions \Lambda (\xi , \eta ) = \Lambda (\eta , \xi ) and \gamma  - 1 \leq \Lambda (\xi , \eta ) \leq \gamma , then this case is covered
by (P2).

(ii) In case (P1) the function \Lambda eff is constant; i.e., the operator L0 is invariant
under translations.

(iii) In case (P2) we can choose \Lambda \varepsilon (x, y) = a(x, y)\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
with a function a :

\BbbR d \times \BbbR d \rightarrow [a0, a1] \subset (0,\infty ). In this case

\Lambda eff(x, y) = a(x, y)

\int 
[0,1]d

\int 
[0,1]d

\Lambda (\xi , \eta ) d\xi d\eta ;

i.e., the limit operator L0 is a nonlocal operator with bounded and measurable
coefficients.

Theorem 1.1 deals with linear nonlocal operators. The methods of its proof can be
applied to nonlinear problems, too. Let us provide a nonlinear analog of Theorem 1.1.
Assume that p > 1 and \alpha \in (0, p). Given \varepsilon > 0, define a nonlinear version L\varepsilon 

p of L\varepsilon 

by

L\varepsilon 
pu(x) =

\int 
\BbbR d

| u(y) - u(x)| p - 2(u(y) - u(x))

| x - y| d+\alpha 
\Lambda \varepsilon (x, y) dy (x \in \BbbR d) .(1.10)
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Theorem 1.2. Assume that one of the conditions (P1), (P2) holds true. Let
m > 0, p > 1, 0 < \alpha < p, and p\prime = p - 1

p . For any f \in Lp\prime 
(\BbbR d) the solution u\varepsilon of

L\varepsilon 
pu - m| u| p - 2u = f(1.11)

converges strongly in Lp(\BbbR d) and weakly in W
\alpha 
p ,p(\BbbR d), as \varepsilon \rightarrow 0, to the solution u0

of L0
pu

0  - m| u0| p - 2u0 = f , where

L0
pu(x) =

\int 
\BbbR d

| u(y) - u(x)| p - 2(u(y) - u(x))

| x - y| d+\alpha 
\Lambda eff(x, y) dy

and \Lambda eff(x, y) is as in (1.7).

Obviously, Theorem 1.2 contains Theorem 1.1 because we could choose p = 2.
Since the proof of Theorem 1.2 does not require any new idea, we provide the proof of
Theorem 1.1 in full detail. In subsection 2.3 we explain how to derive Theorem 1.2.

(II) Symmetric random kernels:
Let (\Omega ,\scrF ,P) be a standard probability space and (Ty)y\in \BbbR d be a d-dimensional

ergodic dynamical system in \Omega ; see section 3 for a detailed definition. As in the case
of deterministic symmetrizable kernels we consider two different setups.

(Q1) Product structure: We assume (1.3), where \lambda (\xi ) and \mu (\xi ) are realizations of

statistically homogeneous ergodic fields in \BbbR d. Let \omega \mapsto \rightarrow \widehat \lambda (\omega ) and \omega \mapsto \rightarrow \widehat \mu (\omega )
be random variables such that for some \gamma > 0 and for almost every \omega \in \Omega 

\gamma  - 1 \leq \widehat \lambda (\omega ) \leq \gamma , \gamma  - 1 \leq \widehat \mu (\omega ) \leq \gamma .(1.12)

Set

\lambda (\xi ) = \lambda (\xi , \omega ) = \widehat \lambda (T\xi \omega ), \mu (\xi ) = \mu (\xi , \omega ) = \widehat \mu (T\xi \omega ) .
The limit operator takes the form (1.6) with

\Lambda eff =

\Biggl( 
E
\Bigl\{ \widehat \mu (\cdot )\widehat \lambda (\cdot )

\Bigr\} \Biggr)  - 1 \bigl\{ 
E\widehat \mu (\cdot )\bigr\} 2.

(Q2) Symmetric random structure: Here, we additionally assume some topological
structure. We assume that \Omega is a metric compact space. Assume \scrF is the
Borel \sigma -algebra of \Omega . We further assume that the group T\cdot is continuous, that
\Lambda = \Lambda (x, y, \omega 1, \omega 2) is a continuous function on \BbbR d\times \BbbR d\times \Omega \times \Omega , and that the
following symmetry condition is fulfilled: \Lambda (x, y, \omega 1, \omega 2) = \Lambda (y, x, \omega 2, \omega 1). In
this case we set

\Lambda eff(x, y) =

\int 
\Omega 

\int 
\Omega 

\Lambda (x, y, \omega 1, \omega 2)dP(\omega 1)dP(\omega 2) .(1.13)

Theorem 1.3. Assume that one of the conditions (Q1), (Q2) holds true. Let
m > 0. Almost surely for any f \in L2(\BbbR d) the solution u\varepsilon of (1.8) converges strongly
in L2(\BbbR d) and weakly in H\alpha /2(\BbbR d) to the solution u0 of (1.9).

(III) Nonsymmetric kernels:
One important feature of our approach is that we can allow for certain nonsym-

metric kernels in (1.1). In this case we assume 0 < \alpha < 1. We assume that \Lambda \varepsilon is a
positive function satisfying \Lambda \varepsilon (x, y) = \Lambda 

\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
for a function \Lambda (\xi , \eta ) that is periodic

both in \xi and in \eta and satisfies the following conditions:
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(i) There is \gamma > 1 such that \gamma  - 1 \leq \Lambda (\zeta , \eta ) \leq \gamma for all \zeta and \eta .
(ii) \Lambda (\zeta , \eta ) is a Lipschitz continuous function of (\zeta , \eta ) that is\bigm| \bigm| \Lambda (\zeta 1, \eta 1) - \Lambda (\zeta 2, \eta 2)

\bigm| \bigm| \leq C(| \zeta 1  - \zeta 2| + | \eta 1  - \eta 2| ) for all \zeta 1, \eta 1, \zeta 2, \eta 2 \in \BbbR d.

As we explain in section 4, under these conditions the map v \mapsto \rightarrow Lv with

Lv(\zeta ) =

\int 
\BbbR d

\Lambda (\zeta , \eta )
\bigl( 
v(\eta ) - v(\zeta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta 

defines an unbounded linear operator L in L2(\BbbT d), whose adjoint is given by

L\ast q(\zeta ) =

\int 
\BbbR d

\bigl( 
\Lambda (\eta , \zeta )q(\eta ) - \Lambda (\zeta , \eta )q(\zeta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta (q \in L2(\BbbT d)) .

Theorem 1.4. For any f \in L2(\BbbR d) the solution u\varepsilon of (1.8) converges strongly in
L2(\BbbR d) and weakly in H\alpha /2(\BbbR d) to the solution u0 of (1.9). Here, the effective jump
kernel is given by \Lambda eff = \langle p0\rangle  - 1\langle \Lambda p0\rangle , where p0 is the principal eigenfunction of the
operator L\ast on \BbbT d and \langle \Lambda p0\rangle =

\int 
\BbbT d

\int 
\BbbT d \Lambda (\xi , \eta )p0(\xi ) d\xi d\eta .

Let us discuss related articles that deal with homogenization problems for L\'evy-
type operators, resp., jump processes.

A probabilistic approach to the homogenization problem for nonlocal operators
in nondivergence form is developed in [21], [39], and [20]. An approach based on
PDE methods and viscosity solutions can be found in [1, 2]. The PDE method has
also been extended to several classes of nonlinear problems; see [3, 36, 37]. All these
approaches, like ours, deal with approximations of the same differentiability order as
the limit operator, resp., limit equation. Since one can approximate diffusions through
much simpler objects such as random walks or Markov chains, it is not surprising that
there are also homogenization models for jump processes that generate a diffusion in
the limit; see [33] or [30].

The scaling limit of a solution to stochastic differential equations with station-
ary coefficients driven by Poisson random measures and Brownian motions has been
studied in [32]. It was shown in [32, Theorem 5.3] that, under natural integrability
conditions on the Poisson random measure, the limit exhibits a diffusive behavior
with respect to the measure averaged over the realizations of the medium (annealed
measure). As in our approach, no corrector appears. Convergence in law of jump
processes with periodic jump intensities is also studied in [19], and [17, 18] focus
on homogenization of processes with variable order. Aperiodic fractional obstacle
problems are studied in [16].

The recent papers [15, 7] address problems which, to a certain extent, are related
to the problems that we consider in the present work. In these papers the authors focus
on the problem of H-compactness of a family of uniformly elliptic nonlocal operators
and describe a possible structure of any limit point of this family. Our goal is to show
that for the operators with (locally) periodic and statistically homogeneous coefficients
the whole family of the rescaled operators G-converges and to compute the coefficients
of the effective nonlocal operators. The results of [15, 7] imply that in our case there is
a nontrivial set of the limit operators with known ellipticity bounds but leave open the
question of their precise shape. Furthermore, we also provide a quenched convergence
result for random kernels, and we treat some nonsymmetric cases. Finally, apart from
the Gamma-convergence techniques, our proofs are rather different.
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In the recent preprint [35] problems are studied that are related to ours. The
results are limited to the case of deterministic symmetric coefficients. The authors
prove Mosco-convergence of the corresponding quadratic forms and apply this result
to the convergence of the underlying stochastic processes.

The organization of the article is simple. Section 2 contains the proofs of The-
orems 1.1 and 1.2. We treat the cases (P1), (P2), resp., (Q1), (Q2) in separate
subsections because the product structure of the kernels allows for a very short proof.
In subsection 2.3 we explain how to prove Theorem 1.2. Sections 3 and 4 contain the
proofs of Theorem 1.3 and 1.4, resp.

2. Symmetric, resp., symmetrizable periodic coefficients. In this section
we provide the proof of Theorem 1.1. We provide two different proofs: one for case
(P1) and a separate one for case (P2). Both proofs can be adapted for the remaining
case, resp., but since the effective equation has a special form under (P1) and some
proofs are shorter, we decide to look at this case separately. Let us start with some
general observations.

For 0 < \alpha < 2 we consider L\'evy-type operators L\varepsilon of the form (1.1), where \varepsilon > 0
is a small positive parameter. Our assumptions in cases (P1) and (P2) guarantee that
\Lambda \varepsilon satisfies

\gamma  - 1 \leq \Lambda \varepsilon (x, y) \leq \gamma (x, y \in \BbbR d)(2.1)

for some \gamma > 1 that does not depend on \varepsilon . Condition (2.1) can be seen as an ellipticity
condition. As explained below, it guarantees coercivity of the corresponding bilinear
form in Sobolev spaces of fractional order.

