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Abstract— In L2(R
d), we consider a self-adjoint bounded operator Aε, ε > 0, of the form

(Aεu)(x) = ε−d−2

∫
Rd

a((x− y)/ε)μ(x/ε,y/ε) (u(x)− u(y)) dy.

It is assumed that a(x) is a nonnegative function such that a(−x) = a(x) and
∫
Rd(1+ |x|4)a(x) dx < ∞;

μ(x,y) is Z
d-periodic in each variable, μ(x,y) = μ(y,x) and 0 < μ− � μ(x,y) � μ+ < ∞. For small ε,

we obtain an approximation of the resolvent (Aε + I)−1 in the operator norm on L2(R
d) with an error

of order O(ε2).

DOI 10.1134/S106192084010114

We consider the homogenization problem for a periodic nonlocal convolution type operator with an inte-
grable kernel. Our goal is to estimate the rate of convergence in the operator norm. The present paper is a
further development of the research started in [8]. The method is a modification of the operator-theoretic
approach (see [1–3]).

1. CONVOLUTION TYPE OPERATORS

In L2(R
d), we study a nonlocal operator Aε defined by

Aεu(x) =
1

εd+2

∫
Rd

a
(x− y

ε

)
μ
(x
ε
,
y

ε

)(
u(x)− u(y)

)
dy, x ∈ R

d, u ∈ L2(R
d); (1.1)

here ε is a small positive parameter. We impose the following conditions on the coefficients a(x) and μ(x,y):

a(x) � 0, a ∈ L1(R
d), ‖a‖L1(Rd) > 0, a(−x) = a(x), x ∈ R

d; (1.2)

0 < μ− � μ(x,y) � μ+ < +∞, (1.3)

μ(x,y) = μ(y,x), x,y ∈ R
d; (1.4)

μ(x+m,y + n) = μ(x,y), x,y ∈ R
d, m,n ∈ Z

d. (1.5)

Under these assumptions, the operator Aε is bounded, self-adjoint, and nonnegative. Write

Mk(a) :=

∫
Rd

|x|ka(x) dx, k ∈ N.

Then, due to the condition 0 <
∫
Rd a(x) dx < ∞, the finiteness of the moment Mk(a) implies the finiteness

of the moments M1(a), . . . ,Mk−1(a). In what follows, we assume the finiteness of Mk(a) with k � 4 that
might change from one statement to another.

Operators of the form (1.1) arise in models of mathematical biology and population dynamics, they
have been actively studied recent years; see [4–7] and references therein. Homogenization problem for such
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operators was studied in [6], where under the conditionM2(a) < ∞, it was shown that the resolvent (Aε+I)−1

strongly converges to the resolvent (A0 + I)−1 of the effective operator, as ε → 0. The effective operator is
a second-order elliptic differential operator A0 = − div g0∇ with constant coefficients. Thus, an interesting
effect is observed in this problem: for a bounded nonlocal operator Aε, the effective operator is unbounded
local operator A0. For operators with a nonsymmetric kernel, similar problems were studied in [7], where,
for the corresponding parabolic equations, the homogenization result is valid in moving coordinates. The
problem in a periodically perforated domain was investigated by variational methods in [4].

2. THE EFFECTIVE OPERATOR. MAIN RESULT

Let us describe the homogenized operator. As usual in homogenization theory, in order to describe the
effective matrix g0, we need to consider auxiliary problems on the periodicity cell. Suppose that a vector-
valued function v(x) = (v1(x), . . . , vd(x))

t, x ∈ R
d, is a Z

d-periodic solution of the problem

∫
Rd

a(x− y)μ(x,y)(v(x) − v(y)) dy =

∫
Rd

a(x− y)μ(x,y)(x − y) dy,

∫
Ω

v(y) dy = 0; (2.1)

the symbol Ω stands for the periodicity cell [0, 1)d. Note that problem (2.1) has a unique Zd-periodic solution.
It turns out that this solution is bounded.

