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We study a mixed boundary value problem in an infinite strip consisting of two parts, one of
which is periodically perforated. Our results include estimates of solutions and asymptotic
formulas for them as the constant in the boundary condition tends to zero.
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§1. INTRODUCTION

Numerous problems in mechanics, physics, and chemistry require studying the behavior
of solutions to differential equations near a media interface for the case in which one of
the media is micro-inhomogeneous and the characteristic inhomogeneity size is small. For
instance, these problems arise in studying liquid and gas flows through filters containing
a number of periodically arranged channels (adsorption problems), in the investigation
of diffusion processes in a tissue, in studying wave diffraction on perforated surfaces (in
acoustics), and so on. A specific exchange law between the outer media and the boundary
of obstacles is characteristic for this kind of problems. In simple cases, this law can be
expressed by a linear, local mixed boundary condition. In more complicated situations, the
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law can be expressed by nonlinear, nonlocal conditions at the boundary of the obstacle. Here
we consider a boundary value problem for a function of boundary-layer type linking two
solutions of a differential equation in two contacting domains, one of them being perforated.
The exchange law at the obstacle boundary is formalized in the form of a mixed boundary
condition.

Let us mention some papers dealing with these problems. In [1} a problem of this kind
arising from the investigation of chemical reactions is studied; paper [2] is devoted to the
construction of asymptotics for a boundary value problem in a half-perforated medium near
the contact of the perforated and the nonperforated parts. We refer the interested reader
to the bibliography therein.

We study the boundary value problem:

Au.(y) = f(y) in Q. wu(y) isl-periodicin z,

u‘It:—l
u,
dn

Here we use the following notation:

= te,, =0, (1.1)
+b(-g-)u,=0 on edgnNQt.

p={nt), =R =1<i<l, B, =0"UTUgys,

where
9 ={lgl0<a<], i=l.. ,n, =1 £ L0},

I'={(z,1)|0<z; <1, t=0},
QFf =qt\eg, Ot ={(z,8)|0<2:i <], 0<t <1}

U & +m),

meZn-l—l

and the “inclusion” Y is a subdomain of the unit cube.
One can prove by using methods of [2] that the solution u(z) of this problem has the

form

6u0

at ks O(\/E),

e (y) = vo(y) + VeCui(y) + sw( )

t=—

where vg(z) and vy (z) satisfy the following boundary problems:

Avo= fin Q~, wvo is l-periodicin z,
'Uolt__._1 =0 volt 0—'-—-,0;

Avy = fin Q~, wv; is l-periodicin «z,

Ul|,=_1 =0, vi=o=—-——7"

t=0

One of the principal goals of this paper is to determine the constant C as well as the
“boundary-layer” function w that describes the behavior of u, in the vicinity of the boundary
I’ separating the perforated and the nonperforated media. More prec1sely, the function w

is defined by
u if t>0
wz{u—C/\/E if <0,
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where u, in turn, is defined in the following by (2.1) with a = €b.
Our main result is a quite precise description of the function u and the constant C.
Namely,

u= —Zzexp(=VE(Caty + v+ ) +C.),
where the function v decays exponentially as ¢ = 400 uniformly with respect to € > 0, the
function w vanishes for t < 0 and is 1-periodic with respect to ¢ for t > 0, and C_- and Cj

are constants. All functions involved are analytic in \/e. The constant C_g corresponding
to € = 0 and the cited constant C are related by

C =exp(C-o).

The constants C_¢ and Cj4q can be found from the auxiliary boundary problem (3.11)
in a single cell. More precisely, the constant Cj¢ is given by

o=/ ],

where € is the compact manifold with boundary obtained from the domain Q1 \Y by the
identification (z,t) ~ (z',t') if (z,t) — (z,t') € Z™*1, W is the solution of the nonhomoge-
neous Neumann problem

2
aLV‘ + e dQ,
Oz

AW(z,t)=0, (z,t)=y€ N,
ow _
on

and e, is the unit vector in direction ¢. The constant C_g is given by

exp(—C-o) = \//;o apdw /nu

Thus, these constants, as well as C, depend only on the geometry of the inclusion Y.