For each \varepsilon > 0 the operator L\varepsilon is symmetric on C\infty 
0 (\BbbR d) in the weighted space

L2(\BbbR d, \nu \varepsilon ), where \nu \varepsilon (x) = \nu (x/\varepsilon ) and \nu (z) equals \mu (z)/\lambda (z) in case (P1) and \nu (z)
equals 1 in case (P2). Indeed, in case (P1) for u, v \in C\infty 

0 (\BbbR d) we have

(L\varepsilon u, v)L2(\BbbR d,\nu \varepsilon ) =

\int 
\BbbR d

\int 
\BbbR d

\mu \varepsilon (x)\mu \varepsilon (y)

| x - y| d+\alpha 

\bigl( 
u(y) - u(x)

\bigr) 
v(x)dydx

=

\int 
\BbbR d

\int 
\BbbR d

\mu \varepsilon (x)\mu \varepsilon (y)

| x - y| d+\alpha 

\bigl( 
u(y)v(x) - u(y)v(y)

\bigr) 
dydx

=

\int 
\BbbR d

\int 
\BbbR d

\mu \varepsilon (x)\mu \varepsilon (y)

| x - y| d+\alpha 

\bigl( 
v(x) - v(y)

\bigr) 
u(y)dxdy = (L\varepsilon v, u)L2(\BbbR d,\nu \varepsilon ) .

Here and in what follows we denote \mu \varepsilon (x) = \mu (x/\varepsilon ). In case (P2) the symmetry can
be checked in the same way.

Moreover, the quadratic form ( - L\varepsilon u, v)L2(\BbbR d,\nu \varepsilon ) is positive on C\infty 
0 (\BbbR d).

The inequality (L\varepsilon u, u)L2(\BbbR d,\nu \varepsilon ) \leq 0 follows from the relation

(L\varepsilon u, u)L2(\BbbR d,\nu \varepsilon ) =  - 1

2

\int 
\BbbR d

\int 
\BbbR d

\Lambda \varepsilon (x, y)

| x - y| d+\alpha 

\bigl( 
u(y) - u(x)

\bigr) 2
\nu \varepsilon (x)dydx.

The quadratic form aL\varepsilon (u, u) = (L\varepsilon u, u)L2(\BbbR d,\nu \varepsilon ), u \in C\infty 
0 (\BbbR d), is closable; we

keep the notation aL\varepsilon for its closure. The closed form aL\varepsilon has the domain H\alpha /2(\BbbR d).
Indeed, due to (1.2), for u \in C\infty 

0 (\BbbR d) this quadratic form is comparable to the qua-
dratic form

a\widehat L(u, u) =  - 
\int 
\BbbR d

\int 
\BbbR d

(u(y) - u(x))2

| x - y| d+\alpha 
dydx.
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We have \gamma  - 1a\widehat L(u, u) \leq aL\varepsilon (u, u) \leq \gamma a\widehat L(u, u). The fact that a\widehat L(u, u) with the domain

H\alpha /2(\BbbR d) is closed is well known; the expression \| u\| 2L2(\BbbR 2)  - a\widehat L(u, u) defines the

squared norm in H\alpha /2(\BbbR d) (see, for instance, [26, section 1.10.2]).
It should also be noted that the quadratic form  - a\widehat L(u, u) corresponds to the

fractional Laplacian ( - \Delta )\alpha /2

(( - \Delta )\alpha /2u, u) =
c(d, \alpha )

2

\int 
\BbbR d

\int 
\BbbR d

(u(y) - u(x))2

| x - y| d+\alpha 
dydx

for any u \in H\alpha (\BbbR d); here c(d, \alpha ) > 0 is a normalizing constant (see, e.g., [34, section
32]).

For the unique self-adjoint operator corresponding to the quadratic form aL\varepsilon (see
[31, Theorem X.23]) we keep the notation L\varepsilon ; its domain is denoted \scrD (L\varepsilon ). This
operator is self-adjoint and negative in the weighted space L2(\BbbR d, \nu \varepsilon ). Moreover,
\scrD (L\varepsilon ) \subset H\alpha /2(\BbbR d), and for u \in \scrD (L\varepsilon ) we have aL\varepsilon (u, u) =  - (L\varepsilon u, u)L2(\BbbR d,\nu \varepsilon ).

For a given constantm > 0 consider the resolvent (m - L\varepsilon ) - 1. Since L\varepsilon is negative
and self-adjoint in L2(\BbbR d, \nu \varepsilon ), we have

\| (m - L\varepsilon ) - 1\| \scrL (L2(\BbbR d,\nu \varepsilon ),L2(\BbbR d,\nu \varepsilon )) \leq 
1

m
.

In view of the properties of \lambda and \mu this yields

\| (m - L\varepsilon ) - 1\| \scrL (L2(\BbbR d),L2(\BbbR d)) \leq 
\gamma 2

m
.(2.2)

For a given f \in L2(\BbbR d) consider a sequence \{ u\varepsilon \} \varepsilon >0 of solutions to (1.8). Due to
(2.2) for each \varepsilon > 0 this equation has a unique solution; moreover, \| u\varepsilon \| L2(\BbbR d) \leq 
\gamma 2

m \| f\| L2(\BbbR d).
As mentioned above, we provide two proofs of Theorem 1.1. In subsection 2.1

we provide a proof based on \Gamma -convergence. This proof is carried out assuming (P1).
Second, we assume (P2) and prove Theorem 1.1 using compactness arguments in
subsection 2.2. Note that either proof works well in any of our cases.

2.1. First proof of Theorem 1.1. Assuming (P1) we provide a proof of the
theorem based on \Gamma -convergence. Consider the functional

F \varepsilon (u) = aL\varepsilon (u, u) +m(u, u)L2(\BbbR d,\nu \varepsilon )  - 2(f, u)L2(\BbbR d,\nu \varepsilon )

for u \in H\alpha /2(\BbbR d). We extend this functional to the whole L2(\BbbR d) letting F \varepsilon (u) = +\infty 
for u \in L2(\BbbR d) \setminus H\alpha /2(\BbbR d).

It is straightforward to check that for each \varepsilon > 0 the functional F \varepsilon is continuous
on H\alpha /2(\BbbR d) and strictly convex. Thus, it attains its minimum at a unique point.
We denote this point by u\varepsilon . It is straightforward to see that u\varepsilon belongs to \scrD (L\varepsilon ) and
that u\varepsilon is a solution of (1.8).

We denote L2
w(\BbbR d) the space of square integrable functions equipped with the

topology of weak convergence. Here is our main auxiliary result.

Theorem 2.1. The family of functionals F \varepsilon \Gamma -converges with respect to the
L2
loc(\BbbR d) \cap L2

w(\BbbR d) topology to the functional defined by

F 0(u) =
1

2

\int 
\BbbR d

\int 
\BbbR d

\=\mu 2 (u(y) - u(x))2

| x - y| d+\alpha 
dydx+ \mu /\lambda 

\int 
\BbbR d

\{ m(u(x))2  - 2f(x)u(x)\} dx
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for u \in H\alpha /2(\BbbR d) and F 0(u) = +\infty for u \in L2(\BbbR d) \setminus H\alpha /2(\BbbR 2), where

\=\mu =

\int 
[0,1]d

\mu (y)dy, \mu /\lambda =

\int 
[0,1]d

(\mu (y))/(\lambda (y))dy.

Proof of Theorem 2.1. We begin with the \Gamma -lim inf inequality. Let v \in H\alpha /2(\BbbR d),
and assume that a sequence v\varepsilon \in L2(\BbbR d) converges to v in L2

loc(\BbbR d)\cap L2
w(\BbbR d) topology.

Denote

Q\varepsilon (v) :=

\left\{       
\int 
\BbbR d

\int 
\BbbR d

\mu \varepsilon (x)\mu \varepsilon (y)
(v(y) - v(x))2

| x - y| d+\alpha 
dydx, v \in H\alpha /2(\BbbR d),

+\infty , v \in L2(\BbbR d) \setminus H\alpha /2(\BbbR d),

and

Q0(v) :=

\left\{       
\int 
\BbbR d

\int 
\BbbR d

\=\mu 2 (v(y) - v(x))2

| x - y| d+\alpha 
dydx, v \in H\alpha /2(\BbbR d),

+\infty , v \in L2(\BbbR d) \setminus H\alpha /2(\BbbR d).

From the definition of F \varepsilon and F 0 it easily follows that

c(m, f)
\bigl( 
\| v\| 

H\alpha /2(\BbbR d)
 - 1
\bigr) 
\leq F \varepsilon (v) \leq C(m, f)

\bigl( 
\| v\| 

H\alpha /2(\BbbR d)
+ 1
\bigr) 
,

c(m, f)
\bigl( 
\| v\| 

H\alpha /2(\BbbR d)
 - 1
\bigr) 
\leq F 0(v) \leq C(m, f)

\bigl( 
\| v\| 

H\alpha /2(\BbbR d)
+ 1
\bigr) 
,

with strictly positive constants c(m, f) and C(m, f) that do not depend on \varepsilon .
Assume first that F 0(v) = +\infty . Then the \Gamma -lim inf inequality is trivial. Indeed,

in this case \| v\| H\alpha /2(\BbbR d) = +\infty , and therefore lim inf\varepsilon \rightarrow 0 \| v\varepsilon \| H\alpha /2(\BbbR d) = +\infty for any

sequence v\varepsilon \in L2(\BbbR d) that converges to v in L2
loc(\BbbR d). This yields the desired \Gamma -lim inf

inequality. Assume now that F 0(v) < +\infty . One can prove that

lim inf
\varepsilon \rightarrow 0

\{ (v\varepsilon , v\varepsilon )L2(\BbbR d,\nu \varepsilon )  - 2(v\varepsilon , f)L2(\BbbR d,\nu \varepsilon )\} 
\geq \mu /\lambda 

\bigl( 
(v, v)L2(\BbbR d)  - 2(v, f)L2(\BbbR d)

\bigr) (2.3)

for any sequence v\varepsilon \in L2(\BbbR d) that converges to v in L2
loc(\BbbR d) \cap L2

w(\BbbR d) topology.
Indeed, for any sequence v\varepsilon that converges to v in L2

loc(\BbbR d) \cap L2
w(\BbbR d) we have

0 \leq lim inf
\varepsilon \rightarrow 0

(v  - v\varepsilon , v  - v\varepsilon )L2(\BbbR d,\nu \varepsilon )

= lim inf
\varepsilon \rightarrow 0

\bigl( 
(v\varepsilon , v\varepsilon )L2(\BbbR d,\nu \varepsilon ) + (v, v)L2(\BbbR d,\nu \varepsilon )  - 2(v, v\varepsilon )L2(\BbbR d,\nu \varepsilon )

\bigr) 
.

Since \nu \varepsilon v\varepsilon converges to (\mu /\lambda )v weakly in L2(\BbbR d), as \varepsilon \rightarrow 0, the last inequality implies
that

0 \leq lim inf
\varepsilon \rightarrow 0

(v\varepsilon , v\varepsilon )L2(\BbbR d,\nu \varepsilon )  - \mu /\lambda (v, v)L2(\BbbR d).

