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EFFECTIVE DIFFUSION FOR A PARABOLIC OPERATOR 
WITH PERIODIC POTENTIAL* 

SERGUEI M. KOZLOVt AND ANDREI L. PIATNITSKIt 

Abstract. The asymptotic behaviour of effective diffusion for a parabolic equation in R' with periodic 
potential and small initial diffusion is discussed. The potential is assumed to be localized in periodic 
islands-sets around points of the integer lattice in R', where the density of diffusing particles increases. 
Off these islands the particles are annihilated. Logarithmic asymptotics of the effective diffusion are found 
when the initial diffusion tends to zero in terms of the geometrical characteristics of the given potential. 
These results rely on the large deviation technique for the diffusion of respective particles. For symmetric 
islands, the logarithmic asymptotics of the effective diffusion depend only on the distance between the islands. 
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AMS(MOS) subject classification. 35B27 

Introduction. We consider here a diffusion model that allows the creation and 
annihilation of particles. We assume that the particles are in a hostile medium with 
periodic inclusions of favourable islands. We discuss the behaviour of a population 
of particles in such media for a long time. This question, as it was discovered in more 
general framework in [1], is related to a so-called automodel homogenization theory 
for parabolic equations (see [2]). According to that approach, the long-time behaviour 
of such systems could be described in terms of effective diffusion, which, in our model, 
depends on the geometry of the potential and the initial diffusivity. This dependence 
is quite inexplicit, and the aim of this paper is to find the asymptotics of effective 
diffusion assuming that the initial diffusivity vanishes. We show that these asymptotics 
are defined by the following typical behaviour of the particle: It spends an exponentially 
long time inside the island and then makes a quick jump to one of the nearest islands. 

The respective parabolic equation for the density of the particles is 

-U = (,t2A + V(X))U, 

(0.1) at 

U , t=0 = uo(x), 

where we suppose that the potential is given by 

(0.2) v(x) ={1, 
if 3kcZn:xc(Q+k); 

(2 otherwise, 

where Q is a simply connected bounded domain that is diffeomorphic to the ball and 
such that dist (Q, (Q + k))> 0 for any k c Z'\{0} and Zn is integer lattice. In (0.1), 2112 

is the initial molecular diffusivity, u is the density of the particles, and u0 is the initial 
density. For fixed ,t, the long-time behaviour of the solution u is described in terms 
of the first eigenvalue and eigenfunction of the periodic eigenvalue problem for the 
Schrodinger operator 

(0.3) (/k2A + v(x))p = Ap. 
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We normalize this eigenfunction p > 0 by the condition 

(0.4) (p)= 1, 

where (-) means the average of a periodic function over the period cube. The diffusion 
properties of the solution of (0.1) are described in terms of so-called effective or 
homogenized diffusion. Let us define for i = 1, 2, .. ., n the periodic functions ip from 
the equations 

na 2a 
(0.5) E dx paa (qi + Xi)=O- 

Then the effective diffusion matrix cr(,i) is defined as 

(0.6) o_(/1) =((I +V ') Tp2( I +V))/(p2) 

where V4' = ((a/dxj)4'j), I is the unit matrix, and the symbol T means transposition 
of the matrix. Now, for the solution (0.1), we have the following asymptotics (see [1]) 
as t -o o in the region {(x, t): x2 < clt+ c2}: 

(0.7) u(x, t) - exp (-A t)p(x)u(x, t)(1 + o(1)), 

where u(x, t) satisfies the parabolic equation 

(0.8) u = V . (UV u ), uaI = (P2)u0(x), 

where cro- (o() = (a(g)1j) is the effective diffusion matrix, given by (0.6). The main 
aim of this paper is the investigation of a(,g) when y -*0. 

As is clear from formula (0.6), to this end it is necessary to find the behaviour of 
p for small p and also to study (0.5). However, we will use another reduction of 
effective diffusion. Namely, we will transform our equation to an equation with potential 
drift and then use our previous results [3]. It is shown that for effective diffusion, 

lim ,u ln (,u) = -0, 

where 0 is a positive matrix, whose coefficients are given below (see Theorems 1 and 
2), in the terms of geometric characteristics of the domain Q and the logarithm is well 
defined for positive matrix. In the case of cubically symmetric sets Q, our theorem 
states that 0 = dI where d is the shortest distance between the islands. 

It should be noted that an alternative approach for the investigation of the effective 
characteristics for the equations with vanishing viscosity was proposed in [4] and [5], 
where full asymptotic expansion for the equation with potential drift was constructed. 
However, the last method exploits smoothness of the potential, at least near the saddle 
points, and that is not the case of this paper, where singularity at the saddle point 
occurs, since it is the caustic point for the respective flow. 

1. Eigenvalue problem for periodic operator. Here we find the behaviour of the 
first eigenvalue and eigenfunction of (0.3). It is more convenient to introduce a potential 
V v - I and divide (0.3) by _. This leads to 

(l.l) ~~~~~~A + 2V p = Ap, 

where we keep the same notation for the obviously changed eigenvalue A. Let 
K, KI, K2, . . and z(y), Z1(y) Z2(Y), . .. be, respectively, the eigenvalues and eigenfunc- 
tions of the following Dirichlet problem in the domain Q: 

(1.2) AZ-KZ, Zj|Q = 0. 



