A PARABOLIC EQUATION WITH RAPIDLY OSCILLATING COEFFICIENTS

A. L. Pyatnitskii

Vestnik Moskovskogo Universiteta, Matematika,
Vol. 35, No. 3, pp. 33-39, 1980

ubC 517.946

The aim of thils paper is the construction of an asymptotic expansion for
the solution of the Cauchy problem for the parabolic eguation
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a d x ! a
Uy (x, t) = —_— | —, — ) —ue(x, ) =f(x, 1),
t i ax; ’( e ' et ) 0x; (1)
e (x, §) |t=0 = L (x)
n+l 7

with coefficients periodic in R wﬂy.ﬂ,y=bfn T= —,
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We note that the formal expansion constructed by the method in [1] does not
satisfy the initial conditions in this case; therefore for the construction of
the asymptotic uelx, ) it is necessary to introduce a correction of boundary layer

type. The asymptotic expansion takes the form

Ug (x, ) ~uy(x, 1) -+ -‘s"(;z") (x, f-.t.-’-—) -r;( 2ot L))
: & -k%: k e 'k\x’z"a’ '

here the functions de.% {, 1) decay exponentially as t—+o and are perlodic in y;

the functions wu(x, y, f, t) are periocdic in t and y.

In the problem under consideration corrections of boundary layer cause un-
damped terms for t ~ 1 in the higher terms of the expansion. Therefore for k > 1

the functions Wy differ from approximations obtained in [1,2].

The boundary-value problem in a layer for an elliptic equation was solved
in [3].

1. Notation and Definitions. Denote bj I and i-lls the norms in L2(R§) and
Hl(Rn), respectively. Later the spaces L0, T; H'(R™) and L=(0, T; L*(R™)) and their
norms l-ll: and I-le are defined in the usual manner. Suppose [*=[0,1]*. The mean
of the I"-periodic function over a period we denote by M{f}; H{(Il")is the space
of Hnwperiodic functions lying in Hix(R"). As usual, S(R") is the Schwartz space;
S.(R") is the space of smooth functions in (R"x[0, T]) lying in S(R™) uniformly with
respect to t<[0, T].
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2. Construction of the asymptotic expansion. Consider problem (1). The
coefficients ai(y, 1) are lI"H.~periodic and satisfy the condition of uniform ellipti.

city
i< ayy, 7)5-’5,(‘72}%'2.

where 0<ci<¢, ER*. Here and later we omit the summation sign for repeating in-

dices.

For convenience we consider the case when the coefficients aj 4 are symmetri
and do not depend on t. We introduce a rapidly oscillating variable y==€i and
we seek the solution of the original problem in the form of a function u,(x. y ¢)of

(2n + 1) variables. In this connection the relation

x a

a d
s —_—] o | — g T
s (x. = ) ( ol 3 ) u(x, y)[ﬂm»}.

holds, Using this relation, we write A8 In the following form:

Ay (x, .- t) = (e 24, — e~ A, — A) g (x, v, 1) fu

. -
where A2, Al, AO denote the operators
J d ) g gt
D e c—— s — TED e o — e alu %
A, 15 ay; (v) P A r ) a; (v) o, i )] 3xcdy,;
2 a0
Ay =g =iy W)~ e,

We seek the solution of (1) in the form of a series
(R, y 8) =ty (5, 1)+ ¥ eF g (%, 1) -+ v, (5, 1, 0)).
k=|
Substituting this series into (1) and equating coefficients of like powers of e
we obtain the system of equations
e?| Ay, =0 el | Ay -~ Aw, b Aw, =0
il Ayt Ay St ] B e e E R R g (2)

k A i =
e? Azwz + Aw, + Aouo =f e,‘ . Agwuz .{. Ale'] ; ‘. Aowk 56 O

Here wy is (uk + vk). We seek the function vk(x,y,t) in the spacelﬁ(nn)with
respect to y. We solve (2) with the following initial conditions:

uﬂ(x‘ t),"-():fl(x); uk(xi r)[fﬂBO:Or k} 8 (3)

Theorem 1. Suppose f(x)&8(R), f(x, t)eSr(R"). Then the system of equations
(2), (3) is successively solvable. The function uo(x,t) satisfies the parabolic

equation with constant coefficients
a
"'a_t"uo (x, £) — Quy (x, £) = f(x, 1),

Uy 10 = fy (%),
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where the operator Q has the form

a a —
Qu(x, f) = o —5;-;-u(x, 1) = (M{a,,(y)) —M [a,,(y) axaly(‘y) J ) a;tf;;:) )

and the vector-function x(#) of class fi‘(l’l") is a solution of the equation

Ay (x(y)—y) =0, Y= .. . 4
Proof. The approximations w, are constructed by standard methods [1,2].