This yields (2.3).
Therefore, it suffices to show that

lim inf
\varepsilon \rightarrow 0

Q\varepsilon (v\varepsilon ) \geq Q0(v).(2.4)

To this end we divide the integration area into three subsets as

\BbbR d \times \BbbR d = G\delta 
1 \cup G\delta 

2 \cup G\delta 
3(2.5)
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with

G\delta 
1 = \{ (x, y) : | x - y| \geq \delta , | x| + | y| \leq \delta  - 1\} ,(2.6)

G\delta 
2 = \{ (x, y) : | x - y| \leq \delta , | x| + | y| \leq \delta  - 1\} , G\delta 

3 = \{ (x, y) : | x| + | y| \geq \delta  - 1\} .(2.7)

Since the integral \int 
\BbbR d\times \BbbR d

\bigl( 
v(y) - v(x)

\bigr) 2
| x - y| d+\alpha 

dydx

converges, for any \kappa > 0 there exists \delta > 0 such that

\int 
G\delta 

2\cup G\delta 
3

\mu 2

\bigl( 
v(y) - v(x)

\bigr) 2
| x - y| d+\alpha 

dydx \leq \kappa .(2.8)

Obviously,

lim inf
\varepsilon \rightarrow 0

\int 
G\delta 

2\cup G\delta 
3

\mu \varepsilon (y)\mu \varepsilon (x)

\bigl( 
v\varepsilon (y) - v\varepsilon (x)

\bigr) 2
| x - y| d+\alpha 

dydx \geq 0.(2.9)

In the domain G\delta 
1 we have

0 < c1(\delta ) \leq 
\mu \varepsilon (y)\mu \varepsilon (x)

| x - y| d+\alpha 
\leq C1(\delta ),

and v\varepsilon converges to v in L2(G\delta 
1). Therefore, as \varepsilon \rightarrow 0,\int 

G\delta 
1

\mu \varepsilon (y)\mu \varepsilon (x)
(v\varepsilon (x))2

| x - y| d+\alpha 
dydx  - \rightarrow 

\int 
G\delta 

1

\=\mu 2 (v(x))2

| x - y| d+\alpha 
dydx

and \int 
G\delta 

1

\mu \varepsilon (y)\mu \varepsilon (x)
v\varepsilon (y)v\varepsilon (x)

| x - y| d+\alpha 
dydx  - \rightarrow 

\int 
G\delta 

1

\=\mu 2 v(y)v(x)

| x - y| d+\alpha 
dydx.

This yields

lim
\varepsilon \rightarrow 0

\int 
G\delta 

1

\mu \varepsilon (y)\mu \varepsilon (x)
(v\varepsilon (y) - v\varepsilon (x))2

| x - y| d+\alpha 
dydx =

\int 
G\delta 

1

\=\mu 2 (v(y) - v(x))2

| x - y| d+\alpha 
dydx.(2.10)

Combining (2.3)--(2.10) we conclude that

lim inf
\varepsilon \rightarrow 0

F \varepsilon (v\varepsilon ) \geq F 0(v) - \kappa .

Since \kappa is an arbitrary positive number, the desired \Gamma -lim inf inequality follows.
We turn to the \Gamma -lim sup inequality. It suffices to set v\varepsilon = v. It is straightforward

to check that F \varepsilon (v) \rightarrow F 0(v). This completes the proof of Theorem 2.1.

We can finally provide the proof of our main result in case (P1).
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Proof of Theorem 1.1. As a consequence of Theorem 2.1 any limit point of \{ u\varepsilon \} 
is a minimizer of F 0; see [6, Theorem 1.21]. Since the minimizer of F 0 is unique,
the whole family \{ u\varepsilon \} converges, as \varepsilon \rightarrow 0, to u = argminF 0 in L2

w(\BbbR d) \cap L2
loc(\BbbR d)

topology; here the subindex w indicates the weak topology.
It remains to show that u\varepsilon converges to u in L2(\BbbR d). If we assume that u\varepsilon does

not converge to u in L2(\BbbR d), then, for a subsequence, for any n \in \BbbN there exists
\varepsilon (n) > 0 such that for any \varepsilon < \varepsilon (n) we have

(2.11) \| u\varepsilon \| L2(\BbbR d\setminus G(n)) \geq C2,

where C2 > 0 is a constant that does not depend on n and G(n) stands for the ball
of radius n centered at the origin. Indeed, in this case there is a subsequence \varepsilon \rightarrow 0
such that \| u\varepsilon  - u\| L2(\BbbR d) \geq \~C for some \~C > 0. On the other hand, for each n there

exists \varepsilon (n) > 0 such that for all \varepsilon < \varepsilon (n) we have \| u\varepsilon  - u\| L2(G(n)) \leq 
\~C
2 . Combining

the last two estimates and considering the fact that \| u\| L2(\BbbR d\setminus G(n)) \rightarrow 0, as n \rightarrow \infty ,
we obtain the desired inequality (2.11) for sufficiently large n. Since \| u\varepsilon \| L2(\BbbR d\setminus G(n))

is decreasing in n, (2.11) is also fulfilled for smaller n.
Let \psi be a C\infty 

0 (\BbbR ) function such that 0 \leq \psi \leq 1, \psi (s) = 1 for s \in [0, 12 ] and

\psi (s) = 0 for s \geq 1. Denote \psi n(x) = \psi ( | x| n ). A straightforward computation shows
that

lim
n\rightarrow \infty 

lim sup
\varepsilon \rightarrow 0

\bigm| \bigm| aL\varepsilon (\psi nu
\varepsilon , \psi nu

\varepsilon ) - aL\varepsilon (u\varepsilon , u\varepsilon )
\bigm| \bigm| = 0

and

lim
n\rightarrow \infty 

lim
\varepsilon \rightarrow 0

\int 
\BbbR d

f(x)
\bigl( 
\psi n(x) - 1)u\varepsilon (x)dx = 0.

If inequality (2.11) is fulfilled, then for sufficiently small \varepsilon and sufficiently large n we
have

m

\int 
\BbbR d

\bigl( 
\psi n(x)u

\varepsilon (x)
\bigr) 2
\nu \varepsilon (x) dx \leq m

\int 
\BbbR d

\bigl( 
u\varepsilon (x)

\bigr) 2
\nu \varepsilon (x) dx - 1

4
mC2\| \nu \| L\infty ,

and hence F \varepsilon (\psi nu
\varepsilon ) < F \varepsilon (u\varepsilon ). This contradicts the fact that u\varepsilon is a minimizer of

F \varepsilon . Thus, u\varepsilon converges in L2(\BbbR d).
The minimizer u satisfies

 - \=\mu 2( - \Delta )\alpha /2u - \mu /\lambda mu = \mu /\lambda f.

Dividing it by \mu /\lambda we arrive at (1.9). Theorem 1.1 is proved.

2.2. Second proof of Theorem 1.1. In this section we give the second proof
of Theorem 1.1. Here we assume that condition (P2) holds. This proof can be easily
adapted to case (P1).

Second proof of Theorem 1.1. Here we consider an operator L\varepsilon of the form

L\varepsilon u(x) =

\int 
\BbbR d

\Lambda 
\Bigl( 
x, y,

x

\varepsilon 
,
y

\varepsilon 

\Bigr) \bigl( 
u(y) - u(x)

\bigr) 
| y  - x| d+\alpha 

dy(2.12)

with a continuous in (x, y) and periodic measurable in \zeta and \eta function \Lambda (x, y, \zeta , \eta )
such that

\Lambda (x, y, \zeta , \eta ) = \Lambda (y, x, \eta , \zeta ), \gamma  - 1 \leq \Lambda (x, y, \zeta , \eta ) \leq \gamma .



HOMOGENIZATION OF LEVY-TYPE OPERATORS 3651

Our assumptions on the setup ensure that \Lambda is a Carath\'eodory function and \Lambda \varepsilon is
well defined.

As was explained above, L\varepsilon is a positive self-adjoint operator in L2(\BbbR d) whose
domain \scrD (L\varepsilon ) belongs to H\alpha /2(\BbbR d).

Multiplying  - L\varepsilon u\varepsilon +mu\varepsilon = f by u\varepsilon and integrating the resulting relation over
\BbbR d we conclude

\| u\varepsilon \| H\alpha /2(\BbbR d) \leq C

with a constant C that does not depend on \varepsilon . Therefore, for a subsequence, u\varepsilon con-
verges to some function u \in H\alpha /2(\BbbR d), weakly in H\alpha /2(\BbbR d) and strongly in L2

loc(\BbbR d).
In order to characterize this limit function we multiply  - L\varepsilon u\varepsilon +mu\varepsilon = f by a test
function \varphi \in C\infty 

0 (\BbbR d) and integrate the obtained relation over \BbbR d. After simple
rearrangements this yields

\int 
\BbbR d\times \BbbR d

\Lambda \varepsilon (x, y)(u\varepsilon (y) - u\varepsilon (x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy +

\int 
\BbbR d

(u\varepsilon \varphi  - f\varphi )dx = 0,

where \Lambda \varepsilon (x, y) stands for \Lambda 
\bigl( 
x, y, x\varepsilon ,

y
\varepsilon 

\bigr) 
. Clearly, the second integral converges to the

integral
\int 
\BbbR d(u\varphi  - f\varphi )dx. Our goal is to pass to the limit in the first one. To this end

we divide the integration area \BbbR d \times \BbbR d into three parts in the same way it was done
in (2.5), (2.6), and (2.7). The integral over G\delta 

2 \cup G\delta 
3 admits the following estimate:\bigm| \bigm| \bigm| \bigm| \int 

G\delta 
2\cup G\delta 

3

\Lambda \varepsilon (x, y)(u\varepsilon (y) - u\varepsilon (x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy

\bigm| \bigm| \bigm| \bigm| 
\leq C

\Biggl( \int 
G\delta 

2\cup G\delta 
3

(u\varepsilon (y) - u\varepsilon (x))2

| x - y| d+\alpha 
dxdy

\Biggr) 1
2
\Biggl( \int 

G\delta 
2\cup G\delta 

3

(\varphi (y) - \varphi (x))2

| x - y| d+\alpha 
dxdy

\Biggr) 1
2

\leq C1

\Biggl( \int 
G\delta 

2\cup G\delta 
3

(\varphi (y) - \varphi (x))2

| x - y| d+\alpha 
dxdy

\Biggr) 1
2

.

The last integral tends to zero, as \delta \rightarrow 0. Similarly,

\bigm| \bigm| \bigm| \bigm| \int 
G\delta 

2\cup G\delta 
3

\Lambda (x, y)(u(y) - u(x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy

\bigm| \bigm| \bigm| \bigm|  - \rightarrow 0,

as \delta \rightarrow 0.
According to [43, Lemma 3.1] the family \Lambda \varepsilon converges weakly in L2

loc(\BbbR d \times \BbbR d)
to the function \Lambda with \Lambda (x, y) = \Lambda eff(x, y). Since u\varepsilon converges to u in L2(G\delta 

1) and \Lambda \varepsilon 

converges to \Lambda weakly on any bounded domain, we conclude

\int 
G\delta 

1

\Lambda \varepsilon (x, y)(u\varepsilon (y) - u\varepsilon (x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy

 - \rightarrow 
\varepsilon \rightarrow 0

\int 
G\delta 

1

\Lambda (x, y)(u(y) - u(x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy .
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Combining the above relations, we arrive at the conclusion that\int 
\BbbR d\times \BbbR d

\Lambda (x, y)(u(y) - u(x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy +

\int 
\BbbR d

(u\varphi  - f\varphi )dx = 0.

