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a b s t r a c t

In this paper, we consider nonisothermal two-phase flows through heterogeneous
porous media with periodic microstructure. Examples of such models appear in
gas migration through engineered and geological barriers for a deep repository for
radioactive waste, thermally enhanced oil recovery and geothermal systems. The
mathematical model is given by a coupled system of two-phase flow equations, and
an energy balance equation. The model consists of the usual equations derived from
the mass conservation of both fluids along with the Darcy–Muskat and the capillary
pressure laws. The problem is written in terms of the phase formulation, i.e. the
saturation of one phase, the pressure of the second phase and the temperature are
primary unknowns. The major difficulties related to this model are in the nonlinear
degenerate structure of the equations, as well as in the coupling in the system. As
fluid properties are defined as a function of temperature and pressure, there is a
strong coupling between the mass balance and energy balance equations. Under
some realistic assumptions on the data, we obtain a nonlinear homogenized coupled
system of three coupled partial differential equations with effective coefficients
(porosity, permeability, thermal conductivity, heat capacity) which are computed
via solving cell problems. We give a rigorous mathematical derivation of the upscaled
model by means of the two-scale convergence.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Two-phase models for the simulation of flow and transport processes in the subsurface are used widely
in various technical application fields. Among others, these applications include geothermal systems,

* Corresponding author.
E-mail addresses: brahim.amaziane@univ-pau.fr (B. Amaziane), jurak@math.hr (M. Jurak), leonid.pankratov@univ-pau.fr

(L. Pankratov), andrey@sci.lebedev.ru (A. Piatnitski).

https://doi.org/10.1016/j.nonrwa.2018.02.012
1468-1218/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.nonrwa.2018.02.012
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2018.02.012&domain=pdf
mailto:brahim.amaziane@univ-pau.fr
mailto:jurak@math.hr
mailto:leonid.pankratov@univ-pau.fr
mailto:andrey@sci.lebedev.ru
https://doi.org/10.1016/j.nonrwa.2018.02.012


B. Amaziane et al. / Nonlinear Analysis: Real World Applications 43 (2018) 192–212 193

oil reservoir engineering, ground-water hydrology, and thermal energy storage. More recently, modeling
multiphase flow received an increasing attention in connection with gas migration in a nuclear waste
repository and sequestration of CO2.

This work aims to incorporate the temperature effects into immiscible incompressible two-phase flow in
heterogeneous porous media with periodic microstructure. The system is subjected to significant changes
in temperature conditions during long-term operation of the reservoir. Such a sophisticated mathematical
description of the coupled processes is essential, taking into account nonisothermal two-phase flow. Modeling
nonisothermal two-phase flow and transport processes in the subsurface requires the consideration of the
transfer of energy between the phases in addition to the flow processes such as advection and diffusion. The
basic equations for nonisothermal two-phase flow in a porous medium involve mass conservation, Darcy’s law,
energy conservation, saturation, and capillary pressure constraint equations. The description of the physical
and thermodynamical state yields a system of three strongly coupled partial differential equations. The
governing fluid and heat transport equations used to model thermal recovery processes are highly nonlinear.
As fluid properties are defined as a function of temperature and pressure, there is a strong coupling between
the mass balance and energy balance equations. The major difficulties related to this model are in the
nonlinear degenerate structure of the equations, as well as in the coupling in the system.

In a previous paper [1], we gave an existence result of weak solutions for such a model under some realistic
assumptions on the data. A model fully coupling the two-phase flow and heat transfer was developed to
investigate immiscible incompressible two-phase flow in heterogeneous porous media under nonisothermal
conditions. The goal of the present paper is to employ homogenization techniques to provide a rigorous
derivation of an upscaled model by means of the two-scale convergence.

Over the past decades, mathematical analysis and numerical simulation of multiphase flows in porous
media have been the subject of investigation of many researchers owing to important applications in reservoir
simulation. There is an extensive literature on this subject. We will not attempt a literature review but will
merely mention a few references. Here we restrict ourselves to the mathematical analysis of such models.
We refer, for instance, to the books [2–8] and the references therein. The mathematical analysis and the
homogenization of the system describing the flow of isothermal two incompressible immiscible fluids in porous
media is quite understood. Existence, uniqueness of weak solutions to these equations, and their regularity
has been shown under various assumptions on physical data; see for instance [2,3,5,9–14] and the references
therein. There is a large and growing literature on homogenization techniques applied to multiphase flow in
porous media. A recent review of the mathematical homogenization methods developed for incompressible
single phase flow, incompressible immiscible two-phase flow in porous media and compressible miscible flow
in porous media can be viewed in [7,15–20].

However, as reported in [1], all the aforementioned works are restricted to the case where flows are under
isothermal conditions, contrarily to the present work. This assumption is too restrictive for some realistic
problems, such as thermally enhanced oil recovery, geothermal energy production, high-level radioactive
waste repositories. The present work was motivated by a need to incorporate the thermal behavior for such
problems. In this work, a coupled reservoir two-phase flow model is described which accounts for varying
reservoir temperature to capture flow physics accurately. Although considerable progress has been made in
the computational simulation of two-phase problems under nonisothermal conditions (see e.g. [21–31] and
the references therein), to the best knowledge of the authors, the homogenization of such coupled models
under nonisothermal conditions is still missing. Closer to the present problem, recently homogenization for
a Richard’s model arising from the heat and moisture flow through a partially saturated porous medium
was obtained in [32]. In [33], a model for nonisothermal single flow in double porosity media is constructed
by the technique of homogenization.

This paper is concerned with the homogenization of a nonlinear degenerate system of diffusion–convection
equations modeling the flow and transport of nonisothermal immiscible incompressible fluids through
heterogeneous porous media, capillary and gravity effects being taken into account.
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The rest of the paper is organized as follows. Section 2 is devoted to the statement of the homogenization
problem. Namely, in this section we introduce the adimensionalized system of equations describing
nonisothermal immiscible incompressible two-phase flow with rapidly oscillating parameters. We consider
the microscopic model in terms of the phase formulation. More precisely, the corresponding system consists
of three equations: the first two equations describe the evolution of the phase pressures and the saturation,
and the last equation the evolution of the temperature function, all three equations being coupled. Then
we introduce the notion of the nonisothermal global pressure generalizing the well known notion of the
global pressure introduced earlier in the analysis of the incompressible and compressible two-phase flow. We
rewrite the initial system of equations in terms of the global pressure, the wetting phase saturation and
the temperature. Then we formulate the main assumptions on the data. Finally, we give the definition of
a weak solution to our problem. In Section 3 we obtain uniform a priori estimates for the solutions to our
initial problem which are essentially based on the energy equality and the proper choice of test functions.
In Section 4 we establish the key compactness results for the sequences {Sε}ε>0 and {T ε}ε>0, and then,
as a consequence, deduce several convergence results which will be used below in the proof of the main
result of the paper. In Section 5 we formulate the main result of the paper in terms of the homogenized
phases formulation and we complete its proof. Since the original system is fully nonlinear and degenerates,
the homogenization procedure is getting nontrivial, still the presence of the temperature brings additional
difficulties in passage to the limit. Lastly, some concluding remarks are forwarded.

2. Statement of the problem

In this section we formulate the studied homogenization problem. First, in Section 2.1 we introduce the
adimensionalized system of equations that describes nonisothermal immiscible incompressible two-phase
flow in a porous reservoir with rapidly oscillating parameters. Then in Section 2.2 we define the so-called
nonisothermal global pressure. Section 2.3 provides the main assumptions on the data. Finally, in Section 2.4
we give the definition of a weak solution to our problem.