EFFECTIVE DIFFUSION FOR A PARABOLIC OPERATOR 403 

set {x c Q: dist (x, aQ) = a}. Rescaling the variables y = xlg, we come to the equation 
(A + V(,uy) - g2A)p(gy) = 0 with bounded coefficients. In these coordinates, an integral 
of p2 over the rescaled period torus is less than cp-5. Then, using De Giorgi's estimate 
[7, Thm. 8.24], we find that p(x) ? cg-a'2 for all x from Tn. Let us consider (1.1) in 
the domain {x c T'\Q: dist (x, aQ) < 2a}. According to the last estimate and Proposi- 
tion 2, we obtain 

(1.14) Ps= c exp _ 

with coordinates (s, p), which were defined in Proposition 1. Now let us consider a 
function p(x) in Qa and represent it as a sum p = p1 +p2, where Alp'= 0, P1LS=a = 

PLs=-a9 P1s=a=O, P21s=-a=O p21s=a=P La. From Proposition 1, considering the 
uniform boundedness of p in , on the set {x: s = -a}, we have 

(1.15) P18Q -=CI. 

Next, let us rewrite the equation for p2 in the form (-A + A)p2 = (1//2) Vp2 and compare 
p2 with a solution of a problem (-A+A)p3 =0, P3 |S=i,=P2s=i-. As we mentioned 
above, this problem is well posed, so that, by (1.14), we have p3= c exp (-a/2/I). 
Then, according to the maximum principle and the positivity of _(1//I2) V(X)p2(x), 
the estimate p2(X) cp3(X) ? C exp (-a/2/I) holds. To complete the proof of Proposition 
3, it is sufficient to compose that estimate with (1.15). 

PROPOSITION 4. The eigenfunction p satisfies the estimate IVpI laQ c, where c is 
independent of ,. 

Proof. This proposition is a simple consequence of standard elliptic estimates 
[7, Thm. 8.32]. Indeed, after rescaling the coordinates y = x/lu in a neighbourhood of 
a point on dQ and considering (1.13), we obtain |Vp(,uy)| _ c,u. Therefore, in x- 
coordinates we have the required estimate. 

PROPOSITION 5. Function p(x) satisfies 

(1.16) { Vpl2 dx_c, 
Tit \Q 

Proof. p(x) minimizes the variational problem 

(1.17) -A = 1q11infl1 ({ IVq12 dx+ { Vq12 dx+ 2 X q2 dx). 
||q||L2(TT1)= Q Tit \Q j Tn\Q 

As in Proposition 1, using (1.13), we can prove the estimate 

(1.18) p(x)_~ c,up exp dist (x, Q) 

for all xE Tn\Q. So, for q = p, the third term on the right-hand side of (1.17) is less 
than cg for some positive constant c. Let us suppose that (1.16) does not hold. In this 
case, we can define a function 

p'(x) = 
{p(0,o) exp (-s/,u)((s), xT E n\Q, 

where 4 is C'-function, O?4 1, (s)=1 for s<a/2 and 4(s)=O for sa. From 
Proposition 3, we have 

(1.19) { vp '2 dx+ +- { 2 dx ? c/. 
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Hence the function p'(x) satisfies 

|| p'll L2(T-) = 1 + 0(p), 
1 Vpj2 dx = Vp 12 dx. 

Q Q 
Then our assumption that (1.16) is false contradicts the fact that p(x) minimizes (1.17). 
To complete the proof of Lemma 1, let us introduce the function 

(1.20) P"(X) { p(sQ0-p(O, ip)(-s)exp(s/,), x(Q, p 
05 ~~~~~~~~~~x J'Q. 

By Proposition 3 and (1.18), 

(1.21) IIP"IIL2(Tn) IIP11 lL2(Q) = 1 + O(,U). 
From the definition of p" and Propositions 4 and 5, it follows that 

(1.22) I{ 'Vp"i2dx-{ IVvl2dxI-c- 

Now, we have 

K - -I I Z j Ivp 12 dy =-(1 + O(,)) f Ivp12 dy 

IJ IVP 12 dy_C/. JV l Yp2 d {p2 dy -c t A-c/ Tn Tnl A T I1\Q 

Here we use (1.21) and (1.22). Thus the lemma is proved. 
Now, let us continue the eigenfunctions z(x) and zj(x), i = 1, 2,... of the problem 

(1.2), which are defined only on Q into Tn\Q by 0, and denote these functions by 
z(x) and zj(x), respectively. 

LEMMA 2. The eigenfunctions p(x) and z(x) satisfy 

lim I p ZI|c (Tn) ==0 

Proof. In Tn\Q, z =0, therefore, considering (1.18), we obtain 

(1.23) IP ZIC(T"\Q)? C/k 

Now, let us show that it suffices to prove the following estimate: 

(1.24) "m IIP ZIIL 2(Tn) =0. 

Indeed, in Q we have (A-A)(p-z)=-(A-A)Z=-(A-K)Z-(K-A)Z=-(K-A)Z. 
The function z(x) is bounded and does not depend on ,. At the same time, by Lemma 
1, IK -Al is less than cg, so that |(K -kA)zI ? c,. Then, by estimation of the solution 
of elliptic equations (cf. [7, Thm. 8.24]), we have in the domain Qa,= 
{x E Q: dist (x, aQ) > a}, a > 0, 

(1.25) lP ZlC( - c(a)llp-zIIL2(Q)+ C/k, 

where we also use the uniform boundness of A with respect to ,u. Then, for sufficiently 
small a >0, the Dirichlet problem for operator (A -A) is well posed in a domain 
Q\ Qa. Therefore, the estimate 

p - ZIc(Q\ )- ? c(a)(ck+ clp - ZIC(aQUa&)) 

holds. Together with (1.23) and (1.25), this estimate leads to the required result. 
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To prove (1.24), let us recall the following definition of p": 

p"(x) = p(s, p)-p(O, p)0(-s) exp (s/,), xc Q, 

09 ~~~~~~~xi~Q. 