Since \varphi is an arbitrary C\infty 
0 function, this implies that u is a solution of - L0u+mu = f .

Due to the uniqueness of a solution of this equation, the whole family u\varepsilon converges
to u, as \varepsilon \rightarrow 0.

It remains to justify the convergence in L2(\BbbR d). We have

0 \leq ( - L\varepsilon (u\varepsilon  - u), u\varepsilon  - u) =  - (L\varepsilon u\varepsilon , u\varepsilon ) + 2(L\varepsilon u\varepsilon , u) - (L\varepsilon u, u).

Passing to the limit yields

lim inf
\varepsilon \rightarrow 0

\bigl\{ 
 - (L\varepsilon u\varepsilon , u\varepsilon )

\bigr\} 
\geq  - (L0u, u).(2.13)

Now the strong convergence of u\varepsilon in L2(\BbbR d) can be obtained by the standard lower
semicontinuity arguments. Indeed, multiplying  - L\varepsilon u\varepsilon +mu\varepsilon = f by u\varepsilon , integrating
the resulting relation over \BbbR d, and passing to the limit as \varepsilon \rightarrow 0 we have

lim
\varepsilon \rightarrow 0

\bigl( 
( - L\varepsilon u\varepsilon , u\varepsilon ) +m(u\varepsilon , u\varepsilon )

\bigr) 
= (f, u).

If u\varepsilon does not converge strongly in L2(\BbbR d), then for a subsequence lim\varepsilon \rightarrow 0m(u\varepsilon , u\varepsilon ) >
m(u, u). Combining this with (2.13) for the same subsequence we obtain

lim
\varepsilon \rightarrow 0

\bigl( 
( - L\varepsilon u\varepsilon , u\varepsilon ) +m(u\varepsilon , u\varepsilon )

\bigr) 
>  - (L0u, u) +m(u, u) = (f, u).

The last relation here follows from the limit equation  - L0u+mu = f . We arrive at
a contradiction. Thus, u\varepsilon converges to u in norm.

2.3. Proof of Theorem 1.2. Let us comment on the proof of Theorem 1.2. As
mentioned above, the proof does not require any new idea but just an adjustment of
the setting. For every \varepsilon > 0,m > 0, (1.11) possesses a unique solution u\varepsilon \in W

\alpha 
p ,p(\BbbR d).

It minimizes the variational functional

v \mapsto \rightarrow J(v) =
1

p

\int 
\BbbR d

\int 
\BbbR d

| v(y) - v(x)| p

| x - y| d+\alpha 
\Lambda \varepsilon (x, y) dydx+

m

p
| v| p +

\int 
\BbbR d

fv .

In order to establish bounds that are uniform in \varepsilon , we multiply (1.11) by u\varepsilon , integrate
the resulting relation over \BbbR d, and exploit the equality\int 

\BbbR d

\int 
\BbbR d

| u(y) - u(x)| p - 2(u(y) - u(x))u(x)

| x - y| d+\alpha 
\Lambda \varepsilon (x, y) dydx

=  - 1

2

\int 
\BbbR d

\int 
\BbbR d

| u(y) - u(x)| p

| x - y| d+\alpha 
\Lambda \varepsilon (x, y) dydx .

Then we easily deduce the estimate

(2.14) \| u\varepsilon \| 
W

\alpha 
p

,p
(\BbbR d)

\leq C\| f\| Lp\prime (\BbbR d)

with a constant C that does not depend on \varepsilon . Thus, there is a weakly convergent
subsequence and a limit u0. From here, the proof is the same as that of Theorem 1.1.
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3. Symmetric random kernels. Let us first explain the notion of an ergodic
dynamical system. Let (\Omega ,\scrF ,P) be a standard probability space, and assume that
(Ty)y\in \BbbR d is a d-dimensional ergodic dynamical system in this probability space, i.e.,
a collection of measurable maps Ty : \Omega \mapsto \rightarrow \Omega such that

\bullet Ty1Ty2 = Ty1+y2 for all y1 and y2 in \BbbR d; T0 = Id;
\bullet P(TyA) = P(A) for all A \in \scrF and all y \in \BbbR d;
\bullet T\cdot : \BbbR d \times \Omega \mapsto \rightarrow \Omega is a measurable map. Here \BbbR d \times \Omega is equipped with the
\sigma -algebra \scrB \times \scrF , where \scrB is the Borel \sigma -algebra in \BbbR d.

We say that T\cdot is ergodic if for any A \in \scrF such that TyA = A for all y \in \BbbR d we have
either P(A) = 0 or P(A) = 1.

Let us first make some remarks. We study the limit behavior of operator L\varepsilon 

defined in (1.1), as \varepsilon \rightarrow 0. Clearly, estimate (2.2) remains valid in the random case.
Therefore, for any given f \in L2(\BbbR d) the sequence of equations

(L\varepsilon  - m)u\varepsilon = f(3.1)

is well posed. Moreover, for any \varepsilon > 0 a solution u\varepsilon is uniquely defined, and

\| u\varepsilon \| L2(\BbbR d) \leq \gamma 2

m \| f\| L2(\BbbR d).

3.1. First proof of Theorem 1.3. Now we are in the position to prove Theo-
rem 1.3 in case (Q1).

Proof of Theorem 1.3 in case (Q1). In the same way as in the proof of Theo-
rem 1.1 for any f \in L2(\BbbR d) we obtain the estimate

\| u\varepsilon \| H\alpha /2(\BbbR d) \leq C

with a deterministic constant C that does not depend on \varepsilon . Therefore, for each
\omega \in \Omega there is a subsequence that converges to a function u0 \in H\alpha /2(\BbbR d) weakly in
H\alpha /2(\BbbR d) and strongly in L2

loc(\BbbR d). Abusing slightly the notation we keep for this
subsequence the same name u\varepsilon .

Multiplying (3.1) by \mu (x\varepsilon )(\lambda (
x
\varepsilon ))

 - 1\varphi (x) with \varphi \in C\infty 
0 (\BbbR d) and integrating the

resulting equality over \BbbR d after simple rearrangements we arrive at the following
relation:

0 =

\int 
\BbbR d\times \BbbR d

\mu \varepsilon (y)\mu \varepsilon (x)(u\varepsilon (y) - u\varepsilon (x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy

+

\int 
\BbbR d

\mu \varepsilon (x)

\lambda \varepsilon (x)
(u\varepsilon \varphi  - f\varphi )dx .

Here, \mu \varepsilon (x) and \lambda \varepsilon (x) stand for \mu (x\varepsilon ) and \lambda (x\varepsilon ), resp. By the Birkhoff ergodic
theorem the function \mu \mu \mu \varepsilon with \mu \mu \mu \varepsilon (x, y) = \mu \varepsilon (y)\mu \varepsilon (x) converges a.s., as \varepsilon \rightarrow 0, to\bigl( 
E\{ \widehat \mu (\cdot )\} \bigr) 2 weakly in L2

loc(\BbbR d \times \BbbR d). In order to justify this convergence we consider
a cube QN = [ - N,N ]d \times [ - N,N ]d in \BbbR d \times \BbbR d with an arbitrary N > 0. For any
\varphi 1 \in L2([ - N,N ]d) and \varphi 2 \in L2([ - N,N ]d) by the Birkhoff ergodic theorem we have\int 

QN

\mu \varepsilon (y)\mu \varepsilon (x)\varphi 1(x)\varphi 2(y) dxdy = (\mu \varepsilon , \varphi 1)L2([ - N,N ]d) (\mu 
\varepsilon , \varphi 2)L2([ - N,N ]d)

 - \rightarrow 
\varepsilon \rightarrow 0

\bigl( 
E\{ \widehat \mu (\cdot )\} \bigr) 2 \int 

QN

\varphi 1(x)\varphi 2(y)dxdy.

Since the sequence \{ \mu \varepsilon (y)\mu \varepsilon (x), (x, y) \in QN\} is bounded in L2(QN ) and the set of
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finite linear combinations of product functions \{ \varphi 1(x)\varphi 2(y), (x, y) \in QN\} is dense in

L2(QN ), the required convergence follows. Similarly, \mu \varepsilon (x)
\lambda \varepsilon (x) converges a.s. to E

\bigl\{ \widehat \mu (\cdot )\widehat \lambda (\cdot )
\bigr\} 

in L2
loc(\BbbR d).
Following the line of the second proof of Theorem 1.1 we obtain

0 =

\int 
\BbbR d\times \BbbR d

\bigl( 
E\{ \widehat \mu (\cdot )\} \bigr) 2(u0(y) - u0(x))(\varphi (y) - \varphi (x))

| x - y| d+\alpha 
dxdy

+E
\Bigl\{ \widehat \mu (\cdot )\widehat \lambda (\cdot )

\Bigr\} \int 
\BbbR d

(u0\varphi  - f\varphi )dx .

This yields the desired relation (1.9). The fact that the whole family \{ u\varepsilon \} con-
verges to u0 a.s. follows from the uniqueness of a solution of (1.9). Finally, the
convergence lim\varepsilon \rightarrow 0 \| u\varepsilon  - u0\| L2(\BbbR d) = 0 can be justified in the same way as in the
second proof of Theorem 1.1.

3.2. Second proof of Theorem 1.3. Next, we explain how to establish The-
orem 1.3 in case (Q2). The proof will follow in a straightforward way once we have
established the following auxiliary result.

Lemma 3.1. For any bounded measurable set Q \subset \BbbR d \times \BbbR d the following limit
relation holds a.s.:

(3.2)

\int 
Q

\Lambda (x, y, T x
\varepsilon 
\omega , T y

\varepsilon 
\omega ) dxdy  - \rightarrow 

\int 
Q

\Lambda eff(x, y) dxdy as \varepsilon \rightarrow 0,

where

\Lambda eff(x, y) =

\int 
\Omega 

\int 
\Omega 

\Lambda (x, y, \omega 1, \omega 2)dP(\omega 1)dP(\omega 2).

Proof. We first recall that under assumption (Q2) the set Q\times \Omega \times \Omega is compact,
and the function \Lambda (x, y, \omega 1, \omega 2) is continuous on Q\times \Omega \times \Omega . Therefore, \Lambda (x, y, \omega 1, \omega 2)
is equicontinuous on this set, and for any \delta > 0 there exists \varkappa > 0 such that

| \Lambda (x\prime , y\prime , \omega 1, \omega 2) - \Lambda (x\prime \prime , y\prime \prime , \omega 1, \omega 2)| \leq \delta for all \omega 1, \omega 2,

if | (x\prime , y\prime ) - (x\prime \prime , y\prime \prime )| \leq \varkappa and (x\prime , y\prime ) \in Q, (x\prime \prime , y\prime \prime ) \in Q. Then

| \Lambda eff(x\prime , y\prime ) - \Lambda eff(x\prime \prime , y\prime \prime )| 

\leq 
\int 
\Omega \times \Omega 

| \Lambda (x\prime , y\prime , \omega 1, \omega 2) - \Lambda (x\prime \prime , y\prime \prime , \omega 1, \omega 2)| dP(\omega 1)dP(\omega 2) \leq \delta .