2.1. Governing equations

Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded, connected Lipschitz domain. We assume that Ω comprises a porous
medium with a periodic microstructure and consider a nonisothermal immiscible incompressible two-phase
flow process in the reservoir Ω . The period of microstructure in each coordinate direction is denoted by ε,
0 < ε ≪ 1. This small parameter represents the ratio of the cell size to the size of the whole region Ω . In
what follows εY with Y

def= (0, 1)d stands for the periodicity cell of the microstructure. The time interval
of interest is (0,T) and Q = Ω × (0,T). We focus our attention on a model where both fluids are assumed
incompressible, that is the densities of the wetting and non-wetting phases are strictly positive constants,
and the skeleton density is also assumed to be a strictly positive constant. It is assumed that no exchange
of mass between the two phases can take place and each phase remains homogeneous. Then the flow can
be described in terms of the following adimensionalized characteristics: Φε(x) = Φ( x

ε ) is the porosity of
the medium Ω ; Kε(x) = K( x

ε ) is the absolute permeability tensor of Ω ; ϱw, ϱn, and ϱs are the densities
of the wetting and non-wetting phases, and the skeleton, respectively; Sε = Sε(x, t) is the saturation of
the wetting phase; kr,w(Sε) and kr,n(Sε) are the relative permeabilities of the wetting and non-wetting
phases; pε

w = pε
w(x, t), pε

n = pε
n(x, t) are the pressures of wetting and non-wetting phases; Pc = Pc(S) is the

capillary pressure as function of the saturation; T ε = T ε(x, t) is the temperature; Cw,Cn are the constant
heat capacities of the wetting and non-wetting phases, respectively; Cε

s(x) = Cs( x
ε ) is the heat capacity of

the solid part; µε
w = µw(T ε) and µε

n = µn(T ε) are the viscosities of the wetting and non-wetting phases,
respectively; kε

T = kT ( x
ε ) is the thermal conductivity of the combined three-phase system.
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The mobility functions λw and λn are then defined by

λw(S, T ) def= kr,w(S)
µw(T ) ; λn(S, T ) def= kr,n(S)

µn(T ) for all S, T ∈ R. (2.1)

In what follows, for the sake of presentation simplicity we neglect the source terms. Then the conservation
of mass in each phase and conservation of energy relations read (see, e.g., [4,6,34,35]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ⩽ Sε ⩽ 1 in Q;

Φε ∂S
ε

∂t
− div

{
Kελw(Sε, T ε)

(
∇pε

w − r⃗w

)}
= 0 in Q;

−Φε ∂S
ε

∂t
− div

{
Kελn(Sε, T ε)

(
∇pε

n − r⃗n

)}
= 0 in Q;

∂Ψε

∂t
− div

{
KεT ε

[
Cwλw(Sε, T ε)

(
∇pε

w − r⃗w

)
+ Cnλn(Sε, T ε)

(
∇pε

n − r⃗n

)]}
− div

{
kε

T ∇T ε
}

= 0 in Q;
Pc(Sε) = pε

n − pε
w in Q,

(2.2)

where r⃗w
def= ϱw g⃗, r⃗n

def= ϱn g⃗; with g⃗ being the gravity vector and

Ψε(x;Sε, T ε) def=
{(

CwS
ε + Cn[1 − Sε]

)
Φε + Cε

s

[
1 − Φε

]}
T ε. (2.3)

The model (2.2) has to be completed with appropriate boundary and initial conditions. We assume that
the boundary ∂Ω consists of two parts Γ1 and Γ2 such that Γ1 ∩ Γ2 = ∅, ∂Ω = Γ 1 ∪ Γ 2 and |Γ1| > 0. Here
Γ1,Γ2 are subsets of ∂Ω with a Lipschitz boundary on ∂Ω . On Γ1 the pressures and the temperature satisfy
homogeneous Dirichlet boundary condition while on Γ2 the corresponding fluxes through the boundary are
equal to zero, that is {

pε
n(x, t) = pε

w(x, t) = T ε(x, t) = 0 on Γ1 × (0,T);
q⃗ ε

w · ν⃗ = q⃗ ε
n · ν⃗ = kε

T ∇T ε · ν⃗ = 0 on Γ2 × (0,T),
(2.4)

where the velocities q⃗ ε
w, q⃗

ε
n are defined as follows:

q⃗ ε
w

def= −Kε(x)λw(Sε, T ε)
(
∇pε

w − r⃗w

)
and q⃗ ε

n
def= −Kε(x)λn(Sε, T ε)

(
∇pε

n − r⃗n

)
. (2.5)

The initial conditions read:

pε
w(x, 0) = p0

w(x), pε
n(x, 0) = p0

n(x), and T ε(x, 0) = T 0(x) in Ω . (2.6)

When modeling nonisothermal two-phase flow in a porous medium, the characteristics of the medium
depend on the temperature and thus the classical two-phase flow equations should be coupled with a parabolic
nonlinear diffusion-convection equation that describes the evolution of the temperature.

2.2. Global pressure and useful relations

We rearrange system (2.2)–(2.6) using the concept of the so-called global pressure and, in the sequel,
consider the rearranged formulation in which the global pressure play a role of a new unknown. This
transformation results in a partial decoupling of the studied system and allows us to obtain a priori estimates
and compactness results. For isothermal incompressible immiscible two-phase flow, the concept of global
pressure was introduced for the first time in [2,3]. Then it was generalized to the nonisothermal case in
[36–39]. Following [36], we define the nonisothermal global pressure Pε as follows:

pε
n = Pε +

∫ Sε

1

λw

λ
(ξ, T ε)P ′

c(ξ) dξ def= Pε + Gn(Sε, T ε), (2.7)
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where

λ(Sε, T ε) def= λw(Sε, T ε) + λn(Sε, T ε). (2.8)

Then using the capillary pressure relation (2.2)4, one can easily calculate that

pε
w = Pε −

∫ Sε

1

λn

λ
(ξ, T ε)P ′

c(ξ) dξ def= Pε + Gw(Sε, T ε). (2.9)

It is easy to see that

∇pε
n = ∇Pε + λw

λ
(Sε, T ε) ∇Pc(Sε) + Bε ∇T ε; ∇pε

w = ∇Pε − λn

λ
(Sε, T ε) ∇Pc(Sε) + Bε ∇T ε, (2.10)

where

Bε = B(Sε, T ε) def=
∫ Sε

1

∂

∂T

[
λw

λ
(ξ, T ε)

]
P ′

c(ξ) dξ. (2.11)

After simple calculations we obtain that

λn |∇pε
n|2 + λw |∇pε

w|2 = λ |∇Pε|2 + λwλn

λ
|∇Pc|2 + λ [Bε]2 |∇T ε|2 + 2λBε ∇Pε · ∇T ε. (2.12)

Observe that, in contrast to the isothermal case, the second term on the right-hand side of (2.12) depends
both on the saturation function and on the temperature. However, in our further analysis we will need a
function that depends on the saturation only and has a bounded gradient. We introduce this function as
follows:

β(Sε) def=
∫ Sε

0
α(ξ)|P ′

c(ξ)| dξ with α(ξ) def=
( kr,w(ξ)

Mw
· kr,n(ξ)

Mn

kr,w(ξ)
mw

+ kr,n(ξ)
mn

)1/2

, (2.13)

where the constants Mw,Mn,mw,mn are defined in condition (A.7) below.
Furthermore, we introduce the functions

Λ0(Sε, T ε) def= MnMw

mnmw

kr,n(Sε)mw + kr,w(Sε)mn

kr,n(Sε)µw(T ε) + kr,w(Sε)µn(T ε) ; (2.14)