Lemma 2.1. Let conditions (1.2)–(1.5) be fulfilled, and assume that M1(a) < ∞ and v(x) is the Z
d -

periodic solution of problem (2.1). Then vj ∈ L∞(Rd) and ‖vj‖L∞(Rd) � C(a, μ), j = 1, . . . , d.

Let g0 be a (d× d)-matrix with the entries 1
2gkl, k, l = 1, . . . , d, given by

gkl=

∫
Ω

dx

∫
Rd

dy
(
(xk − yk)(xl − yl)−vl(x)(xk − yk)−vk(x)(xl − yl)

)
a(x−y)μ(x,y), k, l = 1, . . . , d. (2.2)

The matrix g0 is positive definite (see Section 6). The effective operator A0 = − div g0∇ is defined on the
Sobolev space H2(Rd).

The following result was obtained in [8].

Theorem 2.2 ([8]). Assume that conditions (1.2)–(1.5) are satisfied, and let M3(a) < ∞. Then the
resolvent (Aε + I)−1 converges to the resolvent (A0 + I)−1 of the effective operator in the operator norm on
L2(R

d). Moreover, the following order-sharp error estimate holds :

‖(Aε + I)−1 − (A0 + I)−1‖L2(Rd)→L2(Rd) � C1(a, μ)ε, ε > 0. (2.3)

In this note, we obtain a more accurate approximation of the resolvent (Aε + I)−1. Our main result is

Theorem 2.3. Assume that conditions (1.2)–(1.5) are satisfied, and let M4(a) < ∞. Then

‖(Aε + I)−1 − (A0 + I)−1 − εKε‖L2(Rd)→L2(Rd) � C2(a, μ)ε
2, ε > 0. (2.4)

Here the operator Kε is given by

Kε = −
d∑

j=1

[vεj ]∂j(A
0 + I)−1 +

d∑
j=1

(A0 + I)−1∂j [v
ε
j ],

where [vεj ] is the operator of multiplication by the function vj(x/ε).

Remark 1. If in the assumptions of Theorem 2.2, condition M3(a) < ∞ is replaced with

∫
Rd

|x|ka(x) dx < ∞, (2.5)

where 2 < k < 3, then

‖(Aε + I)−1 − (A0 + I)−1‖L2(Rd)→L2(Rd) � Cεk−2, ε > 0.

If in the assumptions of Theorem 2.3, condition M4(a) < ∞ is replaced by (2.5) with 3 < k < 4, then

‖(Aε + I)−1 − (A0 + I)−1 − εKε‖L2(Rd)→L2(Rd) � Cεk−2, ε > 0.
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ON THE HOMOGENIZATION OF NONLOCAL CONVOLUTION TYPE OPERATORS 139

3. OPERATOR-THEORETIC APPROACH

In order to find an approximation for the resolvent of the operator (1.1), we modify the operator-theoretic
approach, that was suggested and developed by Birman and Suslina in the works [1–3], which focused on self-
adjoint second-order elliptic differential operators. This approach is based on the scaling transformation, the
direct integral decomposition for periodic operators, and calculation of an approximation for the resolvent in
terms of the spectral characteristics of the operator at the bottom of the spectrum (threshold characteristics).
For differential operators, at the third step, the methods of the analytic perturbation theory applied.

The first two steps, namely, the scaling transformation and the decomposition of A into the direct integral
of the operators A(ξ) with the help of the unitary Gelfand transform, remain the same. Here and in what

follows, A = Aε0 , ε0 = 1. The operators A(ξ) act in the space L2(Ω) and depend on the parameter ξ ∈ Ω̃.

Here Ω := [0, 1)d is the cell of Zd and Ω̃ := [−π, π)d is the cell of the dual lattice (2πZ)d. The problem is
reduced to studying the asymptotics of the resolvent (A(ξ) + ε2I)−1 for small ε > 0. However, the methods
of the analytic perturbation theory are no longer applicable to the family of operators A(ξ). In contrast with
the case of differential operators, the operator family studied here is not analytic. Instead, we have only the
finite smoothness of the family A(ξ), which is granted by the assumption on the finiteness of the first few
moments of the coefficient a(x).