It is noteworthy that our main results are obtained by using “delinearization”{see (3.1),
(3.2)) and the implicit function theorem for smooth maps of Banach manifolds. By the
methods developed here, one can construct the subsequent terms in the asymptotic expan-
sion of u,.

—n; on the boundary wy= 380 of o,

2
a_w + e dQ.
oz

§2. PRELIMINARY ESTIMATES
Consider the boundary value problem

Au(z,t) = 6(t)1 (xit) =y€eq,
du (2.1)

n 4+au=0 ontheboundary w =02 of Q.

Here z lies on the torus T' = T" = R"/Z", t € R, ¢ is the Dirac delta-function, and all
objects involved are 1-periodic with respect to t for t > 0; that is, a(z,t + 1) = a(z,t) if
t >0and (z,t+1) € Q or w if and only if (z,t) € Q or w (again if t > 0).
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The manifold € is naturally locally isomorphic to a subdomain in R"*1 and all differential
operators involved must be understood in the usual Euclidean sense.

Suppose also that the domain QN {t < 0} coincides with the entire half-strip T'x {t < 0}.
Moreover, we assume that Q is a connected domain with Lipschitz boundary w and the
positive function a is bounded away from zero by a constant a > 0, that is, a > o > 0.
Then it can be shown that (2.1) has a unique solution with finite Dirichlet integral

J

Heuristically, this arrangement corresponds to a single strip of width ¢ for the original
problem (1.1). Our aim is to establish the following asymptotic estimate as a — 0 . Let g(a)
be the (constant with respect to z) limit value of u(z, t) ast — —oco. Then g(a) = O(1//a).
To this end, we treat (2.1) as a variational problem of the following kind:

/ 1
n?
Our task is readily reduced to establishing that the last term in (2.2) is O(1/V/a) if u is
the extremal function. To begin the proof, we note that by the maximum principle u is

negative. (This also follows directly from (2.2)). Second, note that the left-hand side of
(2.2) should be < 0 if u is extremal. Now we set v = y/au. Then (2.2) is reduced to

1 1
J(U)=~ﬁL§

and we must prove that f{::o} vdz = O(1). The remarks above imply

1 1
vdz >——/—
/{t=o} = Va g2

Now we apply the extension theorem [4] to the connected Lipschitz domain  (see [4]) and
conclude that the extremal function v can be extended to the entire strip @ = T x R in

such a way that A
1 = 1]|dv
- dQ < = |—
fi3 <o 3l

1 s 1|8v)? L 5
fﬁauamgc(/n§ dQ+/u§vdw)

dy
for some absolute (i.e., depending only on ) constant C. Therefore, by resorting to the
Cauchy inequality, we obtain

[ 11
vidz > C(—/ -
-/{t=0} e \/E o2

where C is again an absolute constant. However, by using the elementary inequality

2

| g

Oy

Ou

2
dQ +/ lauzdw +/ udz — min. (2.2)
Oy w {t=0}

2

v

2
dQ+va / L T / vdz — min, (2.3)
Oy wla

t=0}

dv

2
1 2
= dQ +a /w S dw. (2.4)

v .
-a—y dQ

and

wl|* ~ b
5 dQ+\/E/ﬁ_-2-v dQ), (2.5)

ab < %(ca2 + %bz),
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/ vidz > C/ v@ dqQ,
V {t=0) al 9y
ov| =
/ v2dz > C/ v—| dS. (2.6)
{t=0) ol ot

/ vidr = —-2/ vgzdﬁ, (2.7)
{¢=0) fin{e>0) Ot

and the direct comparison of (2.6) with (2.7) gives

/ v-a—vdﬁ
fn{e>0) Ot

where C is an absolute constant. Thus,

/ vdzx
{t=0}
as desired.