Λ1(Sε, T ε) def=
√

Λ0(Sε, T ε)

√
λw(Sε, T ε)λn(Sε, T ε)

λ(Sε, T ε) . (2.15)

Due to (A.6) and (A.7), the function Λ0 satisfies the estimates

0 < Λ0,min ⩽ Λ0(Sε, T ε) ⩽ Λ0,max < +∞, (2.16)

with some constants Λ0,min and Λ0,max. The function Λ1 keeps the degenerations as it is zero for Sε = 0
and Sε = 1. With these new functions we can write:

λn∇pε
n = λn∇Pε + Λ1 ∇β(Sε) + λnBε ∇T ε, (2.17)

λw∇pε
w = λw∇Pε − Λ1 ∇β(Sε) + λwBε ∇T ε, (2.18)

λn |∇pε
n|2 + λw |∇pε

w|2 = λ |∇Pε|2 + Λ0|∇β(Sε)|2 + λ [Bε]2 |∇T ε|2 + 2λBε ∇Pε · ∇T ε. (2.19)
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2.3. Main assumptions

The main assumptions on the data are:

(A.1) The function Φ = Φ(y) is Y -periodic, Φ ∈ L∞(Y ), and there are positive constants ϕ−, ϕ
+ such that

0 < ϕ− ⩽ Φ(y) ⩽ ϕ+ < 1 a.e. in Y. (2.20)

(A.2) The tensor K = K(y) is Y -periodic, it belongs to (L∞(Y ))d×d, moreover, there exist positive
constants K−,K

+ such that

K−|ξ|2 ⩽ K(y) ξ · ξ ⩽ K+|ξ|2 for all ξ ∈ Rd, a.e. in Y. (2.21)

(A.3) The heat capacities of the fluids Cw > 0 and Cn > 0 are constants. The heat capacity of the solid
part Cs = Cs(y) is a Y -periodic function, Cs ∈ L∞(Y ), and there are positive constants c−

s , c
+
s such

that

0 < c−
s ⩽ Cs(y) ⩽ c+

s a.e. in Y. (2.22)

(A.4) The thermal symmetric conductivity tensor kT = kT (y) is a Y -periodic function from the space
(L∞(Y ))d×d; there exist positive constants k−

T , k
+
T such that

k−
T |ξ|2 ⩽ kT (y) ξ · ξ ⩽ k+

T |ξ|2 for all ξ ∈ Rd, a.e. in Y. (2.23)

(A.5) The capillary pressure function Pc ∈ C1([0, 1];R+). It is a decreasing function of the saturation,
i.e., P ′

c(s) < 0 in [0, 1], and Pc(1) = 0.
(A.6) The functions kr,w, kr,n, belong to the space C1(R) and satisfy the following properties:

(i) 0 ⩽ kr,w, kr,n ⩽ 1 on R;
(ii) kr,w(S) = 0 for S⩽0 and kr,n(S) = 0 for S⩾1; kr,w(S) = 1 for S⩾1 and kr,n(S) = 1 for S⩽0;

(iii) there is a positive constant k0 such that kr,w(S) + kr,n(S) ⩾ k0 > 0 for S ∈ R.

(A.7) The viscosities µw, µn ∈ C1(R) are functions of the temperature T . Moreover, these functions, for
any T ∈ R, satisfy the following bounds:

0 < mw ⩽ µw(T ) ⩽ Mw, |µ′
w(T )| ⩽ Mw < +∞; (2.24)

0 < mn ⩽ µn(T ) ⩽ Mn, |µ′
n(T )| ⩽ Mn < +∞. (2.25)

(A.8) The function α defined in (2.13) is such that α ∈ C1([0, 1];R+) . Moreover, α(0) = α(1) = 0 and
α > 0 in (0, 1).

(A.9) The function β−1, inverse of β defined in (2.13) is a Hölder function of order θ on the interval [0, β(1)]
with θ ∈ (0, 1). That is there exists a positive constant Cβ such that for all u1, u2 ∈ [0, β(1)] the
following inequality holds: ⏐⏐β−1(u1) − β−1(u2)

⏐⏐ ⩽ Cβ |u1 − u2|θ.

(A.10) The initial data for the phase pressures are such that p0
n, p

0
w ∈ L2(Ω) and 0 ⩽ p0

n − p0
w ⩽ Pc(0). The

initial data for the saturation 0 ⩽ S0 ⩽ 1 is defined by the capillary pressure law: p0
n − p0

w = Pc(S0).
The initial temperature T 0 ∈ L∞(Ω) satisfies the bounds Tm ⩽ T 0(x) ⩽ TM a.e. in Ω for some
constants Tm and TM .
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Remark 1. According to (A.6) and (A.7) the mobility functions λw, λn defined in (2.1) belong to the space
C([0, 1] × R;R+) and satisfy the following properties:

(i) λw(0, T ) = 0 and λn(1, T ) = 0 for all T ∈ R;
(ii) there is a positive constant L0 such that

λ(S, T ) def= λw(S, T ) + λn(S, T ) ⩾ L0
def= min{mn,mw} k0

Mw Mn
> 0 for all S, T ∈ R. (2.26)

It also easily follows from conditions (A.6), (A.7) that

λ(S, T ) = kr,w(S)
µw(T ) + kr,n(S)

µn(T ) ⩽
1

µw(T ) + 1
µn(T ) ⩽

1
mw

+ 1
mn

def= L1. (2.27)

Remark 2. The assumptions (A.1)–(A.10) are classical and physically meaningful for two-phase flow in
porous media. They are similar to the assumptions made in our previous work [1] that dealt with the
existence of a weak solution of the studied problem.

2.4. Definition of a weak solution

In order to define a weak solution to problem (2.2)–(2.6) we introduce the following Sobolev space:

H1
Γ1(Ω) def=

{
u ∈ H1(Ω) : u = 0 on Γ1

}
.

The space H1
Γ1

(Ω) is a Hilbert space when it is equipped with the norm ∥u∥H1
Γ1

(Ω) = ∥∇u∥(L2(Ω))d .

Definition 2.1. We say that a quadruple function ⟨pε
w, p

ε
n, S

ε, T ε⟩ is a weak solution of problem (2.2)–(2.6)
if, for any ε > 0,

(i) 0 ⩽ Sε ⩽ 1 a.e. in Q.
(ii) Tm ⩽ T ε ⩽ TM a.e. in Q.

(iii) The functions pε
n, p

ε
w, S

ε, T ε have the following regularity properties:

pε
w, p

ε
n ∈ L2(Q) and

√
λw(Sε, T ε) ∇pε

w,
√
λn(Sε, T ε) ∇pε

n ∈ L2(Q); (2.28)

β(Sε) ∈ L2(0,T;H1(Ω)) and Pε ∈ L2(0,T;H1(Ω)), (2.29)

where the function β(Sε) is defined in (2.13) and the global pressure Pε is defined in (2.7);
∂

∂t
(ΦεSε) ∈ L2(0,T;H−1(Ω)); (2.30)

T ε ∈ L2(0,T;H1
Γ1(Ω)); (2.31)

∂Ψε

∂t
∈ L2(0,T;H−1(Ω)), (2.32)

where the function Ψε is defined in (2.3).
(iv) For any φw, φn, φT ∈ C1([0,T];H1(Ω)) satisfying φw = φn = φT = 0 on Γ1 × (0,T) and φw(x,T) =

φn(x,T) = φT (x,T) = 0, we have:

Wetting phase pressure equation:

−
∫
Q

Φε(x)Sε ∂φw

∂t
dx dt−

∫
Ω

Φ(x)S0(x)φw(x, 0) dx

+
∫
Q

Kε(x)λw(Sε, T ε)
[
∇pε

w − r⃗w

]
· ∇φw dx dt = 0. (2.33)
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Non-wetting phase pressure equation:∫
Q