Thus, \Lambda eff is a continuous function.

Consider a partition \{ Bj\} N(\delta )
j=1 of Q that has the following properties:

(i) Q =
\bigcup 
Bj , Bj \cap Bk = \emptyset if j \not = k.

(ii) diam(Bj) \leq \varkappa .
(iii) The inequality

\bigm| \bigm| \bigm| \int 
Q

\Lambda eff(x, y) dxdy  - 
N\sum 
j=1

\Lambda eff(xj , yj)| Bj | 
\bigm| \bigm| \bigm| \leq \delta 

holds, where \{ (xj , yj)\} Nj=1 is a set of points in Q such that (xj , yj) \in Bj .
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By the Stone--Weierstrass theorem for each j = 1, . . . , N there exist a finite set of
continuous functions \{ \varphi j

k(\omega ), \psi 
j
k(\omega )\} Lk=1 such that

\bigm| \bigm| \bigm| \Lambda (xj , yj , \omega 1, \omega 2) - 
L\sum 

k=1

\varphi j
k(\omega 1)\psi 

j
k(\omega 2)

\bigm| \bigm| \bigm| \leq \delta .

This implies in particular that

(3.3)
\bigm| \bigm| \bigm| \Lambda eff(xj , yj) - 

L\sum 
k=1

E\varphi j
kE\psi 

j
k

\bigm| \bigm| \bigm| \leq \delta .

Then we have a.s.

lim sup
\varepsilon \rightarrow 0

\int 
Q

\Lambda (x, y, T x
\varepsilon 
\omega , T y

\varepsilon 
\omega ) dxdy

\leq lim sup
\varepsilon \rightarrow 0

N\sum 
j=1

\int 
Bj

\Lambda (xj , yj , T x
\varepsilon 
\omega , T y

\varepsilon 
\omega ) dxdy + \delta | Q| 

\leq lim sup
\varepsilon \rightarrow 0

N\sum 
j=1

\int 
Bj

L\sum 
k=1

\varphi j
k(T x

\varepsilon 
\omega )\psi j

k(T y
\varepsilon 
\omega ) dxdy + 2\delta | Q| 

=

N\sum 
j=1

\int 
Bj

L\sum 
k=1

E\varphi j
kE\psi 

j
k dxdy + 2\delta | Q| 

\leq 
N\sum 
j=1

\int 
Bj

\Lambda eff(xj , yj) dxdy + 3\delta | Q| \leq 
\int 
Q

\Lambda eff(x, y) dxdy + \delta (3| Q| + 1) .

The third relation here follows from the Birkhoff ergodic theorem and the fourth
one from estimate (3.3). Similarly,

lim inf
\varepsilon \rightarrow 0

\int 
Q

\Lambda (x, y, T x
\varepsilon 
\omega , T y

\varepsilon 
\omega ) dxdy \geq 

\int 
Q

\Lambda eff(x, y) dxdy  - \delta (3| Q| + 1).

Since \delta > 0 can be chosen arbitrarily, this implies the desired relation (3.2).

As a straightforward consequence of Lemma 3.1, the functions \Lambda \varepsilon a.s. converge to
\Lambda eff \ast -weakly in L\infty (\BbbR d\times \BbbR d), as \varepsilon \rightarrow 0, where \Lambda \varepsilon (x, y) stands for \Lambda (x, y, T x

\varepsilon 
\omega , T y

\varepsilon 
\omega ).

With the help of this convergence result, the proof of Theorem 1.3 is immediate.

4. Nonsymmetric kernels. The aim of this section is to prove Theorem 1.4.
We split the proof into three different steps. In subsection 4.1 we investigate the
adjoint operator L\ast and its principal eigenfunction. Subsection 4.2 provides uniform
bounds on the functions u\varepsilon . Finally, we consider the limit \varepsilon \rightarrow 0 in subsection 4.3.

4.1. Auxiliary periodic problems. We recall that the period of \Lambda = \Lambda (x, y)
both in x and in y variables is [0, 1]d. We deal here with an auxiliary (cell) problem
defined in the space of periodic functions L2(\BbbT d). Notice that in this case the operator

(4.1) Lv(\zeta ) =

\int 
\BbbR d

\Lambda (\zeta , \eta )
\bigl( 
v(\eta ) - v(\zeta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta 
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is an unbounded linear operator in L2(\BbbT d); here and in what follows we identify
functions defined on the torus \BbbT d with the corresponding periodic functions in \BbbR d. In
order to introduce a domain of L we represent \Lambda (\zeta , \eta ) as \Lambda (\zeta , \eta ) = \Lambda s(\zeta , \eta )+\Lambda a(\zeta , \eta )
with

(4.2) \Lambda s(\zeta , \eta ) =
1

2
(\Lambda (\zeta , \eta ) + \Lambda (\eta , \zeta )), \Lambda a(\zeta , \eta ) =

1

2
(\Lambda (\zeta , \eta ) - \Lambda (\eta , \zeta )).

Then we represent the operator L as follows:

Lv(\zeta ) =

\int 
\BbbR d

\Lambda s(\zeta , \eta )
\bigl( 
v(\eta ) - v(\zeta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta +

\int 
\BbbR d

\Lambda a(\zeta , \eta )
\bigl( 
v(\eta ) - v(\zeta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta 

= Lsv(\zeta ) + Lav(\zeta ).

Since \Lambda s is symmetric and satisfies the estimate \gamma  - 1 \leq \Lambda s \leq \gamma , the operator Ls is self-
adjoint in L2(\BbbT d), and its domain \scrD (Ls) is dense in H\alpha /2(\BbbT d). In fact, for Lipschitz
continuous \Lambda we have \scrD (Ls) = H\alpha (\BbbT d). Observe that for Lipschitz continuous \Lambda the
function \Lambda a(\zeta , \eta ) is also Lipschitz continuous, and \Lambda a(\zeta , \zeta ) = 0 for all \zeta . It is then
straightforward to check that the kernel \Lambda a(\zeta , \eta ) | \zeta  - \eta |  - d - \alpha admits the following
upper bound:

| \Lambda a(\zeta , \eta )| | \zeta  - \eta |  - d - \alpha \leq Cmin(| \zeta  - \eta |  - d - \alpha +1, | \zeta  - \eta |  - d - \alpha ).

Since the function min(| z|  - d - \alpha +1, | z|  - d - \alpha ) is integrable on \BbbR d, the operator La is
bounded in L2(\BbbT d). Then the operator L with the domain \scrD (Ls) is a closed operator
in L2(\BbbT d), and its adjoint L\ast = Ls + (La)\ast has the same domain \scrD (Ls).

Direct computations show that the adjoint operator takes the form

(4.3) L\ast q(\zeta ) =

\int 
\BbbR d

\bigl( 
\Lambda (\eta , \zeta )q(\eta ) - \Lambda (\zeta , \eta )q(\zeta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta .

Theorem 4.1. There exists a continuous positive function p0(\cdot ) \in \scrD (L\ast ) such
that L\ast p0 = 0 in L2(\BbbT d) and p0(\xi ) \geq p - for all \xi \in \BbbT d for some constant p - > 0.

The remainder of this subsection is dedicated to the proof of Theorem 4.1, which
itself uses several auxiliary results.

First we are going to show that the kernel of L\ast in L2(\BbbT d) contains a continuous
positive function; we denote it p0. The uniqueness will be justified later on. To prove
the existence of such a function p0 we first introduce the operators that correspond
to (4.1) and (4.3) in the space C(\BbbT d). This will allow us to use the results from the
theory of positive operators.

We represent the operator L\ast in the form

 - L\ast q(\zeta ) = \Lambda (\zeta , \zeta )

\int 
\BbbR d

\bigl( 
q(\zeta ) - q(\eta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta +

\int 
\BbbR d

\bigl( 
\Lambda (\zeta , \zeta ) - \Lambda (\eta , \zeta )

\bigr) 
q(\eta )

| \zeta  - \eta | d+\alpha 
d\eta 

 - q(\zeta )
\int 
\BbbR d

\bigl( 
\Lambda (\zeta , \zeta ) - \Lambda (\zeta , \eta )

\bigr) 
| \zeta  - \eta | d+\alpha 

d\eta =: \Lambda (\zeta , \zeta )
\bigl[ 
\scrL sq(\zeta ) + \scrL 1q(\zeta ) + \scrL 2q(\zeta )

\bigr] 
.

Since \Lambda (\zeta , \eta ) is a Lipschitz continuous function and \alpha \in (0, 1), the kernel of the
operator \scrL 1 is integrable in \eta uniformly in \zeta . Considering the fact that this kernel
is continuous on the complement of the set \{ (\zeta , \eta ) : \zeta = \eta \} , we conclude that \scrL 1 is
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a bounded operator in C(\BbbT d). The function
\int 
\BbbR d

(\Lambda (\eta ,\zeta ) - \Lambda (\zeta ,\zeta ))
\Lambda (\zeta ,\zeta )| \zeta  - \eta | d+\alpha d\eta is continuous and

periodic. Therefore, the operator \scrL 2 is also bounded in C(\BbbT d).
The operator \scrL s is well defined for u \in C\infty (\BbbT d). From Proposition 4.3 below

it follows that this operator is closable in C(\BbbT d) and that any \lambda > 0 belongs to
the resolvent set of its closure (still denoted by \scrL s). Moreover, as a consequence of
Proposition 4.3, the domain \scrD C(\scrL s) of \scrL s in C(\BbbT d) is a subset of \scrD (\scrL s), and on
\scrD C(\scrL s) these operators coincide.

Lemma 4.2. There exists \beta > 0 such that for any \lambda > 0 the resolvent (\scrL s+\lambda I) - 1

is a bounded operator from C(\BbbT d) to C\beta (\BbbT d). Moreover, the following estimate holds:

(4.4) \| (\scrL s + \lambda I) - 1\| 
C(\BbbT d)\rightarrow C(\BbbT d)

\leq \lambda  - 1.

Proof. Estimate (4.4) follows directly from the maximum principle. It suffices
to obtain this estimate for a dense set in C(\BbbT d). For u \in C\infty (\BbbT d) denote by \zeta 0 a
maximum point of | u| . Without loss of generality we assume that u(\zeta 0) \geq 0. Then
\scrL su(\zeta 0) \geq 0. Therefore,

\lambda \| u\| C(\BbbT d) = \lambda u(\zeta 0) \leq \scrL su(\zeta 0) + \lambda u(\zeta 0) \leq \| \scrL su+ \lambda u\| C(\BbbT d).

This yields (4.4).

We reformulate the first statement of Lemma 4.2 as a separate result.