It is clear that 
|| P"I |L2(Q) 

= 
| P" || L2(Tn) 

= 1 + 0(g), || p"-P||L2(T1) -O ?when 0- The 
function p"(x) can be expanded in a Fourier series 

p"(X) = aoz + a, 1z, + ***=aoz + 

where a0 = (p"z), ai = (p"zi), and 

(1.26) a 2+ I5 
Z2 = 11P PIL2 

1+ 
0(H), 

(1.27) -(Vz-Vi)=(Azi)= K(ZZ)=O. 

According to (1.26), (1.27), Proposition 5, and the variational properties of K1 , we obtain 

~A={lVp12dx+ p2dx{ X 2Vp 2dx-cy 

Tit1 I- Ti \ Q Q 

= aoXIVz2 dx+ J V - dx - c,- a(-K)+ (1- ao)(-K,) - Ci. 
Q Q 

By Lemma 1, we have -K i -A. After simple transformation, we can write 1 - a20- 

C/|IK - KI. Therefore, a0 -1 when ye 0. This implies (1.24). 
The behaviour of the next eigenvalue A, of the problem (0.3) is described by the 

following lemma. 
LEMMA 3. We have the following limiting relation: 

lim A, l(y) = Kl 

Proof. We can find K1 as the solution of the variational problem 

Ki sup (J V dx) 
IIZL2= 1,(z)=0 Q 

The eigenfunction zl(x) gives the minimum of this problem. By Lemma 2, 

lim (pzl) = 0. 

Let us fix an arbitrary point x0 inside Q and define a function 

0(x) {fr2-Ix-xo1, Ix-xol-ro, 

0, otherwise, 

where ro= dist (x0, aQ). Considering the positivity of z(x) and Lemma 2, we find that 
a = ((z1p)/(0p)) -- 0 when g 0. Therefore, for a function zl=z - 0, we obtain the 
following limit relations: 

lim 11'I ZI 11H '(T ) = 9 lim 'IZII L2(T ) 1 

Therefore, 

lim(- I T ) 12 dx KI. 
pt-? Tit 
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Furthermore, according to the choice of a, we have (p2l) = 0. Finally, from previous 
relations, we conclude that 

KI = lim _ 
JV i12 dx < lim inf sup (-J FVp12 dx = lim inf A 

AL-OJTi /T ,0 IIPIIL2=1,Pp)I O \1 = Tn / 

This inequality yields the uniform boundedness of A1 in ,. 

Now the statements of Propositions 3-5 can be proved for Al and pl(x) exactly 
as above. Then, the end of the proof of Lemma 3 is similar to the proof of Lemma 1. 

COROLLARY 1. It follows from Lemmas 1 and 3 that, uniformly in g, 

|A (-A (,) I c> O. 

Now let us denote by Ql the domain {x c R": dist (x, Q) < dist (x, U keZ"\{O} (Q + k))}. It 
is obvious that U k1eZ (f + k) = Rn. 

LEMMA 4. Uniformly in x c fQ\Q, 

(1.28) lim , ln p(x) = -dist (x, aQ). 

Proof. Let us first prove the estimate 

(1.29) P(X)LQ_ c,u. 

For this purpose, we construct a barrier function a(s) as a solution of the following 
auxiliary problem: 

d2 d 1 
-u + 2au? +-V(s) =O 
ds ds 2L 

u(-a) = 1, a(a) = , 

where a =2 maxlb, . Using an explicit formula for the solution, as in Proposition 1, 
we can show that u(s) is a monotonic function that satisfies inequality 

(1.30) a (0) -c,/u. 

By Lemma 2 and the positivity of z(x), we have p|S=a _ c> 0 uniformly in u> 0. 
Then, for some cl > 0, the difference (p - cl a) is positive on the set {x: s = ?a} and 
satisfies the relation 

(A+Z V-A)(p-clu)=Ic A+2 V-A)u, 

(d 2 d 1 N =-c, d2+bj(s, iP)-d+-2V(S)- A)u(s) 

=c(d +2a d +I (s) 
CkdS ds /-k2 

+ cj(2a -bl(s, fP))d a+ cjAa _< . 
ds 

Now (1.29) follows from (1.30) and the probabilistic representation for the solution 
of the last equation. 



EFFECTIVE DIFFUSION FOR A PARABOLIC OPERATOR 407 

To estimate p(x) from below in T'\Q, we rewrite (1.1) in the form (gA + (1/,u) V- 
,A)p = 0 and consider the corresponding diffusion process ex = vrZgwx starting from 
point x. According to [6, Chap. 4, Thm. 1.2], for any 6 > 0, there exists c(6) > 0, such 
that for all xe T'\Q 

P{r T} ' c(6) exp (_ dist2(x, aQ)/4T+6) 

where T is the exit time from T'\Q for ex. Substituting T = dist (x, aQ)/2, we find that 

P{r<dist(x,aQ)/2} ' c(6)exp (d- ist(x Q) ) - 

Therefore, using the probabilistic representation of p(x) and (1.29), we obtain 

p (x)=M(p (ex) exp ---/, A) dt) 

' clP{T < dist (x, aQ)/2} exp (-dist (x' 
a 

(1A)) 

Cj c(a6) exp - 
I dist(x aQ) + , +dist (x, aQ) 21 ] 

_ c1(6) exp (dist(x,aQ)+ 2) 

This estimate implies that 

(1.31) lim inf Iln p(x) -dist (x, aQ). 