Φε(x)Sε ∂φn

∂t
dx dt+

∫
Ω

Φε(x)S0φn(x, 0) dx

+
∫
Q

Kε(x)λn(Sε, T ε)
[
∇pε

n − r⃗n

]
· ∇φn dx dt = 0. (2.34)

Temperature equation:

−
∫
Q

Ψε ∂φT

∂t
dx dt−

∫
Ω

Ψ0,εφT (x, 0) dx+
∫
Q

kε
T (x)∇T ε · ∇φT dx dt

+
∫
Q

{
T εKε(x)

[
Cwλw(Sε, T ε)

(
∇pε

w − r⃗w

)
+ Cnλn(Sε, T ε)

(
∇pε

n − r⃗n

)]}
· ∇φT dx dt = 0, (2.35)

where

Ψ0,ε def=
{(

CwS
0 + Cn[1 − S0]

)
Φε + Cε

s

[
1 − Φε

]}
T 0. (2.36)

According to [1] problem (2.2)–(2.5) has at least one weak solution.
In what follows we also deal with test functions φw, φn, φT ∈ L2(0,T;H1(Ω)), φw = φn = φT = 0 on

Γ1 × (0,T), that need not be equal to zero at t = T. In this case the corresponding integral relations read∫
Q

Φε(x)∂S
ε

∂t
φw dx dt+

∫
Q

Kε(x)λw(Sε, T ε)
[
∇pε

w − r⃗w

]
· ∇φw dx dt = 0; (2.37)

−
∫
Q

Φε(x)∂S
ε

∂t
φn dx dt+

∫
Q

Kε(x)λn(Sε, T ε)
[
∇pε

n − r⃗n

]
· ∇φn dx dt = 0; (2.38)

and ∫
Q

∂Ψε

∂t
φT dx dt+

∫
Q

kε
T (x)∇T ε · ∇φT dx dt

+
∫
Q

{
T εKε(x)

[
Cwλw(Sε, T ε)

(
∇pε

w − r⃗w

)
+ Cnλn(Sε, T ε)

(
∇pε

n − r⃗n

)]}
· ∇φT dx dt = 0. (2.39)

Notational convention. From now on C,C1, . . . stand for generic constants that do not depend on ε.

3. Uniform estimates for a solution to problem (2.2)–(2.6)

In this section we obtain the a priori estimates for a solution to problem (2.2)–(2.6). We start our analysis
by establishing the following result.

Lemma 3.1. Let a quadruple function {pε
w, p

ε
n, S

ε, T ε} be a weak solution to (2.2)–(2.6). Then∫
Q

{
λw(Sε, T ε)|∇pε

w|2 + λn(Sε, T ε)|∇pε
n|2
}
dx dt ⩽ C0. (3.1)

Proof of Lemma 3.1. In order to prove (3.1), we set φw = pε
w in Eq. (2.37) and φn = pε

n in Eq. (2.38).
By summing the two equations we get:∫

Q

Φε(x) ∂S
ε

∂t

[
pε

w − pε
n

]
dx+

∫
Q

Kε(x)λw(Sε, T ε)
[
∇pε

w − r⃗w

]
· ∇pε

w dx

+
∫
Q

Kε(x)λn(Sε, T ε)
[
∇pε

n − r⃗n

]
· ∇pε

n dx = 0. (3.2)
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Here by the definition of the capillary pressure,

∂Sε

∂t

[
pε

w − pε
n

]
= −Pc(Sε) ∂S

ε

∂t
= −∂𭟋

∂t
(Sε) with 𭟋(s) def=

∫ s

0
Pc(ς) dς.

Then we rewrite (3.2) as follows:∫
Q

Kε(x)λw(Sε, T ε)
[
∇pε

w − r⃗w

]
· ∇pε

w dx+
∫
Q

Kε(x)λn(Sε, T ε)
[
∇pε

n − r⃗n

]
· ∇pε

n dx

=
∫
Q

Φε(x)∂𭟋
∂t

(Sε) dx. (3.3)

Using the Cauchy inequality and condition (A.5), we obtain the desired inequality (3.1). Lemma 3.1 is
proved. □

The next statement deals with the gradient of the temperature.

Lemma 3.2. Let a quadruple function {pε
w, p

ε
n, S

ε, T ε} be a weak solution to (2.2)–(2.6). Then∫
Q

|∇T ε|2 dx dt ⩽ C1, (3.4)

where

C1
def= Cw ϕ

+

2k−
T

∫
Ω

S0(x) [T 0(x)]2 dx+ Cn ϕ
+

2k−
T

∫
Ω

[1 − S0(x)] [T 0(x)]2 dx

+ c+
s

k−
T

[
1 − ϕ−

] ∫
Ω

[T 0(x)]2 dx. (3.5)

Proof of Lemma 3.2. We substitute the function T ε for φT in Eq. (2.39), the function 1
2Cw[T ε]2 for φw

in Eq. (2.37), and the functions 1
2Cn[T ε]2 for φn in Eq. (2.38). This yields

1
2

∫ T

0
⟨ ∂
∂t

(ΦεSε),Cw [T ε]2⟩dt+
∫
Q

Cw T
εKε(x)λw(Sε, T ε)

(
∇pε

w − r⃗w

)
· ∇T ε dx dt = 0,

1
2

∫ T

0
⟨ ∂
∂t

(Φε[1 − Sε]),Cn [T ε]2⟩dt+
∫
Q

Cn T
εKε(x)λn(Sε, T ε)

(
∇pε

n − r⃗n

)
· ∇T εdx dt = 0,

∫ T

0
⟨ ∂
∂t

Ψε, T ε⟩dt+
∫
Q

T ε Kε(x)Cw λw(Sε, T ε)
(
∇pε

w − r⃗w

)
· ∇T εdx dt

+
∫
Q

T εKε(x)Cn λn(Sε, T ε)
(
∇pε

n − r⃗n

)
· ∇T εdx dt+

∫
Q

kε
T (x) ∇T ε · ∇T εdx dt = 0. (3.6)

By subtracting the first two equations from the third one we get:∫ T

0
⟨ ∂
∂t

Ψε, T ε⟩dt− 1
2

∫ T

0
⟨ ∂
∂t

(ΦεSε),Cw [T ε]2⟩dt− 1
2

∫ T

0
⟨ ∂
∂t

(Φε[1 − Sε]),Cn [T ε]2⟩dt

+
∫
Q

kε
T (x) ∇T ε · ∇T εdx dt = 0.

Straightforward calculation gives∫ T

0
⟨ ∂
∂t

Ψε, T ε⟩dt− 1
2

∫ T

0
⟨ ∂
∂t

(ΦεSε),Cw [T ε]2⟩dt− 1
2

∫ T

0
⟨ ∂
∂t

(Φε[1 − Sε]),Cn [T ε]2⟩dt

= 1
2

∫
Ω

(Ψε(T)T ε(T) − Ψε(0)T ε(0)) dx,
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and therefore we have ∫
Q

kε
T (x) ∇T ε · ∇T εdx dt ⩽

1
2

∫
Ω

Ψε(0)T ε(0) dx,

which leads to the estimate (3.4), (3.5). Lemma 3.2 is proved. □

Now we turn to the estimates of the nonisothermal global pressure Pε and the function β(Sε) defined
above in Section 2.2. To this end we make use of the relation (2.12) in which we first estimate the quantity
Bε. The following result holds true.