Now suppose that the function a in the boundary condition (2.1) is also bounded above:
a < a < Ca, where C is an absolute constant. Then, in a similar manner one can prove
the reverse inequality g(a) > C(1/+/a), or, in our further notation,

/ vdz
{t=0}

(we recall that C stands for an absolute constant, which can be different at different places).
To this end, we first prove that the minimum of the functional (2.3) is bounded above by
negative absolute constant —C. Taking this temporarily for granted, we conclude that

/ vdz
{t=0}

(exactly with the preceding constant C) because the quadratic part of the functional {2.3)
is obviously positive. Now, to estimate the minimum of the functional J we evaluate J(w)

for
W)=\ pexp(=var) it t30,

from (2.5) we derive

and hence,

On the other hand,

<G,

£ 3, (2.8)

>C

e

where A is still to be found. Simple calculations show that J(w) < C1A? + C,A, where C;
are positive absolute constants. Now, for a suitable negative A (for instance, A = —C2/2C})
we obtain J(w) < —C, where C is an absolute constant. The proof is complete.
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§3. ASYMPTOTIC FORMULAS

Now we proceed to asymptotic formulas for the solution of problem (2.1) with a = €ao as
€ — 0. We seek solutions of the form

u= ——\-/LE exp(~ved + C-). (3.1)

Then it is easy to see that the unknown function ¢ and the constant C_ satisfy the nonlinear
boundary value problem
2

Ag(z,t) = 8(t) exp(Veg — C-) + Ve , (Bt)=yeq,

o4
dy

(3.2)

-g% =+/eay on the boundary w=208Q of Q.

Let us show that system (3.2) can be resolved by the more or less conventional power series
approach. Specifically, the solution has the form

¢ = C+t+ + v + w, (3'3)
where .
0 if t<0,
Gplmutl = {t if t>0,

C is an unknown constant, v is a function such that its restrictions to the domains
Qr=an{t>0} and Q_=0n{t <0}

belong to the corresponding Sobolev spaces H!(2;) and H(Q_), and w vanishes for t < 0,
is 1-periodic for ¢ > 0, and belongs to the Sobolev space H(g), where

Q= Qn{OS t< l}/{(I,O)N ("c) 1)}
Any variable involved, such as C4,C_, v, and w, can be expanded in a power series with
respect to /¢, so that
p=do+Ved1+---, (3.4)
where the first approximation ¢g satisfies the linear system
Ado(z,t) = 8(t) exp(—C-o), (z,t)=y€Q,
d¢éo (3.5)

ol 0 on the boundary w =090 of f.

More precisely, the following relations hold for the components of the function ¢o = Cyot4+
wo + v
Awg(z,t) =0, (z,t)=yE€ o,

g 3.6
% = —C4on: on the boundary we =3 of o, (3.6)
where n, is the t-component of the outward normal vector, and
Awla,d) =0, (at)=syels,
v ow
[UO(st)] = -—'UJo(:C,O), _aTo(z)O)] = —_a—to(.’b‘, 0) +exp(-—C..o) - C+o, (37)
66% =0 on the boundary w =090 of Q, '
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where the square brackets stand for the jumps of the corresponding functions at ¢ = 0. It
readily follows from the compatibility conditions for (3.7) that

8
exp(—C-o) = Cyo + 7“;‘1(:,0)&:. (3.8)
T

It is however clear that the solution to (3.5) is by no means unique. In particular, if we
add any constant to the solution ¢o of this Neumann problem, we still obtain a solution.
Similarly, the function wp is not uniquely determined by (3.6). It turns out that to find ¢o
we must invoke the compatibility conditions for the second approximation. More precisely,
the second approximation ¢; satisfies the system

2

(7]
Adi(a, ) = 6t exp(~Coo)do+ | 2|, (.0)=yeQ,
5 y (3.9)
-ai::- =ap on the boundary w=0992 of Q.
Now the “periodic part” of the compatibility condition reads
dwo o
— —Z| dQ = . 3
/no oy Ty | /wo b S

(Note that 9ty /0y is just the unit vector e in the direction t.) Condition (3.10) allows us
to determine the function wy modulo an additive constant and the constant Cyq uniquely.
Indeed, let W be a (periodic) solution to

AW(z,t) =0, (z,t)=y € Q,

3:11
%Ii:— = —n; on the boundary wg =080 of p. : :

This function is determined uniquely modulo an additive constant, and its gradient is de-
termined uniquely. Now it follows from (3.10) that

¢k [
1o

Thus, Eqs. (3.11) and (3.12) allow us to determine the (positive) constant C4o uniquely
and the function