Proposition 4.3. Let f \in C(\BbbT d), \lambda > 0. There is a constant c \geq 1 such that for
every function u \in H\alpha (\BbbT d) satisfying

( - \Delta )
\alpha 
2 u+ \lambda u = f in \BbbT d(4.5)

the following estimate holds:

\| u\| C\alpha (\BbbT d) \leq c\| f\| C(\BbbT d) .(4.6)

Proof. There are several ways to prove this result. One option would be to apply
embedding results for the Riesz potential. Another option would be to use the Harnack
inequality. Here, we give a proof based on the corresponding heat equation and the
representation of solutions with the help of the fundamental solution. Let (Pt) denote
the contraction semigroup of the operator \partial t+( - \Delta )

\alpha 
2 in (0,\infty )\times \BbbR d that acts in the

space Cb(\BbbR d) of bounded continuous functions equipped with the norm \| v\| Cb(\BbbR d) =

supx\in \BbbR d | v(x)| . Notice that this semigroup need not be strongly continuous in Cb(\BbbR d).
It is known that for f \in Cb(\BbbR d) the function Ptf belongs to C\infty (\BbbR d) for any t > 0
and satisfies

| \nabla Ptf(x)| \leq c1t
 - 1/\alpha \| f\| Cb(\BbbR d) for all x \in \BbbR d(4.7)

with some contant c1 \geq 1 independent of x. This is proved in several works, e.g., in
[4, Theorem 3.2]. In order to prove (4.6), let u be a solution to (4.5) and x, y \in \BbbR d.
We only need to consider the case | x - y| \leq 1. Assume \rho \in (0, 1). Then

| u(x) - u(y)| \leq 
\int \infty 

0

e - \lambda t| Ptf(x) - Ptf(y)| dt

\leq 
\int \rho 

0

e - \lambda t| Ptf(x) - Ptf(y)| dt+
\int \infty 

\rho 

e - \lambda t| Ptf(x) - Ptf(y)| dt .
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The first integral is estimated from above as follows:\int \rho 

0

e - \lambda t| Ptf(x) - Ptf(y)| dt \leq 2\| f\| \infty 
\int \rho 

0

e - \lambda tdt

= 2\| f\| \infty 
1

\lambda 
(1 - e - \lambda \rho ) \leq 2\rho \| f\| \infty .

For the estimate of the second integral we apply (4.7) and obtain\int \infty 

\rho 

e - \lambda t| Ptf(x) - Ptf(y)| dt \leq c1\| f\| \infty | x - y| 
\int \infty 

\rho 

e - \lambda tt - 1/\alpha dt.

Note that for \alpha < 1 we have\int \infty 

\rho 

e - \lambda tt - 1/\alpha dt \leq 
\int 1

\rho 

t - 1/\alpha dt+

\int \infty 

1

e - \lambda tdt \leq \alpha  - 1

\alpha 
(1 - \rho 

\alpha  - 1
\alpha ) +

1

\lambda 
e - \lambda 

\leq c2(\alpha )max\{ 1, \rho 
\alpha  - 1
\alpha \} + c3(\lambda ) .

Hence, we obtain for \alpha < 1\int \infty 

\rho 

e - \lambda t| Ptf(x) - Ptf(y)| dt \leq c1| x - y| \| f\| \infty 
\Bigl( 
c2 max\{ 1, \rho 

\alpha  - 1
\alpha \} + c3

\Bigr) 
.

Now we choose \rho = | x - y| \alpha . Combining the estimates of the two integrals, we obtain
the desired result.

Lemma 4.4. There exist \lambda 0 > 0 and \beta > 0 such that for all \lambda \geq \lambda 0 the resolvent
(\scrL s + \scrL 1 + \scrL 2 + \lambda I) - 1 is a bounded operator from C(\BbbT d) to C\beta (\BbbT d).

Proof. We have

(\scrL s + \scrL 1 + \scrL 2 + \lambda I) - 1 =
\bigl( 
[I+ (\scrL 1 + \scrL 2)(\scrL s + \lambda I) - 1](\scrL s + \lambda I)

\bigr)  - 1

= (\scrL s + \lambda I) - 1[I+ (\scrL 1 + \scrL 2)(\scrL s + \lambda I) - 1] - 1 .

Letting \lambda 0 = 2\| \scrL 1 + \scrL 2\| 
C(\BbbT d)\rightarrow C(\BbbT d)

one can easily check that [I + (\scrL 1 + \scrL 2)(\scrL s +

\lambda I) - 1] - 1 is a bounded operator in C(\BbbT d) for any \lambda > \lambda 0. Combining this with the
first statement of Theorem 4.2, we obtain the required statement.

Considering the properties of the function \Lambda (\zeta , \zeta ) and the representation
 - L\ast q(\zeta ) = \Lambda (\zeta , \zeta )(\scrL sq(\zeta )+\scrL 1q(\zeta )+\scrL 2q(\zeta ) it is straightforward to see that, for suffi-
ciently large \lambda , ( - L\ast +\lambda ) - 1 is a bounded operator from C(\BbbT d) to C\beta (\BbbT d). Indeed, de-
noting\scrN = \scrL s+\scrL 1+\scrL 2 and \Lambda  - = min\Lambda (\zeta , \zeta ) and taking \lambda > \lambda 0 max

\bigl( 
1,max\Lambda (\xi , \xi )

\bigr) 
we have

(4.8)

 - L\ast + \lambda = \Lambda (\zeta , \zeta )

\biggl( 
\scrN +

\lambda 

\Lambda  - +
\lambda 

\Lambda (\zeta , \zeta )
 - \lambda 

\Lambda  - 

\biggr) 
= \Lambda (\zeta , \zeta )

\Biggl( 
I+

\biggl( 
\lambda 

\Lambda (\zeta , \zeta )
 - \lambda 

\Lambda  - 

\biggr) \biggl( 
\scrN +

\lambda 

\Lambda  - 

\biggr)  - 1
\Biggr) \biggl( 

\scrN +
\lambda 

\Lambda  - 

\biggr) 
.

Since
(\scrN + \lambda ) - 1 = (\scrL s + \lambda ) - 1

\bigl( 
I+ (\scrL 1 + \scrL 2)(\scrL s + \lambda ) - 1

\bigr)  - 1
,
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then

\| (\scrN + \lambda ) - 1\| \scrL (C(\BbbT d),C(\BbbT d)) \leq 
1

\lambda  - \lambda 0

2

and \bigm\| \bigm\| \bigm\| \bigm\| \biggl( \lambda 

\Lambda (\zeta , \zeta )
 - \lambda 

\Lambda  - 

\biggr) \biggl( 
\scrN +

\lambda 

\Lambda  - 

\biggr)  - 1\bigm\| \bigm\| \bigm\| \bigm\| 
\scrL (C(\BbbT d),C(\BbbT d))

< 1.

From this estimate, using the representation of ( - L\ast + \lambda ) in (4.8), we obtain that
( - L\ast +\lambda ) - 1 is a bounded operator from C(\BbbT d) to C(\BbbT d). Moreover, combining (4.8)
with the statement of Proposition 4.3, we conclude that ( - L\ast +\lambda ) - 1 is also a bounded
operator from C(\BbbT d) to C\beta (\BbbT d).

The fact that ( - L + \lambda ) - 1 is a bounded operator from C(\BbbT d) to C\beta (\BbbT d) can be
justified in exactly the same way. This implies in particular that both ( - L + \lambda ) - 1

and ( - L\ast + \lambda ) - 1 are compact operators in C(\BbbT d).
From the maximum principle it follows that \| ( - L + \lambda ) - 1\| \scrL (C(\BbbT d),C(\BbbT d)) \leq \lambda  - 1.

Also, by the standard maximum principle arguments, the operator (L+\lambda ) - 1 maps the
set of nonnegative continuous nonzero functions on \BbbT d to the set of strictly positive
continuous functions on \BbbT d. Therefore, the Krein--Rutman theorem applies to the
operator ( - L+ \lambda ) - 1. For the reader's convenience we formulate here this theorem.

Theorem 4.5 ([25], Theorem 6.3). Let X be a real ordered Banach space with a
positive cone K \subset X that has a nontrivial interior Ko \not = \emptyset . Assume that T \in \scrL (X)
is a compact linear positive operator on X, TK \subset K, that improves positivity. Then

(a) the operator T has a unique eigenvector x0 \in Ko: Tx0 = \lambda 0x0;
(b) the adjoint operator T  \star has a unique eigenvector x \star 0 \in K \star : T  \star x \star 0 = \lambda 0x

 \star 
0,

where x \star 0 is a strongly positive functional that is x \star 0(x) > 0 for any x \in K\setminus \{ 0\} ;
(c) the corresponding eigenvalue \lambda 0 > 0 is simple and greater than the absolute

value of any other eigenvalue of T .

Denote by ( - L+\lambda ) - 1)t the operator adjoint to ( - L+\lambda ) - 1) in the space C(\BbbT d).
It is a bounded operator in the space of generalized measures of finite total variation.

It is easy to check that v = 1 is the principal eigenfunction of ( - L + \lambda ) - 1 and
that the corresponding eigenvalue is equal to \lambda  - 1.

By the Krein--Rutman theorem the adjoint operator
\bigl( 
( - L + \lambda ) - 1

\bigr) t
maps the

cone of nonnegative measures into itself, its principal eigenvalue is \lambda  - 1, and the cor-
responding eigenmeasure is positive; we denote this eigenmeasure by \mu 0.

By the definition of an adjoint operator, taking into account the properties of
the operator ( - L\ast + \lambda ) - 1, we derive that for any absolutely continuous measure
\mu (d\zeta ) = g(\zeta )d\zeta on \BbbT d with a continuous g we have

\bigl( 
( - L+ \lambda ) - 1

\bigr) t
\mu (d\zeta ) = ( - L\ast + \lambda ) - 1g d\zeta .

Since an absolutely continuous measure is nonnegative if and only if its density is
nonnegative, the operator ( - L\ast + \lambda ) - 1 maps the cone of continuous nonnegative
functions into itself.

Applying one more time the maximum principle arguments we conclude that for
any nontrivial continuous nonnegative function v on \BbbT d the function ( - L\ast + \lambda ) - 1v is
strictly positive. Hence, the Krein--Rutman theorem applies to the operator ( - L\ast +
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\lambda ) - 1. Denote by p0 \in C(\BbbT d) the principal eigenfunction of this operator. This
function is strictly positive on \BbbT d. By the uniqueness of a positive eigenmeasure of\bigl( 
( - L+\lambda ) - 1

\bigr) t
(see [25], [24, Chapter 4]) we obtain \mu 0 = p0(\zeta ) d\zeta and ( - L\ast +\lambda ) - 1)p0 =

\lambda  - 1p0. Therefore,  - L\ast p0 = 0.
The proof of Theorem 4.1 is complete.

4.2. A priori estimates. Our next goal is to obtain a priori estimates for the
solution of (1.8).

Proposition 4.6. Assume that (1.8) holds true for some f \in L2(\BbbR d) and u\varepsilon \in 
\scrD (L\varepsilon ). Then there exists a constant c such that

\| u\varepsilon \| H\alpha /2(\BbbR d) \leq c

\biggl( 
1 +

1

m

\biggr) 
\| f\| L2(\BbbR d),

\| u\varepsilon \| L2(\BbbR d) \leq 
c

m
\| f\| L2(\BbbR d).

The constant c does not depend on \varepsilon or on m.