Lemma 3.3. Let {pε
n, p

ε
w, S

ε, T ε} be a weak solution to (2.2)–(2.6). Then

|Bε| ⩽ CB with CB
def= Pc(0)

[
Mn

mn
+ Mw

mw

]
, (3.7)

where the constants Mn,mn,Mw,mw are defined in condition (A.7).

Proof of Lemma 3.3. Let us introduce the notation:

λ̂w(ξ, T ) def= ∂λw

∂T
(ξ, T ), λ̂n(ξ, T ) def= ∂λn

∂T
(ξ, T ), and λ̂(ξ, T ) def= ∂λ

∂T
(ξ, T ).

Then

∂

∂T

[
λw

λ
(ξ, T )

]
= λ̂wλn − λ̂nλw

λ2 .

Since

λw(ξ, T ) = kr,w(ξ)
µw(T ) ,

then

∂

∂T

[
λw

λ
(ξ, T )

]
= λwλn

λ2
∂

∂T

[
ln µn

µw
(T )
]
. (3.8)

Now we will estimate Bε. From (3.8) we have

|Bε| =

⏐⏐⏐⏐⏐
∫ Sε

1

∂

∂T

[
λw

λ
(ξ, T ε)

]
P ′

c(ξ) dξ

⏐⏐⏐⏐⏐ ⩽
⏐⏐⏐⏐⏐
∫ Sε

1

λwλn

λ2 (ξ, T ε)P ′
c(ξ) dξ

⏐⏐⏐⏐⏐×
⏐⏐⏐⏐ ∂∂T

(
ln µn

µw
(T ε)

)⏐⏐⏐⏐ . (3.9)

Then from the maximum principle for the saturation Sε, condition (A.5), and the definition of the mobility
functions we have: ⏐⏐⏐⏐⏐

∫ Sε

1

λwλn

λ2 (ξ, T ε)P ′
c(ξ) dξ

⏐⏐⏐⏐⏐ ⩽
∫ 1

0
|P ′

c(ξ)| dξ = Pc(0). (3.10)

We proceed to the second term on the right-hand side of (3.9). From condition (A.7), we have:⏐⏐⏐⏐ ∂∂T
(

ln µn

µw
(T ε)

)⏐⏐⏐⏐ =
⏐⏐⏐⏐µ′

n(T ε)
µn(T ε) − µ′

w(T ε)
µw(T ε)

⏐⏐⏐⏐ ⩽ Mn

mn
+ Mw

mw
. (3.11)

Finally, from (3.9)–(3.11), we get the desired estimate (3.7). This completes the proof of Lemma 3.3. □
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The global pressure Pε and β(Sε) admit the following estimates.

Lemma 3.4. Let {pε
n, p

ε
w, S

ε, T ε} be a weak solution to (2.2)–(2.6). Then∫
Q

|∇Pε|2 dx dt ⩽ 2 C0 + 4 C2
B L1 C1

L0
(3.12)

and ∫
Q

|∇β(Sε)|2 dx dt ⩽ 2 C0 + 4 C2
B L1 C1

Λ0,min
, (3.13)

where the constants C0,C1,CB are defined in Lemmata 3.1, 3.2, 3.3, respectively; the constants Λ0,min, L0,
L1 are given by (2.16), (2.26), and (2.27); the function β = β(Sε) is defined in (2.13).

Proof of Lemma 3.4. It follows from (2.19) that∫
Q

{
λ(Sε, T ε) |∇Pε|2 + Λ0(Sε, T ε)|∇β(Sε)|2

}
dx dt

⩽
∫
Q

{
λn(Sε, T ε) |∇pε

n|2 + λw(Sε, T ε) |∇pε
w|2
}
dx dt+

∫
Q

2λ(Sε, T ε) |∇Pε| |Bε| |∇T ε| dx dt.

(3.14)

In order to estimate the second term on the right-hand side in (3.14) we apply the Cauchy inequality
which yields ∫

Q

2λ(Sε, T ε) |∇Pε| |Bε| |∇T ε| dx dt ⩽ 1
2

∫
Q

λ(Sε, T ε) |∇Pε|2 dx dt

+ 2
∫
Q

λ(Sε, T ε) |Bε|2 |∇T ε|2 dx dt. (3.15)

Due to (2.27) and Lemmata 3.2, 3.3, the second integral on the right-hand side of (3.15) admits the following
bound:

2
∫
Q

λ(Sε, T ε) |Bε|2 |∇T ε|2 dx dt ⩽ 2 C2
B L1

∫
Q

|∇T ε|2 dx dt ⩽ 2 C2
B L1 C1. (3.16)

Now, from Lemma 3.1 and (3.14), (3.15), (3.16) we obtain

1
2

∫
Q

{
λ(Sε, T ε) |∇Pε|2 + Λ0(Sε, T ε)|∇β(Sε)|2

}
dx dt ⩽ C0 + 2 C2

B L1 C1.

Then by (2.26), (2.16) we have∫
Q

{
L0 |∇Pε|2 + Λ0,min |∇β(Sε)|2

}
dx dt ⩽ 2 C0 + 4 C2

B L1 C1. (3.17)

This inequality gives the desired bounds (3.12), (3.13). Lemma 3.4 is proved. □

Our next goal is to estimate the time derivatives of the functions Sε and Ψε. The following result holds
true.

Lemma 3.5. Let {pε
n, p

ε
w, S

ε, T ε} be a weak solution to (2.2)–(2.6). Then

∥∂t(Φε Sε)∥L2(0,T ;H−1(Ω)) + ∥∂tΨ
ε∥L2(0,T ;H−1(Ω)) ≤ C2. (3.18)

Proof of Lemma 3.5. This statement can be proved in a standard way as in [40] by using the estimates
of Lemmata 3.1, 3.2, 3.3. □
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4. Compactness and convergence results for the sequences {Sε}ε>0, {T ε}ε>0

In this section we establish key compactness results for the sequences {Sε}ε>0 and {T ε}ε>0, and then,
as a consequence, deduce several convergence results for a solution of problem (2.2)–(2.6). The compactness
results rely on auxiliary estimates of the modulus of continuity of the saturation and the temperature
functions.

4.1. Compactness and convergence results for {Sε}ε>0

The goal of the section is to obtain an auxiliary estimate of the modulus of continuity with respect to time
for the saturation function Sε. This result is used below in the proof of the compactness and convergence
results for the saturation {Sε}ε>0 and the temperature function T ε. In this section we apply the ideas of
the papers [41] and [42].

Lemma 4.1. For sufficiently small h we have:∫
Qh

[
Sε(t) − Sε(t− h)

] [
β(Sε)(t) − β(Sε)(t− h)

]
dx dt ⩽ C h, (4.1)

where Qh def= Ω × (h,T) and C is a constant that does not depend on ε, h.

Proof of Lemma 4.1. By (2.37) and (2.18), for any test function φw ∈ C1([0,T];H1(Ω)) such that φw = 0
on Γ1 × (0,T) the following relation holds true:∫

Q

Φε(x)∂S
ε

∂t
φw dx dt+

∫
Q

Kε(x)
[
λw(Sε, T ε)

(
∇Pε − r⃗w

)
− Λ1(Sε, T ε) ∇β(Sε) + λw(Sε, T ε) Bε(Sε, T ε) ∇T ε

]
· ∇φw dx dt = 0.