According to the operator-theoretic approach, to obtain an approximation for the resolvent (A(ξ)+ε2I)−1

for small ε, it suffices to find the asymptotics of the operator-valued functions F (ξ) and A(ξ)F (ξ), ξ → 0;
here F (ξ) is the spectral projection of the operator A(ξ) corresponding to some neighborhood of zero.
Traditionally, these asymptotics were calculated via the asymptotics of the first eigenvalue λ1(ξ) of A(ξ).
We consistently apply an alternative approach, which relies on integrating the resolvent (A(ξ)− ζI)−1 along
a suitable contour on the complex plane. In [8, Sec. 4.2], this approach was called the “third method”.

4. THE OPERATOR A: DIRECT INTEGRAL DECOMPOSITION AND ESTIMATES

We recall that A = Aε0 , where ε0 = 1. Then A = A(a, μ) is given by

Au(x) :=

∫
Rd

a(x− y)μ(x,y)(u(x) − u(y)) dy, x ∈ R
d.

The operator A can be represented as A = p(x) − B, where p(x) :=
∫
Rd a(x− y)μ(x,y) dy, x ∈ R

d, and

Bu(x) :=

∫
Rd

a(x− y)μ(x,y)u(y) dy, x ∈ R
d.

By the Schur lemma, the operator B is bounded and ‖B‖L2→L2 � ‖μ‖L∞‖a‖L1. Moreover, the potential
p(x) satisfies ‖p‖L∞ � ‖μ‖L∞‖a‖L1. Hence, the operator A : L2(R

d) → L2(R
d) is bounded. Obviously,

under assumptions (1.2) and (1.3), the potential p(x) is real-valued and the operator B is self-adjoint.
Consequently, the operator A is also self-adjoint. Clearly, the potential p(x) satisfies the estimates

μ−‖a‖L1(Rd) � p(x) � μ+‖a‖L1(Rd), x ∈ R
d. (4.1)

Under assumptions (1.2) and (1.3), the quadratic form of the operator A admits the following represen-
tation (see, e. g., [5] or [8, Sec. 1.2]):

(Au, u) =
1

2

∫
Rd

∫
Rd

dx dy a(x− y)μ(x,y)|u(x) − u(y)|2, u ∈ L2(R
d). (4.2)

Therefore, the operator A is nonnegative and

μ−(A0u, u) � (Au, u) � μ+(A0u, u), u ∈ L2(R
d); (4.3)

here A0 = A(a, μ0) with μ0 ≡ 1. Then A0 = p0 − B0, where p0 =
∫
Rd a(y) dy and B0 is the convolution

operator with the kernel a. The Fourier transform translates B0 into the operator of multiplication by the
function â(ξ) :=

∫
Rd e

−i〈ξ,z〉a(z) dz, ξ ∈ R
d. It follows that the operator A0 is unitarily equivalent to the

operator of multiplication by the function â(0)− â(ξ). Hence, λ0 = 0 belongs to the spectrum of A0. Since
A0 is a nonnegative operator, λ0 is the spectral edge. In view of estimates (4.3), the point λ0 = 0 is also the
lower edge of the spectrum of A.
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Due to conditions (1.2)–(1.5), the operator A commutes with the shift operators Sn defined by Snu(x) =
u(x + n), x ∈ R

d, n ∈ Z
d. This means that A and B are periodic operators with a periodicity lattice Z

d.
Recall the definition of the Gelfand transform G. First, G is defined on the Schwarz class S(Rd) as follows:

Gu(ξ,x) := (2π)−d/2
∑
n∈Zd

u(x+ n)e−i〈ξ,x+n〉, ξ ∈ Ω̃, x ∈ Ω, u ∈ S(Rd).

Then G is extended by continuity up to the unitary mapping G : L2(R
d) →

∫
˜Ω
⊕L2(Ω) dξ = L2(Ω̃× Ω).