Proof. Multiplying (1.8) by u\varepsilon (x)p0(
x
\varepsilon ) and integrating the resulting relation over

\BbbR d yields\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 
u\varepsilon (x)

| x - y| d+\alpha 
dydx - m

\int 
\BbbR d

p0
\bigl( x
\varepsilon 

\bigr) 
(u\varepsilon (x))2dx

=

\int 
\BbbR d

p0
\bigl( x
\varepsilon 

\bigr) 
u\varepsilon (x)f(x)dx .

(4.9)

The first term here can be transformed as follows:\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 
u\varepsilon (x)

| x - y| d+\alpha 
dydx

=

\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) 
u\varepsilon (y)u\varepsilon (x) - \Lambda 

\bigl( 
y
\varepsilon ,

x
\varepsilon 

\bigr) 
p0
\bigl( 
y
\varepsilon 

\bigr) 
(u\varepsilon (x))2

| x - y| d+\alpha 
dydx

+

\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
y
\varepsilon ,

x
\varepsilon 

\bigr) 
p0
\bigl( 
y
\varepsilon 

\bigr) 
(u\varepsilon (x))2  - \Lambda 

\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) 
(u\varepsilon (x))2

| x - y| d+\alpha 
dydx(4.10)

=

\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) 
u\varepsilon (y)u\varepsilon (x) - \Lambda 

\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) 
(u\varepsilon (y))2

| x - y| d+\alpha 
dydx

=  - 
\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 
u\varepsilon (y)

| x - y| d+\alpha 
dydx;

here we have used the fact that by Theorem 4.1 the integral in (4.10) is equal to zero.
Considering these equalities one can rewrite relation (4.9) as follows:

1

2

\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 2
| x - y| d+\alpha 

dydx+m

\int 
\BbbR d

p0
\bigl( x
\varepsilon 

\bigr) 
(u\varepsilon (x))2dx

=  - 
\int 
\BbbR d

p0
\bigl( x
\varepsilon 

\bigr) 
u\varepsilon (x)f(x)dx .

(4.11)
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By Theorem 4.1 the function p0 satisfies the estimates 0 < p - \leq p0(z) \leq p+. There-
fore, we have

\| u\varepsilon \| H\alpha /2(\BbbR d) \leq c

\biggl( 
1 +

1

m

\biggr) 
\| f\| L2(\BbbR d), \| u\varepsilon \| L2(\BbbR d) \leq 

p+

mp - 
\| f\| L2(\BbbR d).

This completes the proof of the proposition.

From the estimates of Theorem 4.6 one can deduce that the set of positive real
numbers belongs to the resolvent set of operator L\varepsilon . We should show that for allm > 0
the operator (L\varepsilon  - m) maps \scrD (L\varepsilon ) onto L2(\BbbR d). To this end we use a representation
\Lambda (\zeta , \eta ) = \Lambda s(\zeta , \eta ) + \Lambda a(\zeta , \eta ) with \Lambda s and \Lambda a defined in (4.2). Since by construction
the function \Lambda a is Lipschitz continuous and \Lambda a(\zeta , \zeta ) = 0 for all \zeta , then

\Lambda a
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
| x - y| d+\alpha 

\leq min
\Bigl( c
\varepsilon 
| x - y|  - d - \alpha +1, 2\| \Lambda \| L\infty | x - y|  - d - \alpha 

\Bigr) 
.

Considering the fact that the function min( c\varepsilon | z| 
 - d - \alpha +1, 2\| \Lambda \| 

L\infty | z|  - d - \alpha ) is integrable

in \BbbR d, we conclude that the operator (La)\varepsilon with the kernel \Lambda a
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
| x  - y|  - d - \alpha is

bounded in L2(\BbbR d). We have \| (La)\varepsilon \| \scrL (L2(\BbbR d),L2(\BbbR d)) < C(\varepsilon ).

The operator (Ls)\varepsilon with a domain \scrD (L\varepsilon ) is self-adjoint and negative in L2(\BbbR d).
Therefore, \| ((Ls)\varepsilon  - m) - 1\| \leq 1

m . Consequently, for m \geq m0 with m0 = (C(\varepsilon )) - 1 the
operator

(L\varepsilon  - m) - 1 = ((Ls)\varepsilon  - m+ (La)\varepsilon ) - 1 = ((Ls)\varepsilon +m) - 1
\bigl( 
I+ (La)\varepsilon ((Ls)\varepsilon +m) - 1

\bigr)  - 1

is bounded in L2(\BbbR d).
By Proposition 4.6 the norm of (L\varepsilon  - m) - 1 does not exceed c

m . Therefore, for
m > m1 = m0(1 - 1

c ) the operator

(L\varepsilon  - m) - 1 = (L\varepsilon  - m0)
 - 1
\bigl( 
I+ (m - m0)(L

\varepsilon  - m0)
 - 1
\bigr)  - 1

is bounded in L2(\BbbR d). Iterating this step we conclude that for any m > 0 the operator
(L\varepsilon  - m) - 1 is bounded.

In particular, (1.8) is well-posed, and it has a unique solution u\varepsilon \in \scrD (L\varepsilon ).

4.3. Passage to the limit. According to the estimates of Theorem 4.6 the
family u\varepsilon converges for a subsequence, as \varepsilon \rightarrow 0, to a function u0 \in H\alpha /2(\BbbR d), weakly
in H\alpha /2(\BbbR d). Furthermore, u\varepsilon \rightarrow u0 strongly in L2 on any compact set in \BbbR d.

In order to characterize the function u0 we multiply (1.8) by a test function
p0(

x
\varepsilon )\varphi (x) with \varphi \in \scrC \infty 

0 (\BbbR d) and integrate the resulting relation in \BbbR d. We have

\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 
\varphi (x)

| x - y| d+\alpha 
dydx - m

\int 
\BbbR d

p0
\bigl( x
\varepsilon 

\bigr) 
u\varepsilon (x)\varphi (x)dx

=

\int 
\BbbR d

p0
\bigl( x
\varepsilon 

\bigr) 
\varphi (x)f(x)dx .

(4.12)
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In the same way as in the proof of Theorem 4.6 one can show that\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 
\varphi (x)

| x - y| d+\alpha 
dydx

=  - 
\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
\varphi (y) - \varphi (x)

\bigr) 
u\varepsilon (y)

| x - y| d+\alpha 
dydx.

We represent \BbbR d \times \BbbR d as the union of two sets

\BbbR d \times \BbbR d = G\delta 
4 \cup G\delta 

5(4.13)

with

G\delta 
4 = \{ (x, y) : | x - y| \leq \delta \} , G\delta 

5 = \{ (x, y) : | x - y| > \delta \} .(4.14)

Denote

\scrK \varepsilon 
\delta (x, y) =

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
\varphi (y) - \varphi (x)

\bigr) 
| x - y| d+\alpha 

1\delta (x - y),

where 1\delta (z) is the indicator function of the ball \{ z \in \BbbR d : | z| \leq \delta \} . It is easy to
check that

0 \leq 
\bigm| \bigm| \scrK \varepsilon 

\delta (x, y)
\bigm| \bigm| \leq C\varphi | x - y| 1 - d - \alpha 1\delta (x - y).

Since the integral \int 
\BbbR d

| z| 1 - d - \alpha 1\delta (z)dz

tends to zero, as \delta \rightarrow 0, we have\int 
\BbbR d

dx

\biggl( \int 
\BbbR d

\scrK \varepsilon 
\delta (x, y)u

\varepsilon (y)dy

\biggr) 2

\leq C(\delta )\| u\varepsilon \| 2L2(\BbbR d),(4.15)

where C(\delta ) \rightarrow 0, as \delta \rightarrow 0. On the set G\delta 
5 the kernel is bounded. Therefore,\int 

G\delta 
5

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
\varphi (y) - \varphi (x)

\bigr) 
u\varepsilon (y)

| x - y| d+\alpha 
dydx \rightarrow 

\int 
G\delta 

5

\langle \Lambda p0\rangle 
\bigl( 
\varphi (y) - \varphi (x)

\bigr) 
u0(y)

| x - y| d+\alpha 
dydx,

where

\langle \Lambda p0\rangle =
\int 
\BbbT d\times \BbbT d

\Lambda (\zeta , \eta )p0(\zeta )d\zeta d\eta .

Combining this convergence with (4.15) we conclude that\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
\varphi (y) - \varphi (x)

\bigr) 
u\varepsilon (y)

| x - y| d+\alpha 
dydx

 - \rightarrow 
\int 
\BbbR d

\int 
\BbbR d

\langle \Lambda p0\rangle 
\bigl( 
\varphi (y) - \varphi (x)

\bigr) 
u0(y)

| x - y| d+\alpha 
dydx,

as \varepsilon \rightarrow 0. Therefore,\int 
\BbbR d

\int 
\BbbR d

\Lambda 
\bigl( 
x
\varepsilon ,

y
\varepsilon 

\bigr) 
p0
\bigl( 
x
\varepsilon 

\bigr) \bigl( 
u\varepsilon (y) - u\varepsilon (x)

\bigr) 
\varphi (x)

| x - y| d+\alpha 
dydx

 - \rightarrow 
\int 
\BbbR d

\int 
\BbbR d

\langle \Lambda p0\rangle 
\bigl( 
u0(y) - u0(x)

\bigr) 
\varphi (x)

| x - y| d+\alpha 
dydx .



HOMOGENIZATION OF LEVY-TYPE OPERATORS 3663

Passing to the limit in (4.12) yields\int 
\BbbR d

\int 
\BbbR d

\langle \Lambda p0\rangle 
\bigl( 
u0(y) - u0(x)

\bigr) 
\varphi (x)

| x - y| d+\alpha 
dydx - m

\int 
\BbbR d

\langle p0\rangle u0(x)\varphi (x)dx

=

\int 
\BbbR d

\langle p0\rangle f(x))\varphi (x)dx.

It remains to divide this equation by \langle p0\rangle and denote \Lambda eff = \langle p0\rangle  - 1\langle \Lambda p0\rangle . Then
the limit equation takes the form\int 

\BbbR d

\int 
\BbbR d

\Lambda eff
\bigl( 
u0(y) - u0(x)

\bigr) 
\varphi (x)

| x - y| d+\alpha 
dydx - m

\int 
\BbbR d

u0(x)\varphi (x)dx =

\int 
\BbbR d

f(x)\varphi (x)dx.

Finally, we can complete the proof of Theorem 1.4. The weak convergence in
H\alpha /2(\BbbR d) has already been proved. The convergence in L2(\BbbR d) can be shown in
exactly the same way as in the proof of Theorem 1.1.

REFERENCES

[1] M. Arisawa, Homogenization of a class of integro-differential equations with L\'evy operators,
Comm. Partial Differential Equations, 34 (2009), pp. 617--624, https://doi.org/10.1080/
03605300902963518.

[2] M. Arisawa, Homogenizations of integro-differential equations with L\'evy operators with asym-
metric and degenerate densities, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), pp. 917--
943, https://doi.org/10.1017/S0308210510001897.

[3] G. Barles, E. Chasseigne, A. Ciomaga, and C. Imbert, Large time behavior of pe-
riodic viscosity solutions for uniformly parabolic integro-differential equations, Calc.
Var. Partial Differential Equations, 50 (2014), pp. 283--304, https://doi.org/10.1007/
s00526-013-0636-2.

