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AVERAGING ON A BACKGROUND OF VANISHING VISCOSITY
UDC 517.9

S. M. KOZLOV AND A. L. PYATNITSKII

ABSTRACT. Elliptic equations of the form

x\ d d _i

with periodic coefficients are considered; μ and e are small parameters. For potential
fields v(y) and constants α ί ; = <5/; , the asymptotic behavior as μ —> 0 of the
coefficients of the averaged operator (which is customarily also called the effective
diffusion) is studied. It is shown that as μ —» 0 the effective diffusion σ(μ) = σ ι ;(μ)
decays exponentially, and the limit lim ομ1ησ(μ) is found.

Sufficient conditions are found for the existence of a limit operator as μ and ε
tend to 0 simultaneously. The structure of this operator depends on the symmetry
reserve of the coefficients ai}{y) and vt(y); in particular, it may decompose into
independent operators in subspaces of lower dimension.

This paper is devoted to problems of averaging elliptic equations with small dif-
fusion. Problems of this kind are encountered, for example, in investigating the
diffusion of charged particles in the field of an attractive lattice.

The corresponding stationary equation has the form

here v(y) is a periodic vector field which can be interpreted as the attractive force
of a crystal lattice, and Δ is the Laplace operator.

On the boundary of a domain Ω we prescribe the Dirichlet condition

ημ'ε\9Ω = φ(χ) (2)

and we shall study the solution of problem (1), (2) for small μ and ε . The picture of
the behavior of this solution may be completely different depending on the relation
between the parameters μ and ε .

In the case where μ ~ 1 the averaging problem for equation (1), (2) was solved
in [1] and [2]. The case 1 < μ < ε~ submits to averaging in a similar way. For
constant με we arrive at the classical averaging problem [3], [4].
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In this paper we consider the opposite case where μ —> 0 in equation (1), (2) or
in the more general equation

^d^dF/ {χ) + ε Ml)( ^d^dF/ Ml) 53^ eo

With this relation between the parameters the behavior of the solution ημ'ε(χ) be-
comes very sensitive to the structure of the vector field v(y).

In § 1 we assume that μ is constant. The matrix of the averaged coefficients of
problem (3), also called for short the effective diffusion, depends on μ . It is shown
that in the potential field v(y) the effective diffusion is exponentially small, and its
logarithmic asymptotics is found (for comparison we recall that in a solenoidal field
ν the effective diffusion is not less than μ [5]). We mention the asymptotics of
the effective diffusion was found by another method in [6], but our approach is very
graphic and admits generalization to nonpotential fields v(y).

In the subsequent sections we study problem (1), (2) and (3) under the assumption
that the parameters μ and ε are connected by the relation μ = εα , α > 0. In this
case the solution u" may not have a limit as e -> 0 even for smooth coefficients
vt{y) and atAy), since in investigating (l)-(3) different additional conditions are
imposed on their coefficients. In §§2-5 we consider equations in which the vector
field v(y) has a family of periodically distributed, asymptotically stable, attractive
fixed points. For small ε the diffusion defined by such an equation is approximately
described by a random walk over the periodic lattice formed by the singular points of
the field. The transition probabilities of the random walk depend on the symmetry
reserve of the coefficients of the equation.

In §§2 and 3 we investigate problems whose coefficients are invariant under any
motion of R" taking the period cube into itself. §2 is devoted to the proof of a
tentative theorem formulated in terms of transition probabilities of the diffusion
process. In §3 various sufficient conditions are then given for the applicability of this
theorem. The limit operator here is always the Laplace operator.

The object of §4 is the averaging of problems with fewer symmetries. Absence
of symmetry in part of the variables leads to degeneration of the limit diffusion in
certain directions; the averaged problem therefore splits into independent problems
in planes of lower dimension. In the absence of symmetry the limit operator is, as a
rule, an operator of first order. The problem on the contact of two periodic media is
solved here. We mention that for constant με similar problems were considered in
[7].

Finally, §5 contains the proofs of various technical results.

§1. Estimates of the effective diffusion

In this section we study the behavior of the effective diffusion in problem (1), (2)
as μ -» 0, i.e., the asymptotic behavior of the coefficients of the averaged operator
of this problem.

We recall the concept of effective diffusion. Suppose that on Tn = R"/Z" , where
Z" is the integral lattice, we are given a process ζ? χ governed by the operator

Αμ = μΑ + ν{χ)ν,

where υ (χ) is a potential field, v(x) = -VU{x), with U(x) € C2(T"). The effective
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diffusion (see [5]) is defined from the relation

- 1 / " άχ~Ν(0,σ(μ)), t^oo, (4)

where iV(0, σ (μ)) is a normal random variable with covariance matrix σ {μ) and
mean 0, while the integral of the form die = (dx{, ... , dxn) is taken over a smooth
path homotopic to the path (ξ£ χ , ξμ

 χ) = (ξμ

χ,0 < s < t) with fixed initial and
end points. Relation (4) is satisfied uniformly with respect to χ e Tn (see [5]), and
hence this relation holds also for the corresponding stationary process ξμ. Since

Α*ε~υ^χ')Ιμ = 0, it follows that po(x) = c e " " ' * is an invariant measure of the

Markov process ζμ

 x (JTnpodx = 1). The probability density of transition of the

process ξμ

 χ is denoted by p(t, x, y).

Together with ζμ

 χ we consider the process ημ

 χ corresponding to the operator

A in R" . For it there is also a central limit theorem (see [5])

with the same σ (μ); the convergence is uniform with respect to χ . For equation (1)
this implies that σ(μ)/2 is the coefficient matrix of the averaged operator.