To prove the opposite estimate 

lim sup , ln p(x) -dist (x, aQ), 

let us again write the solution p(x) in probabilistic form 

p(x) p() exp ( ) dt)) 

' <dist (X aQ)} + P{r> dist (x, Q)} exp (dist (X, Q)) 

Tdist (x,a Q)d 
+ -P{r<s}exp(--) ds) 

dist (x,aQ)/4 ds 

- ct(i{PT< dist (x, aQ)/4} + exp (dist (x SQ)) 

S dist (x,aQ) 

+ P{ < s}exp t-- 
I- s =dist (x,aQ)/4 

1 dist (xa Q) S \ 
+-I P{T<s}exp --)dsj. 

/ 
dist(x, aQ)/4 / 
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According to [6, Chap. 4, Thm. 1.2] for any 6 > 0, uniformly in s E [dist 
(x, aQ)/4, dist (x, aQ)], 

P{r < s} ?-c(6) exp (_ dist2(x, aQ)/4s -) 

This means that 

p(x) _ c (exp (dist (x, aQ) - 6 + exp( dist (x, aQ)) 

dist(x,aQ) / dist2(x, dQ)/4s + s -5 
+ I exp F ds 

JdiSt (X,aQ)/4 A 

/ c (exp (dist (x, aQ) - 5 dist(x,aQ) e dist(x, aQ) -6 d 
-'c ex p _+ exp _ds 

\F dist(x4@Q)/4 Ft 

exp ( 
dist (x, aQ) - 

6 

Thus the lemma is proved. 
To study the limiting behaviour of Vp(x) as Ft tends to zero, we represent p(x) 

in fQ\Q in the form p(x) =exp (-s(x)/,u)q(x), where s(x) = dist (x, aQ) and q(x) is 
a new unknown function. Substituting it into (1.1), we find that 

(1.32) -q --Vs Vq -- Asq-Aq = 0. 

This change of the unknown function is correct if and only if there are no caustic 
points in fl\Q, i.e., if and only if the rays that are extended out from aQ in the direction 
of the external normals to dQ do not intersect each other in Ql. We henceforth suppose 
that this condition holds, and hence the function s(x) is smooth. For instance, it is 
always true if the domain Q is convex. 

From the definition of q(x) and estimates of p(x), we know that 

(1.33) cFt?qlaQ'c1Ft, c>0. 

PROPOSITION 6. Uniformly in each compact subset of fl\Q, 

(1.34) c,' q(x) ' c -l,, c > 0. 

Proof. By Lemma 4, for any 6 > 0, there exists c(6) such that 

max q(x) ? c(6) exp (6/Ft). 

Denote by 6x the diffusion process corresponding to the operator (FA - Vs- V), and 
let r be its exit time from Ql\Q. According to [6, Chap. 4, Thm. 1.2], there exist to> 0 
and y>0 such that, uniformly in x c fl\ Q, 

P{ > to} ' c exp (-Y/Ft). 

Considering the strong Markov property of et , we find that 

P{r > kto} = ck exp (-ky/iF) 
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for any x e fl\ Q. This implies, for all sufficiently small ,u, the convergence of the 
integral M(q(ex) exp JO (As(e`x) + HA) dt), which, in that case, represents the solution 
q(x) of (1.32). Now let us write q(x) in the form 

q(x) = M(X{T>to}q(6x) exp (As(x) + gA) 
dt) 

+M(x{T<to}x{xaQ}q(ex) exp (As(6x) + HA) dt) 

+M(X{T<to}x{eaQ}q(xT) exp f (s(ex) + HA) dt). 

Here we denote by X{ I the characteristic function. It follows from [6, Chap. 4, Lemma 
2.1] that the second integral in the right-hand side is less than c exp(-yj/,) exp ($/,g) 
for some positive yl. Let us estimate the first integral as follows: 

T\ 

MXj>t0jq(6x) exp f (Axs(ex)+ gA) dt) 

_?c(S) exp ($/k) > ck exp(-Cky,//) exp (c2(k+ 1))C3 exp( l). 
k=1 g 

Choosing 8= yj/4, we obtain 

q(x) = M(x{T<tO}x{aQ}q(ex) exp f (Xs(x) + HA) dt) + O(exp (-y,/4g)). 

To complete the proof of the proposition, it suffices to use (1.33). By (1.34) and standard 
Schauder estimates [7, Thhm. 8.32], we have IVq(x)I ? c/,u. In fact, we have the following 
lemma. 
LEMMA 5. Uniformly on each compact subset of fl\Q, 

(1.35) IVq(x)l = go() 

Proof. First, let us consider the following Dirichlet problem in the half-space 
{xeRn: X1>0}: 

(1.36) A - U= O uIx,= = p(x'), x'=(x2,x3,- - 

where p(x') is an arbitrary bounded CI(R n-)-function. This problem has a unique 
bounded solution u(x). 

PROPOSITION 7. Uniformly in p E {(p c C1(R S): sUPRn-1 If(X')| 1} 

lim IVx,u 1=0. 

Proof Let qi(z, t) be the bounded solution of the problem 

da a2 a \ 
-- 2 +- 7+= , at aZ2 aZ/ 

qIt=o = ?~ qfz=o = 1, IPZ=00= ?. 