(4.2)

Following the ideas of the proof of Lemma 6.3 from [41], we introduce the function χε:

χε(x, t) def=
∫ min{t+h,T}

max{t,h}
h
[
∂hβ(Sε)

]
(x, τ) dτ with ∂hu

def= u(t) − u(t− h)
h

. (4.3)

Then, due to Lemma 3.4 and the boundary conditions for the function β(Sε), χε ∈ L2(0, T ;H1
Γ1

(Ω)) for
any ε > 0. Setting φw = χε in (4.2), by the Fubini theorem we have:∫

Q

Φε(x)∂S
ε

∂t
χε dxdt =

∫ T

h

∫
Ω

Φε(x)h2
[
∂hSε

] [
∂hβε

]
dx dτ. (4.4)

Then from (4.2) with φw = χε and relation (4.4) we obtain:∫
Qh

Φε(x)h2
[
∂hSε

] [
∂hβε

]
dx dτ = Iε[χε],

where

Iε[χε] = −
∫
Q

Kε(x)
[
λw(Sε, T ε)

(
∇Pε − r⃗w

)
− Λ1(Sε, T ε) ∇β(Sε)

+ λw(Sε, T ε) Bε(Sε, T ε) ∇T ε
]

· ∇χε dx dt.

Now by Lemmata 3.2, 3.3, 3.4, considering the definition of the function χε and applying Cauchy’s
inequality, we obtain ⏐⏐Iε[χε]

⏐⏐ ⩽ C h,

where C is a constant that does not depend on ε, h. This completes the proof of Lemma 4.1. □
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Corollary 4.1. For h sufficiently small, we have:∫
Qh

⏐⏐β(Sε)(t) − β(Sε)(t− h)
⏐⏐2 dx dt ⩽ C h. (4.5)

Proof of Corollary 4.1. It follows from the definition of the function β and condition (A.8) that⏐⏐β(Sε(t)) − β(Sε(t− h))
⏐⏐ =

⏐⏐⏐⏐⏐
∫ Sε(t)

Sε(t−h)
α(ξ) dξ

⏐⏐⏐⏐⏐ ⩽ max
s∈[0,1]

α(s) |Sε(t) − Sε(t− h)|.

Then from (4.1) we get:∫
Qh

⏐⏐β(Sε(t)) − β(Sε(t− h))
⏐⏐2 dx dt ⩽ C

∫
Qh

[
Sε(t) − Sε(t− h)

] [
β(Sε(t)) − β(Sε(t− h))

]
dx dt ⩽ C h,

where C is a constant that does not depend on ε, h. □

Proposition 4.2. Let θ(0 < θ < 1) be the parameter defined in condition (A.9). Then, under our standing
assumptions, ∫

Qh

⏐⏐Sε(t) − Sε(t− h)
⏐⏐2/θ

dx dt ⩽ C h, (4.6)

where Qh def= Ω × (h,T) and C is a constant that does not depend on ε, h.

Proof of Proposition 4.2. From condition (A.9), we have:∫
Qh

⏐⏐Sε(t) − Sε(t− h)
⏐⏐2/θ

dx dt =
∫
Qh

⏐⏐β−1(β(Sε))(t) − β−1(β(Sε))(t− h)
⏐⏐2/θ

dx dt

⩽ Cβ

∫
Qh

⏐⏐β(Sε)(t) − β(Sε)(t− h)
⏐⏐2 dx dt. (4.7)

Then from (4.5) we obtain the desired bound (4.6) and Proposition 4.2 is proved. □

The main result of the section reads:

Proposition 4.3. Under our standing assumptions, there is a function S such that 0 ⩽ S ⩽ 1 in Q, and,
for a subsequence,

β(Sε) → β(S) and Sε → S strongly in Lq(Q) for any q ⩾ 1. (4.8)

Proof of Proposition 4.3. By (3.13) the sequence {β(Sε)}ε>0 is uniformly bounded in L2(0, T ;H1(Ω)).
Since this sequence also satisfies (4.5), it follows from [43] that {β(Sε)}ε>0 is a relatively compact set in the
space L2(Q). Therefore, for a subsequence, β(Sε) → β⋆ strongly in the space L2(Q). Letting S = β−1(β⋆)
we get Sε → S strongly in L2/θ(Q). In view of the uniform boundedness of the functions β(Sε) and Sε this
implies the convergence in Lq(Q) space for any 1 ⩽ q < ∞. This completes the proof of Proposition 4.3. □

4.2. Compactness and convergence results for {T ε}ε>0

The goal of the section is to prove the compactness and convergence results for the temperature function
{T ε}ε>0. First, we introduce the notation:

ψε(x;Sε) def=
(
CwS

ε + Cn[1 − Sε]
)
Φε(x) + Cε

s

[
1 − Φε(x)

]
. (4.9)

Then the function Ψε(x;Sε, T ε) defined in (2.3) is defined by

Ψε(x;Sε, T ε) = ψε(x;Sε)T ε. (4.10)
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Moreover, it follows from conditions (A.1), (A.3), the maximum principle for the saturation, and (2.3) that
ψε is a strictly positive function satisfying the following bounds:

[1 − ϕ+] c−
s ⩽ ψε(x;Sε) ⩽

(
Cw + Cn

)
ϕ+ + c+

s [1 − ϕ−]. (4.11)

We already know that the function T ε satisfies the uniform bound (3.4) from Lemma 3.2. Then, in order
to apply the arguments from [43], we have to estimate the modulus of continuity of this function with respect
to the time variable. To this end we make use of the ideas and results of the previous section. The main
result of Section 4.2 reads:

Proposition 4.4. Under our standing assumptions, there is a function T such that Tm ⩽ T ⩽ TM in Q

and, for a subsequence,

T ε → T strongly in Lq(Q) for any q ⩾ 1. (4.12)

Proof of Proposition 4.4. Now, following the ideas of Lemma 6.3 from [41], we introduce the
function ηε:

ηε(x, t) def=
∫ min{t+h,T}

max{t,h}
h
[
∂hT ε

]
(x, τ) dτ with ∂hu = u(t) − u(t− h)

h
. (4.13)

Then by Lemma 3.2, considering the boundary conditions for the function T ε, we have ηε ∈ L2(0, T ;H1
Γ1

(Ω))
for any ε > 0. Setting in (2.39) φT = ηε, we obtain

Jε
Ψ = Jε[ηε], (4.14)

where

Jε
Ψ

def=
∫
Q

∂Ψε

∂t
ηε dxdt,

and

Jε[ηε] def= −
∫
Q

kε
T (x) ∇T ε · ∇ηε dx dt

−
∫
Q

Kε(x)T ε
[
Cwλw(Sε, T ε)

(
∇pε

w − r⃗w

)
+ Cnλn(Sε, T ε)

(
∇pε

n − r⃗n

)]
· ∇ηε dx dt.

(4.15)

By the Fubini theorem we obtain

Jε
Ψ =

∫
Qh
h2
[
∂hΨε

] [
∂hT ε

]
dx dτ. (4.16)

From (4.10) it follows that

h2
[
∂hΨε

] [
∂hT ε

]
=
[(
ψε T ε

)
(τ) −

(
ψε T ε

)
(τ − h)

] [
T ε(τ) − T ε(τ − h)

]
. (4.17)

In this relation the first term on the right-hand side can be rearranged as follows:(
ψε T ε

)
(τ) −

(
ψε T ε

)
(τ − h) = ψε(τ)

[
T ε(τ) − T ε(τ − h)

]
+ T ε(τ − h)

[
ψε(τ) − ψε(τ − h)

]
. (4.18)

Moreover, by the definition of the function ψε we have

ψε(τ) − ψε(τ − h) = Φε(x)
(
Cw − Cn

) [
Sε(τ) − Sε(τ − h)

]
. (4.19)
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Thus, it follows from (4.16)–(4.19) that Jε
Ψ = Jε

T + Jε
S , where

Jε
T

def=
∫
Qh
ψε(τ)