Like all periodic operators, A and B are decomposed into the direct integrals:

A = G∗
(∫

˜Ω

⊕A(ξ) dξ
)
G, B = G∗

(∫
˜Ω

⊕B(ξ) dξ
)
G. (4.4)

Here A(ξ) and B(ξ) are self-adjoint bounded operators in L2(Ω) defined by

A(ξ)u(x) = p(x)u(x) − B(ξ)u(x), u ∈ L2(Ω),

B(ξ)u(x) =

∫
Ω

ã(ξ,x− y)μ(x,y)u(y) dy, u ∈ L2(Ω),

where
ã(ξ, z) :=

∑
n∈Zd

a(z+ n)e−i〈ξ,z+n〉, ξ ∈ Ω̃, z ∈ R
d.

The first relation in (4.4) is understood in the following sense: for any u ∈ L2(R
d) and v = Au, we have

Gv(ξ, ·) = A(ξ)Gu(ξ, ·), ξ ∈ Ω̃. The second one has a similar meaning.
The operator B(ξ) is compact (see [8]); by the Schur lemma, its norm satisfies the estimate ‖B(ξ)‖ �

μ+‖a‖L1, ξ ∈ Ω̃. We conclude that the essential spectrum of A(ξ) coincides with the essential range of p(·).
Due to the compactness of B(ξ) and lower bound (4.1), for any ξ ∈ Ω̃, the spectrum of A(ξ) in the interval
(−∞, μ−‖a‖L1) is discrete.

In [8, Lemma 1.1], the following representation for the quadratic form of A(ξ) = A(ξ; a, μ) was obtained:

(A(ξ)u, u) =
1

2

∫
Ω

dx

∫
Rd

dy a(x− y)μ(x,y)
∣∣ei〈ξ,x〉u(x)− ei〈ξ,y〉u(y)

∣∣2, u ∈ L2(Ω), ξ ∈ Ω̃. (4.5)

It is assumed here that the function u ∈ L2(Ω) is extended periodically to the whole R
d.

Let A0(ξ) = A(ξ; a, μ0), where μ0 ≡ 1. Relations (1.3) and (4.5) imply the estimates

μ−(A0(ξ)u, u) � (A(ξ)u, u) � μ+(A0(ξ)u, u), u ∈ L2(Ω), ξ ∈ Ω̃. (4.6)

The operators A0(ξ), ξ ∈ Ω̃, are diagonalized by means of the unitary discrete Fourier transform. Namely,
A0(ξ) is unitarily equivalent to the operator A0(ξ) acting in �2(Z

d) as multiplication by the symbol

â(0)− â(2πn+ ξ) =

∫
Rd

(
1− cos(〈z, ξ + 2πn〉)

)
a(z) dz, n ∈ Z

d. (4.7)

Under conditions (1.2)–(1.5), using the described diagonalization for A0(ξ) and analyzing the symbol
(4.7), we obtain the following: KerA0(0) = L{1Ω};

(A0(ξ)u, u) � C1(a)‖u‖2L2(Ω), u ∈ L2(Ω)� L{1Ω}, ξ ∈ Ω̃,

(A0(ξ)u, u) � C2(a)|ξ|2‖u‖2L2(Ω), u ∈ L2(Ω), ξ ∈ Ω̃,

with some positive constants C1(a), C2(a) depending on a. Combining these relations with (4.6), we obtain
KerA(0) = L{1Ω};

(A(ξ)u, u) � μ−C1(a)‖u‖2L2(Ω), u ∈ L2(Ω)� L{1Ω}, ξ ∈ Ω̃, (4.8)

(A(ξ)u, u) � μ−C2(a)|ξ|2‖u‖2L2(Ω), u ∈ L2(Ω), ξ ∈ Ω̃. (4.9)

We also need the following estimate which is proved by the Schur lemma under conditions (1.2)–(1.5) and
condition M1(a) < ∞:

‖A(ξ)− A(η)‖ � μ+M1(a)|ξ − η|, ξ,η ∈ Ω̃. (4.10)
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5. THRESHOLD APPROXIMATIONS FOR THE OPERATOR A(ξ)

Under conditions (1.2)–(1.5), the lower edge of the spectrum of the operator A(0) is an isolated simple
eigenvalue λ0 = 0. Let d0 := d0(a, μ) be the distance from the point λ0 to the rest of the spectrum of A(0).
Estimate (4.8) implies that d0(a, μ) � μ−C1(a). Let

δ0 = δ0(a, μ) := μ−C1(a) (3M1(a)μ+)
−1

.