It is easy to see that 

K(x,y =(n-l)/2 xp-y'2 a 
K(x, y) 0 2t exp ( I2 ) f (xi, t)dt 
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is a Green's function for (1.36). The solution of the problem 

(at_ d ) u = 
O3 

u L=O = ?, 11z=0 = 1, ulW = o 

can be found explicitly as follows: 

uz(z, t) = j i exp dy. 

The function ifr(z + t, t) obviously satisfies the equation (a/a t-2/az2)i(z + t, t) = 0. 
According to the maximum principle, qi(z+t, t)Iz=o=4'(t, t)<1, so that '(z, t)? 
ua(z - t, t) on the set {(z, t): z > t, t > 0}. Let us now estimate (a/ax2)u(x)) as follows: 

a I 00 n1l'2Ia I X112\\ 
) dx exp 0xd' 

1)/2( ( 
x2t)) ') dt 

aX2 Rn-I 0 2Grt aX2 2t a 

= d f -(2 (n)/2 e 12 a_ ( x)\ dt Jt exp ( txt) at )p(x') dx' 

r X2 1 2 a 

=C {dt y exp (_y2)V - -(xl ,t) dydt 

C c ( L(xl, t) dt + =c J- (xl, t) dt 

'x1/2/1\3/2 ( 2 1 13/2 
CC tt ui(xl -t, t) dt +c 

1/ tt dt 

_ c I ( 1 ) exp (_x )d t+ c cl c 

which proves the proposition. 
PROPOSITION 8. Under the same conditions as in Proposition 7, the following limit 

relation holds: 

(1.38) lim aul= 
Xi- ax1 

where the convergence is uniform for 'p c Ip c C1(Rn-1): supRn-1 p(x') ? 1} 
Proof. Let 0(t) be a C'-function such that 0- 01, 0(t)=0 when t>2 and 

0(t) = 1 when t < 1. The function ui(x) = (u(x) - u(M,, 0))0(MIx'I), where M and M, 
are positive constants, satisfies the equation 

(1.39) ( ?) A-a = VXu(x)' VX0(MIx'I) + (u(x) - u(M,, 0))\0(MIx'I), 

I XI =ml= (u(MI, X') - (Ml, 0))0(MIx'I). 

We denote the right-hand side and boundary condition of this problem by f(x, M, M1) 
and -(x, M, M1), respectively. Considering the choice of 0(t), we can easily check 
that these two functions satisfy the following inequalities: 

f (x, M, M1) < cM, k(x', M, M1)I = c sup IVX,UIM1 =M2. 
x. = MI 
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It is clear that function (M2+cM(x1-M1)) is a barrier for iu(x) in the domain 
{x c R': xl> MI}, so that 

(1.40) 1u(x)| I M2+ cM(xI-Ml). 

According to Proposition 7, we can choose M(M1) in such a way that M and M2 tend 
to zero when Ml -> oo. Finally, (1.38) follows from (1.40) and the standard Schauder 
estimate [7, Thm. 8.32]. 

To prove (1.35), let us fix an arbitrary point x0cf1\Q and introduce, in the 
neighbourhood of this point, a new orthonormal basis such that the first vector in it 
coincides with the normal ray to aQ passing through xo. We denote coordinates in 
this basis by xl, X22, ... , X. After rescaling the coordinates z = x/, (1.32) takes the form 

(1.41) Aq-b(gz) Vq- gc(gz)q-_u2Aq = O, 

where bi(k) and c(x) are smooth bounded functions and bi(O) = 6kj. By Proposition 
6, for all sufficiently small ,, q(z)/,l is bounded in a ball of radius 2/v'77 with center 
in xo/l. Let 0(t) be the same function as in Proposition 8. Applying (A-a/azl) to the 
function 4(z) = (1/g)q(z)0(I Iz'l)0(v z1), we obtain 

( z dZ) 0('1) 4lz1=o = o(i). 

Now we can represent q(z) as a sum q(z) = q1(z) + 42(z), where 

(1.42) (Aa zq= OW(f) 4111,=0= 

and 

(A^ _a_) q2 ==, q21Z =0 = 0(1). 

According to Propositions 7 and 8, JVq22 tends to zero when z1 -- oo. The linear function 
kzl with a suitable coefficient k = O(x/71?) is obviously the barrier function for 41(z) in 
(1.42). Therefore, on the set {z: z1 = /L 1/3} 1l(z) tends to zero when ,t-- 0. Using the 
standard Schauder estimate, we conclude that IVq| = o(1) uniformly on the set {z: z1 = 
11-1/3}. Finally, in x-coordinates, we have |Vq(x)j = o(1/) on the set {x: xl = g2/3I. 

To complete the proof, it is sufficient to note that q(x) = ,u4(x) in the v'7-neighbourhood 
of xO. 

In the remainder of this paper, the function Vp/p plays a significant role. Let us 
consider its properties. 

PROPOSITION 9. The estimate 

VP 
(1.43) Vl= 

p 

holds uniformly for x c Tn. 
Proof. In the coordinates y = x/,u, (1.1) has a form 

(A _V(gy) _ 2A)p = O. 

Consequently, p(,y) satisfies the Harnack inequality [7, Thm. 8.20] in each unit ball. 
Together with the Schauder estimate [7, Thm. 8.32], this implies that 

Vyp(py) c. 

In x-coordinates, this gives (1.43). 
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PROPOSITION 10. Uniformly on each compact subset of Q, 

(1.44) lim , = 0. 
I,-o p 

Proof. The proof follows from Lemma 2, positivity of z(x) in Q, and the Schauder 
estimate. 

Now let us study the logarithmic derivative of p(x) in fQ\Q. Here we have the 
following proposition. 