B, ot

oz + e

dQ:/ agdw. (3.12)

wo = Cy oW (3.13)

modulo an additive constant. Hence, relation (3.8) acquires the form

SRt = /T (%v%,-'(z,o)-i-l)dz. (3.14)

One can show that the integral in (3.14) is strictly positive, and therefore, one can determine
the constant C_¢ from (3.14). Indeed, the integral

/non{t=r} (-Qg_(:’ Tl l) dz
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does not depend on 7 since the function W+t is a solution of the homogeneous Neumann
problem in 2. It follows that

/T (6%3‘(2,0)+1)d2 = /no (aa—v:/(z,t)+ l)dQ,

However, the positivity of the latter integral is well known (see also (4.34)). Thus, the first
approximation to the solution u of the third asymptotic boundary value problem (2.1) with
a = €ap has the form

u= ——%exp(—\/zwa).

where the function ¢ tends to zero as t — —oco and is close to a function of the form
C4ty +w, where w is a periodic function, as t = +o00. Moreover, u = —(1/+/€) exp(C-) as
t — —oo and we have the approximate cquahty exp(—C-) = C4, which becomes exact as
V€ = 0. All in all, we obtain a quite precise approximate solution of our original problem
by solving some boundary value problem in a single cell Q.

Before proceeding to the proof, let us make some remarks justifying ansatz (3.1). This
is a kind of renormalization procedure for the solution of the ill-posed Neumann problem

bl =90{t), lat)=2pEN,

3.15
%’i— =0 on the boundary w =090 of Q, Wi

formally corresponding to € = 0 in (2.1). This problem however has no solutions, at least
in the class of functions with finite Dirichlet integral in Q. Equation (3.1) essentially means
that the situation can be improved by subtracting the “infinite constant” exp(C-)/+/€ from
u since —(1+/€) exp(—+/€¢) is close to —1/+/e+ ¢ for small €. These arguments at the same
time “explain” why Eq. (3.5) for the first approximation is linear.

To study the properties of the function v(z) in (3.3) more carefully, let us restrict Eq.
(2.1) to 4 and consider the boundary value problem

Az(z,t)=0, (z,t)=y€Ey,

0z (3.16)
zI‘_o = zo(z), S—-+az=0 on the boundary w =092 of Q. _

= On

The solution bounded as ¢ = oo is unique. Let R be the transition operator that maps
a boundary function zp(z) on T™ to the restriction z(z,1) of the corresponding solution
of (3.16) to {(z,t) : t = 1}. It is clear that z(z,m) = R™z, for any positive integer m.
By using the maximum principle and standard elliptic estimates, it is easy to see that the
kernel r(z, z') of this operator is a smooth positive function such that the inequality

0 <c< r(z,2') < ¢t (3.17)
holds uniformly with respect to € > 0. Indeed,-let ro(z,¢,z') be a solution of the problem
Arg(z,t,z') =0, ye€Qy,

(3.18)

role=0 = d(z - z'), %r_: 4+ arg =0 on the boundary w =390 of Q.

Then we have r(z,z') = ro(z, 1,z’). By the maximum principle,

f'D(y, z’) < TO(y) :!:') < TN(yx z’):

494 RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS YOL.4 NO. 4.



ASYMPTOTIC BEHAVIOR OF SOLUTIONS

where rp and ry are the solutions satisfying, respectively, the Dirichlet and the Neumann
homogeneous boundary conditions at the boundary of the holes. The functions rp and ry
are positive and independent of €. Hence, (3.17) holds.

According to [6], the first eigenvalue Ao of R is simple and positive, and the other eigen-
values A, k > 1, satisfy the estimate

Akl < gho, ¢<1, (3.19)

where ¢ is independent of €. Moreover, if suitably normalized, the first eigenfunction po(z)
is also positive and even bounded below and above by uniform positive bounds. We choose
po(z) to satisfy the equality [ po(z)dz = 1. By the maximum principle, Ao < 1.