Under conditions (1.2)–(1.5) and M1(a) < ∞, applying the perturbation theory arguments, we deduce from
estimate (4.10) that for all ξ such that |ξ| � δ0(a, μ) the spectrum of the operator A(ξ) on the interval
[0, d0/3] consists of just one simple eigenvalue; while the interval (d0/3, 2d0/3) does not contain points of the
spectrum of A(ξ).

Under conditions (1.2)–(1.5) and Mk(a) < ∞ the operator-valued function A(·) is k times continuously
differentiable in the operator norm. We have

∂α
A(ξ; a, μ)u(x) =

∫
Ω

ãα(ξ,x− y)μ(x,y)u(y) dy, x ∈ Ω, u ∈ L2(Ω);

ãα(ξ, z) := (−1)(−i)|α|
∑
n∈Zd

(z+ n)αa(z+ n)e−i〈ξ,z+n〉, α ∈ Z
d
+, |α| � k.

Then we can apply the Hadamard formula. For instance, if M4(a) < ∞, then we have

A(ξ) = A(0) + [Δ1A](ξ) + [Δ2A](ξ) + [Δ3A](ξ) +K3(ξ),

[Δ1A](ξ) :=

d∑
j=1

∂jA(0)ξj , [Δ2A](ξ) :=
1

2

d∑
k,l=1

∂k∂lA(0)ξkξl, [Δ3A](ξ) :=
1

6

d∑
j,k,l=1

∂j∂k∂lA(0)ξjξkξl,
(5.1)

‖K3(ξ)‖ � 1

24
μ+M4(a)|ξ|4, |ξ| � δ0(a, μ). (5.2)

Let F (ξ) be the spectral projection of A(ξ) that corresponds to the interval [0, d0/3]. The symbol N stands
for the kernel KerA(0) = L{1Ω}; by P we denote the orthogonal projection onto N; then P = (·,1Ω)1Ω.
Let Γ be a contour on the complex plane that is equidistant to the interval [0, d0/3] and passes through the
middle point of the interval (d0/3, 2d0/3). By the Riesz formula, the following representations are valid:

F (ξ) = − 1

2πi

∮
Γ

(A(ξ)− ζI)−1 dζ, |ξ| � δ0(a, μ), (5.3)

A(ξ)F (ξ) = − 1

2πi

∮
Γ

(A(ξ)− ζI)−1ζ dζ, |ξ| � δ0(a, μ); (5.4)

here we integrate along the contour Γ counterclockwise.
We obtain an approximation for the operator F (ξ) with an error O(|ξ|2) and an approximation for the

operator A(ξ)F (ξ) with an error O(|ξ|4). Earlier less accurate approximations for F (ξ) and A(ξ)F (ξ) were
obtained in [8] with errors O(|ξ|) and O(|ξ|3), respectively; see Propositions 5.1(1◦) and 5.3.

For |ξ| � δ0(a, μ) and ζ ∈ Γ, we write

R(ξ, ζ) := (A(ξ)− ζI)−1, R0(ζ) := R(0, ζ), ΔA(ξ) := A(ξ)− A(0).

We apply the resolvent identity

R(ξ, ζ) = R0(ζ) −R(ξ, ζ)ΔA(ξ)R0(ζ), |ξ| � δ0(a, μ), ζ ∈ Γ. (5.5)

The length of the contour Γ is equal to π+2
3 d0, and both resolvents on the contour Γ satisfy the estimates

‖R(ξ, ζ)‖ � 6d−1
0 , ‖R0(ζ)‖ � 6d−1

0 , |ξ| � δ0(a, μ), ζ ∈ Γ. (5.6)

Iterating the resolvent identity (5.5) and using representations (5.3), (5.4), estimates (5.6), and an appropriate
version of the Hadamard formula for A(ξ) (cf. (5.1), (5.2)), we deduce the required approximations. When
calculating the contour integrals, we also use the following representation of the resolvent of A(0):

R0(ζ) = R0(ζ)P +R0(ζ)P
⊥ = −1

ζ
P +R0(ζ)P

⊥, ζ ∈ Γ,

and take into account the fact that the operator-valued function R⊥
0 (ζ) := R0(ζ)P

⊥ is holomorphic inside
the contour Γ. This way we obtain the following results.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 31 No. 1 2024
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Proposition 5.1. Suppose that conditions (1.2)–(1.5) are satisfied.