PROPOSITION 11. For any xcfl\Q, 

limU VP P-V(dist (x, &Q)), 
, p 

where the convergence is uniform on each compact subset of fl\Q. 
Proof. This proposition is a simple consequence of the definition of q(x), Proposi- 

tion 6, and Lemma 5. Indeed, it holds that 

Vp Vq (I \ 
/k =-Vs + k,u- AuO/ - V/(dist (x, 9Q)) 

p q \y/ 

= -V(dist (x, aQ)) + o(1). 

2. Asymptotics of effective diffusion. In this section, we find the logarithmic 
asymptotics of the effective diffusion matrix of the problem (0.1). Using the properties 
of p(x), which were obtained in the previous paragraph, we reduce this problem to 
another problem that was studied in [3]. 

Let us transform the operator (A-A) = (A+(1/,72)V(x)-A) as follows: 

(A-A)= (p-1Ap -A) =p-1 (A-A)p= A + 2 Vp V 
p 

We denote the last operator multiplied by A as B. Since the vector field 2(Vp/p) = 2V ln p 
is the gradient of a periodic function, the homogenized operator has the form 
r1j(A)(a/axj)(a/axj) for some strictly positive matrix a(,u). It is clear that B possesses 

the following properties: 
P1. Its spectrum on the torus is {0, , (A 1-A ), ,A(A2-A ),. ..; 
P2. The first eigenfunction of the adjoint operator is Cp2(X), where c = (p2) is a 

normalizing coefficient. 
Further considerations are similar to those in [3]. The main difference is the 

asymptotic nonsmoothness of the vector field ,u(Vp/p). To demonstrate the main ideas, 
let us first suppose that Q is a cubically symmetric domain. In that case, aij(ut) = cr(g)I 
and the limit operator has the form r(g)A. Let e, be a diffusion process on T' 
corresponding to the operator B with initial density Cp2(x). We denote by so the 
minimum of s (x) over afl. It is clear that so = (dist (Q, U ke Z 1\{O} (Q + k))/ 2. 

PROPOSITION 12. For any 8 > 0 and T> 0, there exists c(6) such that 

(2.1) P{5T Z fl} c (8) exp (-(2so- 5)/ ). 

Proof. According to [6, Chap. 5, Thm. 3.2] and Proposition I1, the action functional 
of B on any compact subset of fl\Q is equal to the action functional of the operator 
(Al 2)A-Vs(x) . V. For any sufficiently small 61 >0, we can define the following sets: 
S1 = {x E fl\Q: s(x) = 81}, S2 = {X E f\Q: s(x) = 28I}, and S3= {X E x : dist (x, df) = 

81}. Let PI be the exit time from R8' = {x c fl\Q: dist (x, a(fl\Q)) > 81} for the process 
(t starting from x. According to [4, Chap. 6, Lemma 2.1], there exists t(81) such that, 
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for all xcS2, 

(2.2) P{v1 < t(61)}?- c(61) exp 

Let us introduce the following sequence of Markov times: 

PI=inf{t>O: g, eCS1US3}, =inf{t> PI: gt CS2}, 

V2=inf{t> TI1: g:, C S1U S3}, 1T2= inf{t > V2:c t C S2}, 

Pk= inf {t > Tk-1: k t C SI U S3}, 1;Tk= inf {t >lk: tx C S2}. 

By [6], for any 6 > 0, there exists c(6) such that 

P{, so S3} c(6) exp (-2s0s(x) 
- 26 - 6) 

for any x c R 1. Considering the strong Markov property of et and (2.2), we obtain 

PI T ?! Q}-PIC, C S3} 

[T/t(51)]+1 

+ [P(16' E sii n ex,+, c S31) +PI Pi < t('61)11 

+( (, +lIc(5) exp -2 ? ( exp( 

=c(61, ) exp (-2 so- s(x) - 261 - 6) 

Here we denote by [] the integer part. Similarly, for x e {x e Ql: dist (x, Q) ? 65}, we 
have 

P{xT Qf} -c(6, 6I) exp (-2 0 1 )- 

Using the last two estimates, we can conclude that, for any 6> 0 and T> 0, there 
exists c(6) such that 

(2.3) P{f(T 1}? <c(6) exp (-2 s-s (x) ) 

for xefl\Q, and 

(2.4) P{f4x Qf}?- c(6) exp (-2 
s 

) 

for x e Q. Finally, by Lemma 4 and Property P2 of B, the density cp2(x) of invariant 
measure of (, satisfies the following relation uniformly in x: 

2 09 ~ xeQ, 
(2.5) lim a In (cp (x)) = 

jj--->0L-2s(x), xecT'\ Q. 

Together with (2.3) and (2.4), this implies (2.1). 
COROLLARY 2. For any 6 > 0, there exists c(6) such that 

P{4eXP(^3/,a,fQ} = c(6) exp (-2 so-26) 



414 SERGUEI M. KOZLOV AND ANDREI L. PIATNITSKI 

Proof. By (2.1), we find that 

[exp ( 5/ )/ T]+ 1 

P{ X6ex/pL) Jif} _ E PZjT E Q} n j {4(+1)TZ f}) 
j=o 

_ (exp (5/t)/ T+ l)c(5) exp (-2 8) _c(5) exp (-2 so-2) 

Now let us estimate the probability of a jump of et into another period from below. 
It is clear that, for some integer vector j' c Z\{0}, there exists x c dQf n fa(f +1l) such 
that dist (x, Q) = dist (x, Q+j') = so. 