⏐⏐⏐T ε(τ) − T ε(τ − h)
⏐⏐⏐2 dx dτ (4.20)

and

Jε
S

def=
(
Cw − Cn

) ∫
Qh

Φε(x)T ε(τ − h)
[
Sε(τ) − Sε(τ − h)

] [
T ε(τ) − T ε(τ − h)

]
dx dτ. (4.21)

We can now write (4.14) as Jε
T + Jε

S = Jε[ηε] from which we get

Jε
T ⩽

⏐⏐ Jε
S

⏐⏐+
⏐⏐ Jε[ηε]

⏐⏐. (4.22)

Let us estimate the first term on the right-hand side of (4.22). It follows from condition (A.1) and the
maximum principle for the temperature function T ε that we have:⏐⏐ Jε

S

⏐⏐ ⩽ 2ϕ+ ⏐⏐Cw − Cn

⏐⏐T 2
M

∫
Qh

⏐⏐⏐Sε(τ) − Sε(τ − h)
⏐⏐⏐ dx dτ. (4.23)

In order to estimate the integral on the right-hand side of (4.23), we make use of the Cauchy inequality and
Proposition 4.2. It yields∫

Qh

⏐⏐⏐Sε(τ) − Sε(τ − h)
⏐⏐⏐ dx dτ ⩽

(∫
Qh

⏐⏐⏐Sε(τ) − Sε(τ − h)
⏐⏐⏐2/θ

dx dτ

)θ/2
|Q|2/(2−θ) ⩽ C hθ/2. (4.24)

Combining (4.23) and (4.24) we conclude that⏐⏐ Jε
S

⏐⏐ ⩽ C1 h
θ/2. (4.25)

Now we turn to the second term on the right-hand side of (4.22). Taking into account the definition of the
function ηε and applying the Cauchy inequality along with Lemmata 3.1–3.4 we obtain⏐⏐Iε[ηε]

⏐⏐ ⩽ C2 h, (4.26)

where C2 is a constant independent of ε and h.
Finally, taking into account (4.11), we deduce from (4.22), (4.25), (4.26) that

[1 − ϕ+] c−
s

∫
Qh

⏐⏐⏐T ε(τ) − T ε(τ − h)
⏐⏐⏐2 dx dτ ⩽ C1 h

θ/2 + C2 h. (4.27)

Thus, according to [43], the sequence {T ε}ε>0 is a relatively compact set in the space L2(Q) and we can
extract strongly convergent subsequence. Due to the L∞-boundedness of the functions T ε we also have
convergence in any Lq(Q) space, for 1 ≤ q < ∞. Proposition 4.4 is proved. □

4.3. Summary of the convergence results

As an immediate consequence of the above compactness results we obtain several convergence statements
that are formulated in the following lemma.

Lemma 4.2. There exist functions S with 0 ⩽ S ⩽ 1 a.e. in Q, a function T with Tm ⩽ T ⩽ TM a.e. in
Q, and a function P ∈ L2(0, T ;H1(Ω)) such that, up to a subsequence,

Sε → S strongly in Lq(Q) (∀ 1 ⩽ q < +∞); (4.28)

β(Sε) → β(S) strongly in Lq(Q) (∀ 1 ⩽ q < +∞); (4.29)
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Pε → P weakly in L2(0, T ;H1(Ω)); (4.30)

T ε → T strongly in Lq(Q) (∀ 1 ⩽ q < +∞). (4.31)

5. Statement of the homogenization result

We study the asymptotic behavior of the solution to problem (2.2)–(2.6) as ε → 0. First, we introduce
the effective model that reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨Φ⟩ ∂S
∂t

− div
{
K⋆ λw(S, T )

(
∇Pw − r⃗w

)}
= 0 in Q;

−⟨Φ⟩ ∂S
∂t

− div
{
K⋆ λn(S, T )

(
∇Pn − r⃗n

)}
= 0 in Q;

∂Ψ⋆

∂t
− div

{
K⋆ T

[
Cwλw(S, T )

(
∇Pw − r⃗w

)
+ Cnλn(S, T )

(
∇Pn − r⃗n

)]}
− div

{
K⋆

T ∇T ε
}

= 0 in Q;
Pc(S) = Pn − Pw in Q,

(5.1)

where S, Pw, Pn denote the homogenized wetting phase saturation, wetting phase pressure, and non-wetting
phase pressure, respectively. The notation ⟨ · ⟩ stands for the mean value of the corresponding function over
the cell Y ; K⋆ is the homogenized tensor with the entries K⋆

ij defined by:

K⋆
ij

def=
∫

Y

K(y) [∇yξi + e⃗i] [∇yξj + e⃗j ] dy, (5.2)

where the function ξj = ξj(y) is a Y -periodic solution of the following cell problem:{
−divy

{
K(y) [∇yξj + e⃗j ]

}
= 0 in Y ;

y ↦−→ ξj(y) Y -periodic
(5.3)

with e⃗j being the jth coordinate vector; the function Ψ⋆ is defined by:

Ψ⋆(S, T ) def=
{(

CwS + Cn[1 − S]
)

⟨Φ⟩ + ⟨Cs⟩ − ⟨Cs Φ⟩
}
T ; (5.4)

K⋆
T is the homogenized thermal conductivity tensor with the entries (K⋆

T )ij defined by:

(K⋆
T )ij

def=
∫

Y

kT (y)
[
∇yξi + e⃗i

] [
∇yξj + e⃗j

]
dy, (5.5)

where the function ξj is a Y -periodic solution of the following cell problem:⎧⎨⎩−divy

{
kT (y)

[
∇yξj + e⃗j

]}
= 0 in Y ;

y ↦−→ ξj(y) Y -periodic.
(5.6)

System (5.1) has to be equipped with proper boundary and initial conditions.
The effective boundary conditions read:{

Pn(x, t) = Pw(x, t) = T (x, t) = 0 on Γ1 × (0,T);
q⃗ ⋆

w · ν⃗ = q⃗ ⋆
n · ν⃗ = K⋆

T ∇T · ν⃗ = 0 on Γ2 × (0,T),
(5.7)
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where the velocities q⃗ ⋆
w, q⃗

⋆
n are defined by:

q⃗ ⋆
w

def= −K⋆ λw(S, T )
(
∇Pw − r⃗w

)
and q⃗ ⋆

n
def= −K⋆ λn(S, T )

(
∇Pn − r⃗n

)
. (5.8)

The initial conditions remain unchanged, they read:

Pw(x, 0) = p0
w(x), Pn(x, 0) = p0

n(x), and T (x, 0) = T 0(x) in Ω . (5.9)

The rigorous justification of the homogenization process relies on the two-scale convergence approach,
see, e.g., [44]. For the reader’s convenience, we recall the definition of the two-scale convergence.

Definition 5.1. A sequence of functions {vε}ε>0 ⊂ L2(Q) two-scale converges to v ∈ L2(Q × Y ) if
∥vε∥L2(Q) ⩽ C, and for any test function φ ∈ C∞(Q;C#(Y )) the following relation holds:

lim
ε→0

∫
Q

vε(x, t)φ
(
x,
x

ε
, t
)
dx dt =

∫
Q×Y

v(x, y, t)φ(x, y, t) dy dx dt.

This convergence is denoted by vε(x, t) 2s
⇀ v(x, y, t).

The main result of the paper reads:

Theorem 5.2. Let assumptions (A.1)–(A.10) be fulfilled. Then a weak solution to problem (2.2)–(2.6)
two-scale converges (up to a subsequence) to a weak solution of the homogenized problem (5.1)–(5.9).