[4] R. F. Bass, Regularity results for stable-like operators, J. Funct. Anal., 257 (2009), pp. 2693--
2722, https://doi.org/10.1016/j.jfa.2009.05.012.

[5] V. Berdichevsky, V. Jikov, and G. Papanicolaou, eds., Homogenization, Series on Ad-
vances in Mathematics for Applied Sciences 50, World Scientific, River Edge, NJ, 1999,
https://doi.org/10.1142/9789812812919, in memory of Serguei Kozlov.

[6] A. Braides, Gamma-Convergence for Beginners, Oxford Lecture Ser. Math. Appl., Oxford
University Press, Oxford, 2005, https://books.google.no/books?id=RYupPwAACAAJ.

[7] L. B\u alilescu, A. Ghosh, and T. Ghosh, Homogenization for Non-Local Elliptic Operators in
Both Perforated and Non-Perforated Domains, https://arxiv.org/pdf/1805.06264, 2018.

[8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations, 32 (2007), pp. 1245--1260, https://doi.org/10.1080/
03605300600987306.

[9] G. A. Chechkin, A. L. Piatnitski, and A. S. Shamaev, Homogenization, Trans. Math.
Monogr. 234, American Mathematical Society, Providence, RI, 2007, Methods and Ap-
plications, translated from the 2007 Russian original by Tamara Rozhkovskaya.

[10] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Ser.
Math. Appl. 17, Clarendon Press, Oxford University Press, New York, 1999.

[11] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman \& Hall/CRC
Financial Mathematics Series, Chapman \& Hall/CRC, Boca Raton, FL, 2004.

[12] G. Di Nunno, B. {\O}. Ksendal, and F. Proske, Malliavin Calculus for L\'evy Processes with
Applications to Finance, Universitext, Springer-Verlag, Berlin, 2009, https://doi.org/10.
1007/978-3-540-78572-9.

[13] E. Eberlein, Application of generalized hyperbolic L\'evy motions to finance, in L\'evy Processes,
Birkh\"auser Boston, Boston, MA, 2001, pp. 319--336.

[14] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy,
V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley,
and G. M. Viswanathan, Revisiting L\'evy flight search patterns of wandering albatrosses,
bumblebees and deer, Nature, 449 (2007), pp. 1044--1048.

[15] J. Fern\'andez Bonder, A. Ritorto, and A. M. Salort, H-convergence result for nonlocal
elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), pp. 2387--2408,
https://doi.org/10.1137/16M1080215.

https://doi.org/10.1080/03605300902963518
https://doi.org/10.1080/03605300902963518
https://doi.org/10.1017/S0308210510001897
https://doi.org/10.1007/s00526-013-0636-2
https://doi.org/10.1007/s00526-013-0636-2
https://doi.org/10.1016/j.jfa.2009.05.012
https://doi.org/10.1142/9789812812919
https://books.google.no/books?id=RYupPwAACAAJ
https://arxiv.org/pdf/1805.06264
https://doi.org/10.1080/03605300600987306
https://doi.org/10.1080/03605300600987306
https://doi.org/10.1007/978-3-540-78572-9
https://doi.org/10.1007/978-3-540-78572-9
https://doi.org/10.1137/16M1080215


3664 M. KASSMANN, A. PIATNITSKI, AND E. ZHIZHINA

[16] M. Focardi, Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), pp. 3502--3544,
https://doi.org/10.1016/j.aim.2010.06.014.

[17] B. Franke, The scaling limit behaviour of periodic stable-like processes, Bernoulli, 12 (2006),
pp. 551--570, https://doi.org/10.3150/bj/1151525136.

[18] B. Franke, Correction to: ``The scaling limit behaviour of periodic stable-like processes""
[Bernoulli, 12 (2006), pp. 551--570; mr2232732], Bernoulli, 13 (2007), p. 600, https:
//doi.org/10.3150/07-BEJ5127.

[19] B. Franke, A functional non-central limit theorem for jump-diffusions with periodic co-
efficients driven by stable L\'evy-noise, J. Theoret. Probab., 20 (2007), pp. 1087--1100,
https://doi.org/10.1007/s10959-007-0099-5.

[20] T. Fujiwara and M. Tomisaki, Martingale approach to limit theorems for jump pro-
cesses, Stochastics Stochastics Rep., 50 (1994), pp. 35--64, https://doi.org/10.1080/
17442509408833927.

[21] M. Horie, T. Inuzuka, and H. Tanaka, Homogenization of certain one-dimensional discon-
tinuous Markov processes, Hiroshima Math. J., 7 (1977), pp. 629--641, http://projecteuclid.
org/euclid.hmj/1206135757.

[22] N. Humphries and D. Sims, Optimal foraging strategies: L\'evy walks balance searching and
patch exploitation under a very broad range of conditions, J. Theoret. Biol., 358 (2014),
pp. 179--193.

[23] V. V. Jikov, S. M. Kozlov, and O. A. Ole\u {\i}nik, Homogenization of Differential Oper-
ators and Integral Functionals, Springer-Verlag, Berlin, 1994, https://doi.org/10.1007/
978-3-642-84659-5, translated from the Russian by G. A. Yosifian [G. A. Iosifyan].

[24] M. A. Krasnosel'skij, J. A. Lifshits, and A. V. Sobolev, Positive Linear Systems, Sigma
Series in Applied Mathematics 5, Heldermann Verlag, Berlin, 1989, The Method of Positive
Operators, translated from the Russian by J\"urgen Appell.

[25] M. G. Kre\u {\i}n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach
space, Amer. Math. Soc. Transl., 1950 (1950), p. 128.

[26] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,
Vol. 1, Grundlehren Math. Wiss., Springer, Berlin, 1972.

[27] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional
dynamics approach, Phys. Rep., 339 (2000), p. 77, https://doi.org/10.1016/S0370-1573(00)
00070-3.

[28] S. A. Mol\v canov and E. Ostrovski\u {\i}, Symmetric stable processes as traces of degenerate dif-
fusion processes, Teor. Veroyatn. Primen., 14 (1969), pp. 127--130.

[29] D. Nualart and W. Schoutens, Backward stochastic differential equations and Feynman-Kac
formula for L\'evy processes, with applications in finance, Bernoulli, 7 (2001), pp. 761--776,
https://doi.org/10.2307/3318541.

[30] A. Piatnitski and E. Zhizhina, Periodic homogenization of nonlocal operators with a
convolution-type kernel, SIAM J. Math. Anal., 49 (2017), pp. 64--81, https://doi.org/10.
1137/16M1072292.

[31] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis,
Self-Adjointness, Academic Press [Harcourt Brace Jovanovich], New York, 1975.

[32] R. Rhodes and V. Vargas, Scaling limits for symmetric It\^o-L\'evy processes in random medium,
Stochastic Process. Appl., 119 (2009), pp. 4004--4033, https://doi.org/10.1016/j.spa.2009.
10.004.

[33] N. Sandri\'c, Homogenization of periodic diffusion with small jumps, J. Math. Anal. Appl., 435
(2016), pp. 551--577, https://doi.org/10.1016/j.jmaa.2015.10.054.

[34] K.-i. Sato, L\'evy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv.
Math. 68, Cambridge University Press, Cambridge, 2013, translated from the 1990 Ja-
panese original, revised edition of the 1999 English translation.

[35] R. Schilling and T. Uemura, Homogenization of Symmetric L\'evy Processes on \BbbR d, https:
//arxiv.org/pdf/1808.01667 (2018).

[36] R. W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J.
Math. Anal., 42 (2010), pp. 2652--2680, https://doi.org/10.1137/080737897.

[37] R. W. Schwab, Stochastic homogenization for some nonlinear integro-differential equations,
Comm. Partial Differential Equations, 38 (2013), pp. 171--198, https://doi.org/10.1080/
03605302.2012.741176.

[38] L. Tartar, The General Theory of Homogenization, Lecture Notes of the Unione Matem-
atica Italiana 7, Springer-Verlag, Berlin; UMI, Bologna, 2009, https://doi.org/10.1007/
978-3-642-05195-1, personalized introduction.

[39] M. Tomisaki, Homogenization of c\`adl\`ag processes, J. Math. Soc. Japan, 44 (1992), pp. 281--305,
https://doi.org/10.2969/jmsj/04420281.

https://doi.org/10.1016/j.aim.2010.06.014
https://doi.org/10.3150/bj/1151525136
https://doi.org/10.3150/07-BEJ5127
https://doi.org/10.3150/07-BEJ5127
https://doi.org/10.1007/s10959-007-0099-5
https://doi.org/10.1080/17442509408833927
https://doi.org/10.1080/17442509408833927
http://projecteuclid.org/euclid.hmj/1206135757
http://projecteuclid.org/euclid.hmj/1206135757
https://doi.org/10.1007/978-3-642-84659-5
https://doi.org/10.1007/978-3-642-84659-5
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.2307/3318541
https://doi.org/10.1137/16M1072292
https://doi.org/10.1137/16M1072292
https://doi.org/10.1016/j.spa.2009.10.004
https://doi.org/10.1016/j.spa.2009.10.004
https://doi.org/10.1016/j.jmaa.2015.10.054
https://arxiv.org/pdf/1808.01667
https://arxiv.org/pdf/1808.01667
https://doi.org/10.1137/080737897
https://doi.org/10.1080/03605302.2012.741176
https://doi.org/10.1080/03605302.2012.741176
https://doi.org/10.1007/978-3-642-05195-1
https://doi.org/10.1007/978-3-642-05195-1
https://doi.org/10.2969/jmsj/04420281


HOMOGENIZATION OF LEVY-TYPE OPERATORS 3665

[40] V. V. Uchaikin and V. M. Zolotarev, Chance and stability, Modern Probability and Sta-
tistics, VSP, Utrecht, 1999, https://doi.org/10.1515/9783110935974, Stable Distributions
and Their Applications, with a foreword by V. Yu. Korolev and Zolotarev.

[41] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo, and H. E.
Stanley, Optimizing the success of random searches, Nature, 401 (1999), pp. 911--914.

[42] W. A. Woyczy\'nski, L\'evy processes in the physical sciences, in L\'evy Processes, Birkh\"auser
Boston, Boston, MA, 2001, pp. 241--266.

[43] V. V. Zhikov, On two-scale convergence, Tr. Semin. im. I. G. Petrovskogo, (2003), pp. 149--
187, 410, https://doi.org/10.1023/B:JOTH.0000016052.48558.b4, translation in J. Math.
Sci. (N.Y.), 120 (2004), pp. 1328--1352.

https://doi.org/10.1515/9783110935974
https://doi.org/10.1023/B:JOTH.0000016052.48558.b4

	Introduction
	Symmetric, resp., symmetrizable periodic coefficients
	First proof of Theorem 1.1
	Second proof of Theorem 1.1
	Proof of Theorem 1.2

	Symmetric random kernels
	First proof of Theorem 1.3
	Second proof of Theorem 1.3

	Nonsymmetric kernels
	Auxiliary periodic problems
	A priori estimates
	Passage to the limit

	References