Remark. The vk(x,y,t) obtained are of the followling form:
N

vi(x, 4, 1) = g%uo (x, x ), v X,y )= 2 %o ) g (x, 0).

k=]
k

Denote by a*(x,t) and r¥(x,{) the expressions Ze'wx and (u,——uif) respectively. By
=)
Theorem 1, it 1s easy to prove the followlng theorem.

Theorem 2. The functions @+ (x, #) satisfy (1) with accuracy O(e?):

Attt =gk, (x, 1),
where |ge (¢, ) lormram =0 (-

Corollary. The error in the first approximation ri(x, ¢) satisfies the esti-

mate
Irile < ce, Irily<ce.

The formal expansion constructed above does not satisfy the initial condi-
tions, therefore we add a correction of boundary layer type to all terms of the
asymptotic #e{x, 1), which decays exponentially ast»>o and corrects the initial con-

dition: g
uﬂ‘(xi Y, L, ‘) gun(x» t) + e(wl(xl Y, t)"]'zl(x» Y, t: T)) 4 ...

Substituting this series into (1), with regard to (2) we find equations for
Z (% 4 1, 7) ’

Aszy -+ Azy+ Az, = 0

1
e—! =
80

A, =0
Aty + Az, =0 gt

Aty -+ Ayzagy + Agzy =0 ()

2, (%, Y, 1, ) lxmo = — U (X, Y, 1) =0,

where A3 denotes the operator (%E~+AJ. We will seek the solution c¢f the system

(4) in the following form:
N
ey 9= Y o (e (5 1)

meal

Theorem 3. The system of equations (4) is successlvely solvable.

Proof. Consider equation (4) for k = -1 (U4.-1):
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3 a 3
—a Y- ==, (4) ——z (%, 4 t. 7) = 0,

4 Y1 X .(-731/
21 (x9 Y, tt T) ’/,'(:;0 B e Uy (1'. . 0}
) n
Having written 2, (. g.t,7}in the form (}ﬂaéw.ﬂ ;)xw(ntw.we obtaln a system of equa-
dxp

\h—l
tions for al(y, Tk

d | \ a g \ .
Rl 1 F7 ) R —al (y, 1) =0,
dv k(J J P t,(y) i Jz(-/ ) == 0

WYy

@) femo = — %4 (#).

s . ) - x .
The solutions al(y,t) are continuous as functions [0, c0)-~HY(1") and satlsfy the esti-
mate

Vet g gum, << 06,

P
L5 7]
a2t

where ll is the firsft nonzero eilgenvalue of Ag. For’¢ij)we set the inltizl con-

dition
3
Oxy

fi(x).

P (X, 1) =0 =

In equation (4.0) we take the mean of both sides wlth respect to y:
_d_ LY Vgt (x, 1] &)
dt M{%}"— (M {al[(y) 654, a, (!1'. T)}) ox; Py LX) ). (3/
From (6) we determine M{z}. In view of (5)
' 3
M{z3} = Bln -+ Vi (9)) 5= 94 (¥, 1),

where Bin arec constants, y&(ﬂ decay exponentially:
AT

| ¥am (1) ] < ce™

In order to find the oscillating part of Zy We examine the equation

A (4, %) = { ()~ 0l (9, V=M [a,, () ——al (v, D]} +
dyy

ayl. .
3 (7)
s *(“,‘g‘;‘ Ay (Y) (4, 1),
@t (i ©) om0 = — % (4).
Lemma 1. The solution of (7) is continuous as a function [0, co)—L3(II") and

satisfi=s the estimate
2 o BT 2 e i
e, (4. 7) ﬂu(rg") & e v b (% Dy S
Proof. Since the operator A? does not depend on t, there exists a basis
in H'(T1") of eigenfunctions of A,. Expanding the soluticn in z serles in this
basis we obtain the needed estimate from the exponential decay of the right silde
of (7).



We proceed to equation (4.1):
Agzy (%, 4, £, ¥) = — Az, (x, ¥, £, ©) — A2, (2, 9. ¢, 7).
The term -

a 2 0 a
— — e !
E i (.’/) ﬁkm dr.; e ‘P, (xv i)

on the right side of this equation does not depend on t, and the remaining terms
decay exponentially; therefore

23 = (B () = Bl - Yirm (¥) = oo (¢ 7)) =
"

a ' .
Ry Oe Py (x, 1) + ga (x, ),

where 8. (g) = Bikm (8), and edm(y, ¥), Bim and Yim(0) we seek as in (4.0). The function
g3(x,t) of class ST(Rn) will be found later.