Remark 3. Although in Theorem 5.2 only weak two-scale convergence of a solution of problem (2.2) is
stated, due to Propositions 4.3 and 4.4 the saturation function Sε and the temperature T ε converge strongly
in L2(Q). Also, since the limit functions Pw and Pn do not depend on the “fast” variable y, the weak two-scale
convergence of these functions is equivalent to the usual weak convergence in L2(Q).

Proof of Theorem 5.2. In order to prove the main result, we pass to the limit in Eqs. (2.33)–(2.35). Our
approach relies on the convergence results obtained in the previous sections and on the ideas of paper [45]
(see also [15]). One of the key ideas is to introduce special cut-off functions for the saturation. Here we follow
the lines of the paper [15].

It is easy to justify the passage to the two-scale limit in the evolution terms using the convergence
results (4.28) and (4.31) from Lemma 4.2 as it was done, for example, in [40]. We start with Eq. (2.33). Let
φ0 ∈ D(Q). Then the first two terms in (2.33) become:

Jε
S

def= −
∫
Q

Φε(x)Sε(x, t) ∂φ0

∂t
(x, t) dx dt. (5.10)

Now we pass to the limit in (5.10). Taking into account (4.28), we have

lim
ε→0

Jε
S = −⟨Φ⟩

∫
Q

S(x, t) ∂φ0

∂t
(x, t) dx dt. (5.11)

In a similar way, taking into account (4.28) and (4.31), we obtain

lim
ε→0

Jε
Ψ = −

∫
Q

{(
CwS(x, t) + Cn[1 − S(x, t)]

)
⟨Φ⟩ + ⟨Cs⟩ − ⟨Cs Φ⟩

}
T (x, t) ∂φT

∂t
(x, t) dx dt, (5.12)

where

Jε
Ψ

def= −
∫
Q

Ψε ∂φT

∂t
dx dt. (5.13)
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Consider now the divergence terms in Eq. (2.33). In what follows we use the approach developed in [45].
For any δ > 0, we introduce the family of functions {Sε,δ} defined by:

S ε,δ def= min
{

(1 − δ), max(δ, S ε)
}
.

These functions satisfy the estimate:

∥S ε,δ∥L2(0,T ;H1(Ω)) ⩽ C(δ), where C(δ) → +∞ as δ → 0. (5.14)

Therefore,

S δ def= min
{

(1 − δ), max(δ, S)
}

∈ L2(0, T ;H1(Ω)) for any δ > 0.

Now taking into account the uniform estimate for the gradient of the temperature function (3.4) and
(5.14), one can easily show thatGw

(
S ε,δ, T ε

)
L2(0,T ;H1(Ω)) ⩽ C(δ), where C(δ) → +∞ as δ → 0. (5.15)

Then it follows from (4.28), (4.30), and (4.31) that, for a subsequence,

∇
[
Pε + Gw

(
Sε,δ, T ε

)] 2s
⇀ ∇x

[
P + Gw

(
Sδ, T

)]
+ ∇yVδ

w(x, t, y), as ε → 0, (5.16)

with Vδ
w ∈ L2(Q;H1

#(Y )). We set:

φε
w(x, t) def= εφ(x, t) Z(Sε) ζ

(x
ε

)
, (5.17)

with Z(S) being a smooth function equal to zero for S ̸∈ (δ, 1 − δ); ζ(y) is smooth periodic, and φ is a
smooth function with a compact support in Q. Using φε

w as a test function in (2.33) and considering the
global pressure definition, we get:∫

Q

Kε(x)λw(Sε, T ε) [∇pε
w − r⃗w] · ∇yζ

(x
ε

)
φ(x, t) Z(Sε) dx dt = O(ε) as ε → 0. (5.18)

We pass to the two-scale limit in (5.18). Taking into account (4.28), (4.30), and (5.16), we obtain:∫
Q×Y

K(y)λw(S, T )
[
∇P + ∇Gw(S, T ) + ∇yVδ

w(x, t, y) − r⃗w

]
· ∇yζ(y) Z(S)φ(x, t) dy dx dt = 0. (5.19)

Therefore,

Vδ
w = ξ(y)

(
∇xP + ∇xGw(S) − r⃗w

)
(5.20)

for all (x, t) ∈ Q such that S ∈ (δ, 1 − δ). Here ξ(y) ∈ Rd is a vector with the components ξj that are the
solutions of the auxiliary problem (5.3).

Since δ is an arbitrary positive number, representation (5.20) is valid for all (x, t) such that S ∈ (0, 1). In
particular, Vδ

w does not depend on δ: Vδ
w = Vw. This leads to the following equation:∫

Y

K(y)λw(S, T )
{[

∇Pw − r⃗w

]
+ ∇yVw

}
· ∇yζ2(y) dy = 0 for all ζ2 ∈ C∞

# (Y ). (5.21)

Finally, combining the convergence results of Lemma 4.2 for the saturation and temperature functions
with (5.16), (5.20) and the standard two-scale convergence arguments (see, e.g., [44] and [45]), we obtain
the following relation:

Kε λw(Sε, T ε)
[
∇pε

w − r⃗w

]
2s
⇀ K(y)

[
I + ∇yξ(y)

]
λw(S, T )

(
∇xP + ∇xGw(S, T ) − r⃗w

)
, (5.22)
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where I is the unit matrix. This enables us, with the help of (5.11), to obtain the weak formulation of
the homogenized equation (5.1)1. Notice that the homogenized permeability tensor obtained by taking
the average in y on the right-hand side of (5.22) coincides with the tensor K⋆ defined in (5.2) (see, e.g.,
[7], Ch. 1).

In a similar way, one can deduce that

Kε λn(Sε, T ε)
[
∇pε

n − r⃗n

]
2s
⇀ K(y)

[
I + ∇yξ(y)

]
λn(S, T )

(
∇xP + ∇xGn(S, T ) − r⃗n

)
. (5.23)

The convergence result (5.23) and the relation (5.11) allow us to obtain the weak formulation of the
homogenized equation (5.1)2.

It remains to obtain the weak formulation of the homogenized equation (5.1)3. In fact, we have only
pass to the limit in the third divergence term. Taking into account the boundedness of ∇T ε (see (3.4)) and
applying the standard two-scale convergence arguments, we obtain that

kε
T (x)∇T ε 2s

⇀ kT (y)
[
I + ∇yξ(y)

]
∇xT. (5.24)

Here ξ(y) ∈ Rd is a vector-function with the components ξj(y) that are the solutions of the auxiliary problem
(5.6). Now taking into account (5.22)–(5.24) and bearing in mind (5.12), we obtain the weak formulation
of the homogenized equation (5.1)3. As in the case of the homogenized permeability tensor, we notice that
the homogenized thermal conductivity tensor on the right-hand side of (5.24) coincides with the tensor K⋆

T

defined in (5.5).
Theorem 5.2 is proved. □

6. Concluding remarks

We have presented in this work new homogenization results for a degenerate system modeling
nonisothermal immiscible incompressible two-phase flow through heterogeneous porous media. The extension
to a porous medium made of several types of rocks, i.e. a porous medium whose porosity, absolute
permeability, capillary and relative permeability curves are different in different regions of the medium,
is straightforward by using the approach developed in [45]. Let us also mention that the homogenization
results for isothermal two-phase flows have been used successfully in [46] in order to simulate numerically
a benchmark test proposed in the framework of the European Project FORGE: Fate Of Repository
Gases [47].

A recent review of the mathematical homogenization methods developed for isothermal incompressible
immiscible two-phase flow through fractured porous media can be found in [48].

The study still needs to be improved by developing a general approach that would allow us to incorporate
the cases of compressible phases and double porosity media. These more complicated cases appear in various
applications. Further work on these important issues is in progress.
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