Tn

Let p(y) be the solution of (3.16) with the boundary condition p(y)|i=0 = po(z). It
follows from the comparison of the results cited above with the representation (3.1), (3.3)
that

do = exp(—veCy), p(y) = (const) exp(—ve(Ctt + w(y))). (3.20)

Now we consider another semigroup, R'™, defined as follows:
R™z = p* g™ B™ (z2p0)- (3.21)

Its generator R’ has the kernel '(z,z’) = po(z')r(z, z")pg *(z)Ag'- It is possible to show
by using ideas from [7] (though we shall not deal with this question) that the operator R’
is the transition operator for the boundary value problem

Az(y) +2Vinp(y) - Vz(y) =0, ye€Qy

0z (3.22)
z|i=0 = zo(z), i 0 on the boundary w =090 of Q,

to be solved in the class of bounded functions.
The fact that the function z = 1 is the first eigenfunction of the operator R’ implies the
relation

/r'(z, z')dz' =1 (3.23)
Tn
for all z € T™. Then, by the same argument as above, 0 < ¢ < r'(z,z’) < ¢! uniformly in
€ > 0. Thus,

?iclz)z(y) <c ?ig}z(y), R (3.24)

{

By iterating the last relation, we obtain

{

{ttf'(rz‘]z(y) < c'f‘{?ig}z(y) = exp(—c-jm)(?:sg)z(y), c2 > 0. (3.25)
This means that [v(y)| < c3exp(—c2t) uniformly in € > 0.

§4. MAIN THEOREM
Summarizing, we can now state the main theorem.
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Theorem 1. Problem (2.1), where a = €ag, for small € admits a unique solution of the
form

= —\/Lgexp(—\/E(C+t+ +v+w)+C.),

where the “decreasing component” v is a function such that its restrictions to the domains
Qy = QN {t >0} and Q- = QN {t < 0} belong to the corresponding Sobolev spaces
HI(Q+) and H(Q2_) and decay exponentially as t — co uniformly with respect to e > 0,
the “periodic component” w vanishes for t < 0, is a 1-periodic function for t > 0, and
belongs to the Sobolev space H'(Qy), and C— and Cy are constants. All variables involved
are analytic in \/e. The “first-order approximation” ug to u behaves like the constant
—(1/+/€) exp(C-o) as t = —oco and like —(1/+/€) exp(—/€(Cot + wo) + C_o) as t = oo,
where the “first-order approximations” C_p,C4o and wo are defined via relations (3.11),
(3.12), (3.13), and (3.14).

To establish these results, we use the implicit function theorem (3] for analytic maps of
Banach manifolds. Let us choose a sufficiently large positive integer N (any N> (n+1)/2
will suffice). Consider the Banach space B consisting of H! functions ¢ in Q of the form
¢ = Cty+v+w, where v belongs to the Sobolev spaces HN*1(Q,) and HV+1(Q_) and w is
1-periodic for ¢ > 0, belongs to the Sobolev space HV+1(Qg) (recall that Qo = QN{0 <t <
1}/{(z,0) ~ (=, l)}) and vanishes as t < 0. The map ¢ to be studled is defined by (3.2).
Namely, consider the Banach space C of pairs (f,g), where f = v' 4+ w', v’ belongs to the
Sobolev spaces HV=1(Q;) and HV-}(Q.), v’ is l-periodic fort > 0, belongs to the Sobolev
space HN=1(8p), and vanishes as t < 0, g = v" + w”, v’ belongs to the Sobolev spaces
HN-1/2(4), and w" is a 1-periodic function and belongs to the Sobolev space HN=1/2(wp).
In what follows we sometimes regard the functions f and g as the pairs f = {v',w’) and
g = (v",w"). This is justified by the uniqueness of the decompositions of these functions
into sums of periodic and decreasing components. Let F = F, : R x B — C be the following

map:
F.(C,v,w) =(f,9),
where "
f=A¢(z:t)— € 5— ) (I,t)=yEQi,
: y (4.26)
g= a—ﬁ — Veao.

Here ¢ = Cty + v+ w, and it is not difficult to verify that (f,g) € C. To take the jump
condition at ¢ = 0 into account, we must impose the following constraint on ¢:

[v(z,0)] = —w(z,0), [%(2,0)} = —%—‘;’(z,O) texp(—VEd+C-)—C,  (4.27)

where the square brackets stand for the jumps. Another necessary condition satisfied by
any solution (C, v, w) of the equation F,(C,v,w) = (0,0) is
—+C—

/no 5y By dQ:./;n apdw. (4.28)

(Recall that 9t4 /0y is just the unit vector e; in the direction ¢t.)