In (4.2) we select the terms on the right side which do not decay exponenti-
ally in 1 and which have nonzero mean with respect to y:

el 2 i, Bty (el i)
B (3 9 01— 5w 0+
[/}

ox;

Ao ___d _._.0 |
tag (y) " Y (4) T Bl t)).

For the solvability of (4.2) it is necessary that the mean with repsect to y of
this expression be equal to zero. Taking into account that @szohn-u==m we
obtain

2 gt = Qe (x. =0,

B Dlimo = =y (2).

In the sum z(x, y f, t) may be written in the same form as z3.

On a k-dimensional sphere the mean with respect to y in the right side of
(4.k) 1is

— g (5, )= Qg2 (x, B) 1 VA(x. 1),

where vt(x, t) 1s a known function of class ST(RH)‘ The condition of solvability
of (4.k) gives an equation for g*?%(x f):
a
—a_:—g""(x, 1) — Qg2 (x, f) = — v*{(x, 1),
g2 (x, =0 = 0.

Continuing the process we obtain a solution to the system (4). The theorem is

shown.

From this theorem it is easy to obtain the estlmates
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- _
e (%, ) << c8%, Th] < co®.
3. The General Case. In this section the coefficients aij depend on ¢.
ES
We construct an asymptotic expansion as in the preceding section.
Lemma 2. The equation

d

a_, 2 a
el Y R Ty i (¢, ©) Xe (Y, O = To (v, 1)

has a unigue NMr+-~periodic solution which lies in L%O,l;ﬁ%rh)y
Tne proof of this lemma is given in [4, ch. 3].

Lemma 3. Consider the Cauchy problem

a d a
*5‘;“(9’, T) —“”5;:‘0;,' (v, T)Ea(y. 1) =gy, 1),

(Y, Thrmo = g1 (Y).
Suppose £ () & L¥(ITY), and suppose for g(y, 1) the estimate

O L A e
is true. Then there exists a A,>0,such that
Iy pm < ™7, laly, ) b mngnimy << €981

Proof. From [4] the solution a(y, ) is a continuous function [0, eo) = L* (1.
In view of the well-known relation [e(@ B <8 lo@l;any it 1s sufficient to show

the following statement: the solution f2(t) of the equation
fetrmd—rpa=oewm (8)
decays exponentially as tv-—+~o0, if

§(v) 2 8, > 0; lo(v)} < ce™™, A0
fF(t) and (1) are continuous.

We shall show that for AO it 1s possible to take the number
oo of & 8o \ )
A, = e L
0 mm(2, ln(l : 2))

For this we shall prove the Inequality f*{r)<<ce™. Pick T such that for every
1>1—1the inequalify

- S O ,
o)< e g o (9)
nolds. By the continuity of ¢ >1l,there exists a f(r) such that |f2(1)|<ce™ for
e

1<t We shall show that this inequality 1is true for all t. Assume that there
exists a T >T,for which fF(r) =ce™% )< ce ™ for 7<t. From (8) it follows that
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Pe—D=Fm = [ 807019 —e@—1).

-l

But f2(x) is the sum of monotonically decreasing functions and of functions not

greater thance=*; therefore

PPy — 1D —F(2) 2 8,/ (v)) — 2(8, — 1) eMw—h.

Taking advantage of (9) we obtailn

Pla— D= P () > 8 (1) — 28, + 1) e

In view of the choice of Tys

PE—1)> (4 8) P () — £ (1 8) P (s,

Assuming &z=1, we have
Pa=—0> (14 2 8) Fe> (1 + 2) e,

which contradicts the choice of Ty The lemma 1s shown.

Theorem 4. For the remaining terms of the expansion the followlng estimates

holds:
172 e, Ol < cet,  [7e(x, £) o < cet.

If ai(y, ) are smooth functions, then
frelem < cer—om,
Remark. Analogous results may be obtained for the equation

a a ¢ 4
e = a5 ) it 04 o2 ) 0= 1e D,

uclfﬂﬂ = fl (x)l
where the functions ¢(y, ¥) is bounded and IIn+t-perlodic, and the aiJ are the same
as in (1). A
The author thanks M. I. Vishik and S. M. Kozlov fortheir discussion of the
results of this paper.
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