PROPOSITION 13. For any 8 > 0, we can find c(6) and T(8) such that 

P{dist ((T(), Q+j1) <so/2}--c(8) exp (-2 0 8) 

Proof. Since e, is a strong Markov process, it is sufficient to prove the following 
two estimates: 

(i) For any 8 > 0, there exists c(5) and T(5) such that 

P{IfT(S)-:XI<8}?_ c(8)exp -2s? ) 

(ii) For any 8>0, there exist c(8) and T(8) such that, uniformly in x E 
{ x: Ix - xCl < a}, 

P{ dist (ex(T,), Q + jl ) < s0121 '- c(56) exp(- ) 

where 81 -- 0 when 8 -- 0. The first is a simple consequence of [6], where we also use 
the structure of the action functional for B in fQ\Q. 

Let us prove (ii). The probability P{dist (ax, Q+j') < so/2} is the solution of the 
problem 

(2.6) ('--g q, = o, qlt=O = 0 (x), 

where 0 (x) is a characteristic function of the set {x: dist (x, Q +j') < so/2}. Considering 
the choice of x, we can find a point x such that I| -x| = 8 and dist (x, Q+j') = so-8. 
According to [6] and Proposition 11, for some T(8)> 0, 

(2.7) ql( T(8), x) = P{dist (e(T(), Q + j') < so /2} > 

In the coordinates y = x/,u, r= t/l2, (2.6) takes the form 

- - 2a-VP v = 0. 
p 

By Proposition 9, t(Vp/p) is uniformly bounded in g and x, so that the Harnack 
inequality [8] 

(2.8) c ' -fr(r y)//q, y') ' c' 

holds when lY - Y'| ' 1 and r _ 1. Let us cover the segment that connects an arbitrary 
point x c {x: Ix - x| < 28} and x? by the sequence of balls of radius ,u with centers on 
the segment. This can be done with the number of balls not exceeding [4/,a +1]. 
Iterating (2.8), we obtain 

we(t8 x)I-8n(tc Tog) 'erwt c(48) thL+`i exp i e () 

where 51 =-55 In c. Together with (2.7), this inequality implies (ii). 
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LEMMA 1. Eigenvalues A and K satisfy the inequality 

(1.3) K _?A _ K + CA, 

where the constant c is independent of ,. 
Proof. Let us use a variational representation for the first eigenvalue 

(1.4) A= sup IVu |uI2 dx- { u2dx}, 
IIUIIL2(Tr')= Tn AU Tn\Q 

where T' = RI/Z'. If we reduce the variational set in (1.4) to functions that are 
identically zero on T'\Q, we obtain the definition of K, and hence K _ A. Let us prove 
the second inequality in (1.3). Denote by Qa, the set {x e T': dist (x, aQ) < a}. It is 
quite easy to see that, for sufficiently small a, the domain Qa has a smooth boundary, 
and the equation 

(1.5) (A+ 2 V(x))u =Au+f, u aQ=(P, 

has a unique solution for anyf E C 1 (Qa) and up E C1 (aQj). For such a, (1.5) is uniformly 
invertible with respect to ,u, and its solution satisfies the maximum principle. To see 
this, we must use the inequality K - A < 0. Under the same assumption, the solution 
of (1.5) has a probabilistic representation (see [6, Chap. 1]), shown below: 

U(Jo =J (M (w epVw ) )A dsd 

(1.6) u(x)-+M({f(w) exp (T (-k V(WD)-A) dt)) 

where w, is the standard Wiener process starting from x, and r is exit time from Qa. 
From (1.6) it follows, in particular, that, for f-0 and positive So, the solution u is 
positive. To prove the lemma, we need the following proposition. 

PROPOSITION 1. The solution u of the problem 

(1.7) Al'u = (A+ 2 V(x)-A)u = O, 

U1{xcEQ:dist(x, aQ)= a} U1 u1{x0Q:dist(x,aQ)a = 0, 

satisfies on a Q the following inequality: 

(1.8) u JaQ ' c,u, 

where c is independent of ,u. 
Proof. Let us introduce on Qa the new coordinates (s, (PI, .2. .., - 1), where 

(PI, P2, . .., n-l are local coordinates on aQ, and s is the distance from aQ taken with 
positive sign outside Q and with negative sign inside Q. In these coordinates, (1.7) 
becomes 

2u 

+ aij(s, cp)--u + b,u(s, (p) u + bi(s, cp)-u + Vu-Au = aa 
(1.9) (92( P 9(j(sap -A20 

u(-a, fp) = 1, u(a, fp) = 0, 

where aij(s, (p) and bi(s, (p) are smooth functions, and the (n - 1) x (n - 1) matrix {aij} 
is uniformly elliptic. To estimate the solution of (1.9), let us consider an auxiliary 
equation for the function a 

d2 d 1 
-U--2a-a+-2 Va+Ka=O, 
ds2 ds II 
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with the same boundary conditions and a = max (21Kl, maxlbll). It can be shown that 
the function b,(s, 'p) does not depend on the choice of local coordinates, but only on 
the point x, so that the maxlb1l is defined correctly. The last equation can be solved 
explicitly as follows: 

(1.10) fa a1exp (v,s)+ a2exp(v2s), s'O, 

t.3l exp (/1s) +132 exp (92s), s ?, 

where 

VI,2 222 v1,2=aT ; a +K, 2 a 2 

,LI1- i'2+(V2 -b2) exp (a(1--L2)) 
1= 'exp (-via) 