1◦. If M1(a) < ∞, then

‖F (ξ)− P‖ � C1(a, μ)|ξ|, |ξ| � δ0(a, μ). (5.7)

2◦. If M2(a) < ∞, then

F (ξ) = P + [F ]1(ξ) + Φ(ξ), [F ]1(ξ) :=

d∑
j=1

Fjξj ,

‖Φ(ξ)‖ � C2(a, μ)|ξ|2, |ξ| � δ0(a, μ).

The operators Fj are given by

Fj = −P∂jA(0)P
⊥
A(0)−1P⊥ − P⊥

A(0)−1P⊥∂jA(0)P, j = 1, . . . , d. (5.8)

Here A(0)−1 is understood as the inverse operator to A(0)|N⊥ : N⊥ → N⊥.

Representation (5.8) can be “deciphered” in terms of solutions of auxiliary problems.

Proposition 5.2. Under the assumptions of Proposition 5.1(2◦), the operators Fj admit the following
representations :

Fj = i(·, vj)1Ω − i(·,1Ω)vj , j = 1, . . . , d, (5.9)

where vj(x) are components of the periodic solution v(x) of problem (2.1).

Proposition 5.3 ([8]). Suppose that conditions (1.2)–(1.5) are satisfied and M3(a) < ∞. Then

A(ξ)F (ξ) = [G]2(ξ) + Ψ(ξ), [G]2(ξ) :=
1

2

d∑
k,l=1

Gklξkξl, (5.10)

‖Ψ(ξ)‖ � C3(a, μ)|ξ|3, |ξ| � δ0(a, μ). (5.11)

The operators Gkl are given by

Gkl = P∂k∂lA(0)P − P∂kA(0)P
⊥
A(0)−1P⊥∂lA(0)P − P∂lA(0)P

⊥
A(0)−1P⊥∂kA(0)P, k, l = 1, . . . , d.

(5.12)

Representation (5.12) can be deciphered in terms of solutions of auxiliary problems.

Proposition 5.4 ([8]). Under the assumptions of Proposition 5.3, the operators Gkl admit the represen-
tations Gkl = gklP, k, l = 1, . . . , d, where gkl are given by (2.2). Thus,

[G]2(ξ) =
1

2

d∑
k,l=1

gklξkξlP = 〈g0ξ, ξ〉P, ξ ∈ R
d,

where g0 is the effective matrix.

Proposition 5.5. Assume that conditions (1.2)–(1.5) hold and M4(a) < ∞. Then

A(ξ)F (ξ) = [G]2(ξ) + [G]3(ξ) + Υ(ξ),

‖Υ(ξ)‖ � C4(a, μ)|ξ|4, |ξ| � δ0(a, μ).

Here [G]2(ξ) is defined by (5.10), (5.12), and [G]3(ξ) =
1
6

∑d
j,k,l=1 Gjklξjξkξl satisfies the relations

‖[G]3(ξ)‖ � C5(a, μ)|ξ|3, ξ ∈ R
d,

P [G]3(ξ)P = 0, ξ ∈ R
d.
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6. APPROXIMATION FOR THE RESOLVENT (A + ε2I)−1

From (4.9), it follows that

(A(ξ)F (ξ)u, u) � μ−C2(a)|ξ|2(F (ξ)u, u), u ∈ L2(Ω), |ξ| � δ0(a, μ). (6.1)

According to Propositions 5.1, 5.3, 5.4 we have A(ξ)F (ξ) = 〈g0ξ, ξ〉P + O(|ξ|3) and F (ξ) = P + O(|ξ|) as
|ξ| → 0. Substituting these expansions in (6.1) and letting u = 1Ω, we obtain 〈g0ξ, ξ〉 � μ−C2(a)|ξ|2+O(|ξ|3).
This implies that the matrix g0 is positive definite: g0 � μ−C2(a)1.