Now we introduce the Banach submanifolds M C R? x B and N C C such that the
superposition ® = F o p, where p is the projection p(C_-,C,v,w) = (C,v,w) and F = F; :
R x B — C maps M into N. Namely, set

M ={(C-,C,v,w)eR?xB| ((4.27) and (4.28) hold)},

dw 0ty |?
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and
ey {(f,g) = v ec| [ wan= [ ‘”""""}'
no Wwo

By virtue of the Sobolev embedding theorem, M is a Banach submanifold of R x B, and
it is easy to see that ® = ® : M — N. To apply the implicit function theorem, we
must study the differential d® of the map & at the point P = {C_o, Cyo, V0, o), € = 0.
Here C_o,Cy0,v0, and wy are defined in (3.12), (3.13), (3.11), and (3.8). Obviously,
®0(C-0,C40,v0,wo) = 0, and to verify the possibility of solving the equation &, = 0
uniquely in the vicinity of P one must prove that the differential d®(P) is a linear isomor-
phism. This differential is given by the formulas

d®(P)(C-,C,v,w)=(f,g) = (v, v',v", w"),

where P
F=adla ), nl)=pefs, r= -a—ﬁ on w, (4.29)
or, in other words,
v = Av(z,t), (z,t)=yERs, V'= -g—:: on w,
(4.30)
W =AwlEt, (Ell=gely; = %;:— +Cn; on wy,

subject to the constraints

) 9
[v(z,0)] = —w(z,0), [a—’t’(z,())] = ~-5‘tﬁ(z,0) +exp(C-0)C- - C, (4.31)
and ‘ P s
Wo w _
Ln (a—y + Cyoe, Fy_ + Cet) dQ = 0. (432)

(This last condition (4.32) stems from (4.28).) We must verify that for a given quadruple
(v, w',v",w") such that
/ w'dQ = / w"dw
(973 wo

there exists a unique pair (v, w), satisfying (4.31), (4.32), and (4.30). It is well known (e.g.,
see [5]) that the first pair of equations in (4.30) can be resolved under the constraint (4.31)
provided that

exp(C-o)C- - C +/ V'dQ = /
a

w

v'dw + ) -%l:)-(a:, 0)dz

and w(z,0) in (4.31) is suitably disturbed by an additive constant (to ensure that

Jpv(z,—0)dz = 0). It is also well known that the second pair of equations in (4.30)

can be solved for any given C if we neglect condition (4.32). We can fix the constant C and

some solution w to the second pair of equations in (4.30). Then we can choose a suitable

constant C and add another suitable constant to w so that these conditions are satisfied.
Now the surjectivity of the differential d®(P) is reduced to the inequality

6w0

/‘;o (—a? + C+06¢,6g) dQ 2}5 0. (433)
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In view of (3.13), this, in turn, follows from the inequality

£Y%
/n o (a_y i e:) dQ >0 (4.34)

for the solution W of (3.11). Here we sketch the proof of this important inequality, well-
known in the homogenization theory. Indeed, the function W is a solution to the minimiza-

tion problem
J.

Therefore, it must satisfy the orthogonality relation

/no (-aa—v;/-i-e‘,%pg—)d():O,

2

Ll dQ — min.

5}-}--}‘3:

which implies that

6—W-+€z

2
dQ2 > 0.
Jy =

/no (-%—V;+e¢,e,)dﬂ=[]°

This completes the proof of (4.34) and, thus, the surjectivity of the differential d®(P) is
established. To ensure its injectivity, it suffices (again by the implicit function theorem) to
verify that problem (4.26), (4.28), where f = 0 and g = 0, does not admit more than one
solution. However, any solution of (4.26), (4.28) provides a solution u with finite Dirichlet
integral

/ |8u/dy)? Q2
1]

to the boundary value problem (2.1), where a = €ag. But the latter solution is well known
to be unique. This completes the proof of all our asymptotic formulas.
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