V1 -V2 

/-LI- Vl +(Vl - 2) exp (a t(H, 1 2))ex -2) 
e,xp (-i-V2a), 

V1 -V2 

(1.11) 82=-exp (a(gi- 2)), 

Al - bL2exp (a(A l- 2))- V2+ V2 exp (a (1tl-[L2)) 
a1 = 

Vl -V2 

Al - b2exp (a (tt - 2)) -v v+ vi exp (a (11 -2 
a2 = 

V2 -VI 

Using these explicit formulae, we can obtain that au(O) _ c, and that au(s) is a monotoni- 
cally decreasing function on (-a, a) for a < (ln v2-ln vl)/2(vl - V2). The difference 
( ((s)-u (x)) satisfies the equation 

/a a2 
A (a (s) - u(x)) = A'La (s) = 2+ as +-2V-A)ui(s) asas/ 

= (2a-bl)-a + (K -A)u _ O, (a(s)U(X))sQ = 0. 
as 

Here we use the first inequality in (1.3) and monotonicity of a(s). Now by (1.6) we 
have a (s) > u (x) so u (x)l ,Q _cl. The proposition is proved. 

Now we will estimate p(x) in T'\Q. Let us consider in a spherical layer {x: r1 < 

lxl<r2}, 0 < ri < r2 in Rn, the solutions u,(x) and u2(x) of the equation (A -_ /,u2 + 
A)ui = 0 with boundary conditions ul1l1xj=r = 0, UllIXi=r2 = 1, and U21lxi=rl = 1, U21lxI=r2 = 0, 

respectively. For these solutions, in the same manner as in Proposition 1, we have the 
following estimates. 

PROPOSITION 2. For each 8 > 0, on the sphere {x: IxI = (r1 + r2)/2}, the following 
inequality holds: 

(1.12) Ul,211Xl=(ri+r2)/2 ? c(8) exp ( 2r 1 l-X)) . 

PROPOSITION 3. The first eigenfunction p(x) of the problem (0.3) satisfies on dQ 
the following estimate: 

(1.13) P (x) XQ ' C,UL. 

Proof From the standard Schauder inequality [7, Thm. 6.2] and the uniform 
boundedness of A in ,u it follows that p(x) and Vp(x) are uniformly bounded on the 
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Now we can obtain the main result in the symmetrical case. 
THEOREM 1. The effective diffusion o-(A) satisfies the limit relation 

lim ,u ln o(,u) = -2so. 

Proof Since this proof is parallel to the proof of [3, Thm. 1], we outline only the 
main steps of the proof. From Corollary 1, we deduce that C' has uniform mixing 
properties with respect to A. This means, in particular, that for random sequence 

?k = [C(K+1)T -KT], T = C(8) e1L , K=O, 1, 2, ..., 

where ft is the diffusion in Rn with the generator B, and [ ]-denotes the integer part, 
the mixing coefficient could be chosen in the form (p(K) =2-K. Having that, we can 
apply general central limit theorem for the random sequences with strong mixing 
property (see, e.g., [9]). For cr(,), we have the representation 

o (AZ) = E710 )70n+ E E( 170n()7K +nKON ) , 
K=1 

where x(S)y={xjxj}. Corollary 2 and Proposition 13 enable us to show the matrix 
estimates 

C2Eqo0no(4Ci C Eqo 0i,o, O<C2< C1<o, 

and above that, to establish the following inequality: 

C2(8) e -2(so+5)1 Eq,qoX _5o C1(J) e-2(so-8)/ 

for any 8 > 0. The last equation yields the statement of the Theorem 1. In the general 
nonsymmetric case, the matrix oij(,u) is not isotropic, so we study the limiting behaviour 
of its eigenvalues and eigenfunctions. 

Let U(x) be a periodic continuous function that is equal to zero in Q and coincides 
with s(x) in fQ. We introduce the following numbers and vectors: 

(2.9) s, = min inf sup U(x(t)), 
ieZ'I\10) X( ),X(O)=O,x(0)=i t 

where x(*) is a continuous curve that connects 0 and i. Let i' be the vector minimizing 
(2.9) and z' = i'l/Ii'. Denote by {et, e2,..., en}, the linear space that is generated by 
vectors ell e2...I en. Then 

(2.10) S2= min inf sup U(x(t)), 
i(2Z10 \z X( )vX(e)=orx(t)=i t 

i2 minimizes (2.10), and Z2 is a unit vector Z2 {i1, i2}, which is orthogonal to {il}. 
Continuing this process, on the kth step we find that 

(2.11) Sk= min inf sup U(x(t)), 
iEZ"{zlZ2 k-I}x* ),x(0)=O' x(l= E . 

where ik minimizes (2.11) and Zk {il, i2..ik} is a unit vector orthogonal to 
{il, i2, ..., ik-1}. Let 0 be a matrix, which in the basis ZI, z 

2 
. . zn, iS diagonal with 

eigenvalues sI, S2, . . ., sn, respectively. Then, as a consequence of [3, Thm. 2] we have 
the following theorem. 

THEOREM 2. The matrix of effective diffusion satisfies the relation 

lim A ln {oij()} = -20 = -0. 
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Proof We use the same approach as in the proof of Theorem 1. Then with the 
same means, we obtain instead of Corollary 2 and Proposition 13, the following bilateral 
inequality: 

C2 exp (-2 C8) exp (-2 -) 8 

Therefore, fixing 6 E R' and discussing the stationary scalar sequence (qk, 6) as above, 
we obtain 

( C 2) b ex -2)g 0+_ ,exp (-2 0-))6 ( 

and the theorem follows. 
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