Denote
Ξ(ξ, ε) := (A(ξ) + ε2I)−1F (ξ)−

(
〈g0ξ, ξ〉+ ε2

)−1
P, ξ ∈ Ω̃, ε > 0. (6.2)

Obviously,

Ξ(ξ, ε) = F (ξ)(A(ξ) + ε2I)−1(F (ξ)− P ) + (F (ξ)− P )(〈g0ξ, ξ〉+ ε2)−1P

− F (ξ)(A(ξ) + ε2I)−1
(
A(ξ)F (ξ)− 〈g0ξ, ξ〉P

)
(〈g0ξ, ξ〉+ ε2)−1P. (6.3)

Using this identity, the estimate g0 � μ−C2(a)1, and relations (4.9), (5.7), (5.10), (5.11), we deduce the
following statement.

Proposition 6.1 ([8]). Let conditions (1.2)–(1.5) be fulfilled, and assume that M3(a) < ∞. Then the
operator (6.2) satisfies the estimate

‖Ξ(ξ, ε)‖ � 2C1(a, μ)|ξ|
μ−C2(a)|ξ|2 + ε2

+
C3(a, μ)|ξ|3

(μ−C2(a)|ξ|2 + ε2)2
, |ξ| � δ0(a, μ), ε > 0.

Taking into account the obvious estimate

‖(A(ξ) + ε2I)−1(I − F (ξ))‖ � 3

d0
, |ξ| � δ0(a, μ), ε > 0, (6.4)

from Proposition 6.1, we obtain the following result.

Theorem 6.2 ([8]). Assume that conditions (1.2)–(1.5) are satisfied and M3(a) < ∞. Then

∥∥(A(ξ) + ε2I)−1 − (〈g0ξ, ξ〉+ ε2)−1P
∥∥ � C6(a, μ)ε

−1, ε > 0, |ξ| � δ0(a, μ). (6.5)

Obviously, for ξ ∈ Ω̃ such that |ξ| > δ0(a, μ), the left-hand side of (6.5) does not exceed 2(μ−C2(a)δ20 +

ε2)−1. Hence, estimate (6.5) holds for any ξ ∈ Ω̃, perhaps with a different constant C6(a, μ).
Let A0 be the effective operator defined in Section 2. Using the unitary Gelfand transform, we decompose

A
0 into the direct integral:

A
0 = G∗

(∫
˜Ω

⊕A
0(ξ) dξ

)
G. (6.6)

Here A0(ξ) is the self-adjoint operator in L2(Ω) given by A
0(ξ) = (D+ξ)∗g0(D+ξ), D = −i∇, DomA

0(ξ) =

H̃2(Ω). The space H̃2(Ω) is defined as a subspace of H2(Ω) consisting of functions whose Zd-periodic exten-
sion to R

d belongs to H2
loc(R

d).

Note that A
0(ξ)P = 〈g0ξ, ξ〉P . Hence,

(
〈g0ξ, ξ〉+ ε2

)−1
P = (A0(ξ) + ε2I)−1P. By the discrete Fourier

transform, we deduce that

∥∥(A0(ξ) + ε2I)−1(I − P )
∥∥ = sup

0
=n∈Zd

(〈g0(2πn+ ξ), 2πn+ ξ〉+ ε2)−1 � (μ−C2(a)π2 + ε2)−1, ξ ∈ Ω̃. (6.7)

Combining this inequality and Theorem 6.2 yields the following theorem.

Theorem 6.3 ([8]). Suppose that conditions (1.2)–(1.5) are satisfied and M3(a) < ∞. Then

∥∥(A(ξ) + ε2I)−1 − (A0(ξ) + ε2I)−1
∥∥
L2(Ω)→L2(Ω)

� C1(a, μ)ε
−1, ε > 0, ξ ∈ Ω̃.

Now we proceed to a more accurate approximation for the resolvent (A(ξ)+ε2I)−1. Using Propositions 5.1,
5.3, 5.5, and 6.1 together with representation (6.3) and estimates (6.4), (6.7), we obtain the following state-
ment.
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Theorem 6.4. Suppose that conditions (1.2)–(1.5) are satisfied and M4(a) < ∞. Then

(A(ξ)+ε2I)−1 = (〈g0ξ, ξ〉+ε2)−1P + [F ]1(ξ)(〈g0ξ, ξ〉+ε2)−1P + (〈g0ξ, ξ〉+ε2)−1P [F ]1(ξ) + Y (ξ, ε),

‖Y (ξ, ε)‖ � C7(a, μ), ε > 0, |ξ| � δ0(a, μ).

Here [F ]1(ξ) =
∑d

j=1 Fjξj, and the operators Fj are given by (5.9).

From Theorem 6.4, considering Lemma 2.1, it is easy to deduce the following result.

Theorem 6.5. Suppose that conditions (1.2)–(1.5) are satisfied and M4(a) < ∞. Then

∥∥(A(ξ) + ε2I)−1 − (A0(ξ) + ε2I)−1 −K(ξ, ε)
∥∥
L2(Ω)→L2(Ω)

� C2(a, μ)

for ε > 0 and ξ ∈ Ω̃. Here

K(ξ, ε) := −i

d∑
j=1

[vj ](Dj + ξj)(A
0(ξ) + ε2I)−1 + i

d∑
j=1

(A0(ξ) + ε2I)−1(Dj + ξj)[vj ].

Using the direct integral decompositions (4.4) and (6.6), we deduce the following two statements from
Theorems 6.3 and 6.5.

Theorem 6.6 ([8]). Let conditions (1.2)–(1.5) be fulfilled, and assume that M3(a) < ∞. Then

∥∥(A+ ε2I)−1 − (A0 + ε2I)−1
∥∥
L2(Rd)→L2(Rd)

� C1(a, μ)ε
−1, ε > 0.

Theorem 6.7. Let conditions (1.2)–(1.5) be fulfilled, and assume that M4(a) < ∞. Then

∥∥(A+ ε2I)−1 − (A0 + ε2I)−1 −K(ε)
∥∥
L2(Rd)→L2(Rd)

� C2(a, μ), ε > 0.

Here

K(ε) := −
d∑

j=1

[vj ]∂j(A
0 + ε2I)−1 +

d∑
j=1

(A0 + ε2I)−1∂j [vj ]. (6.8)

7. PROOF OF MAIN RESULTS

Let us introduce the scaling transformation (a family of unitary operators Tε): Tεu(x) := εd/2u(εx),
u ∈ L2(R

d), ε > 0. It is easily seen that Aε = ε−2T ∗
ε ATε, ε > 0. Hence, (Aε + I)−1 = T ∗

ε ε
2(A + ε2I)−1Tε,

ε > 0. Similarly, (A0 + I)−1 = T ∗
ε ε

2(A0 + ε2I)−1Tε, ε > 0. Since Tε is unitary, then

‖(Aε + I)−1 − (A0 + I)−1‖L2(Rd)→L2(Rd) = ε2‖(A+ ε2I)−1 − (A0 + ε2I)−1‖L2(Rd)→L2(Rd).

Combining this with Theorem 6.6, we obtain the required estimate (2.3). Theorem 2.2 is proved.
In a similar fashion, taking into account the relation Kε = T ∗

ε εK(ε)Tε, ε > 0, where K(ε) is the operator
(6.8), we obtain

‖(Aε + I)−1 − (A0 + I)−1 − εKε‖L2(Rd)→L2(Rd) = ε2‖(A+ ε2I)−1 − (A0 + ε2I)−1 −K(ε)‖L2(Rd)→L2(Rd).

Together with Theorem 6.7, this implies estimate (2.4) and completes the proof of Theorem 2.3.

The detailed presentation of the above results can be found in preprint [9].
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