Suppose on Tn the potential U(y) has only a finite number of singular points,
only one of which is a minimum point. We assume with no loss of generality that
min U(y) — 0 and that the minimum point coincides with the origin. We introduce
the quantity

t / 0 = inf sup£/(x(0);

the infimum here is taken over all continuous curves joining the origin and the end
of the coordinate unit vector et, and we assume that UQ does not depend on i,
i=l, ... ,n.

We note that the number Uo has the meaning of a level of "veined percolation"
of the potential U(y) (see [8]): this is the minimum value of the constant h for
which the set { x e R " : U{x) < h} has an unbounded connected component. The
condition of the independence of Uo and / implies coincidence of the percolation
levels in all directions.

THEOREM 1. Under the above assumptions,

Ιϊτημ\ησ(μ) = -υ0. (5)

PROOF. We shall show that the process ξ? χ possesses uniform mixing properties
with respect to μ. We formulate this assertion in the following form. Let

df[t, x)/dt = Aj{t, x), / | i = 0 = fo(x);

|/| = max|/(i,jc)|, ||/|| = (f f dx) .

LEMMA 1. For any δ > 0 and s > 0 there exists c(S, s) > 0 such that, for all

t>TQ = c(S,s)es/f,

\f(t,-)-f\<e-s/M\\f0\\; (6)
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here fo(x) is an arbitrary function of L2(T"), and

1= f nfo(x)po(x)dx. (7)
J Τ

The proof will be given in §5.

COROLLARY. For all t > kT0, k a natural number,

\f{t,-)-l\<e-ksl"\\fQ\\. (8)

For the proof it suffices to use Lemma 1 and the semigroup property of the solution

Without yet specifying the choice of s, we suppose that it is arbitrary but such

that β~^μ < 1/2 for μ < 1; we omit the dependence of c(5, s) on s .

We set tk = kT0 = kc(d)es/li and fk(x) = f{tk, x). From (8) we then get

ΙΛ-7|<2-*||/ΟΙΙ· (9)

Let Τ = NT0 = Nc(S)es/fi where Ν is an integer. We decompose the trajectories
of the stationary process {£f, 0 < t < T) into iV parts ( ^ , ξμ

τ ) , (ξ* , ζ%τ ) , . . . ,

(£fiv-i)r ' %NT ) · Since the potential U(x) has a unique local minimum on Tn , any

set of the form {x e T"\U(x) < h} is connected. Further, by the choice of Uo the

vector-form die — {dx{, ... , dxn) is exact on the set <f0 = {x e Tn\U(x) < Uo} .

We join the points ξ£τ in the set tf0 with the point 0 by a smooth curve lying

in (?Q; the remaining points ξ£τ we join with 0 by the shortest geodesic. We

prescribe the order of passing about the closed path lk = (0, ξ£τ , ζ^+ι)Τ , 0) and

s e t r\k = f, d x £ Z n . T h e n {{ζμ >ξμ) d x = J2k=o Ik + ^N' w n e r e I CAT I < c > u n i f o r m l y

with respect to ./V and μ .
The sequence r\k is stationary, since the process ξ? is stationary. In this case

(see [5]), whence E ^ = 0. We verify that the limit theorem of [9] (Theorem 20.1)
is applicable to this sequence:

Suppose the sequence nk is stationary Er\k = 0, En\ < oo, and there is a nonneg-
ative nonincreasing function q>(k) such that, for any k, s, El e Ρ(η0, ... , η5), and

)

1 (k)<oo. (10)

Then the family of processes {\ftY}k=\ tjk) converges weakly as ε ->• 0 to a Wiener
process with covariance

oo

We shall show that relation (10) with mixing coefficient <p(k) equal to \/2k~l is
satisfied for the sequence r\k. We denote by Fa b the σ-algebra generated by the
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random variables (ξ?, a < t < b). Then r\k is measurable relative to FkT ( ί : + 1 ) Γ .

If χΑ is the characteristic function of the set A, then

, ΠΕ2) -

We set f^s+k)To) = Ε(χΕι - E ^ J i g ^ ) . Then

and, by (9),

\P(E} Π E2) -

where we have used the fact that \fQ\ < 1. We shall verify the finiteness of the
covariance matrix Εη0 <g> η0 and find its logarithmic asymptotics as μ -+ 0. We
consider the process r\t x in R" corresponding to the operator A . For each ζ ε Ζ "
we construct the connected component of the set {x e R"|t/(x) < Uo} containing
ζ, which we denote by (f^. From the conditions of the theorem it follows that

for any basis of integral vectors z{, ... , zn we have the relations <f^ η <?Q Φ 0 ,
i = 1, ... , η . From this, the uniqueness of the local minimum, and the finiteness of
the number of singular points on a period it follows (see [10], Chapter 4, Theorem
3.1 and 1.2) that for any δ{ > 0 there exists Τ > 0 such that

p { l ' / r ; x - ^ l < K } > ^ ( C / o + < 5 ' ) / ^ ' / = ! , . . · , « , (11)

for all x € &0 ; κ is an arbitrary fixed constant. It will be proved below that, with a
suitable choice of κ , for all t < TQ uniformly with respect to x in {x e R"| \x- z\ <
κ} the quantity P { ^ x e <f^} —> 1 as μ —» 0. By the Markov property of r\t χ it
follows from the last relation and (11) that

P{?/0 = z (}>^- ( C /°+ < J l ) /^, / = 1 , . . . , / i . (12)

To prove a similar upper bound in the region <fs , which is the connected compo-
nent of the set {x e R"\U(x) < U0-d} containing 0, we consider all singular points
o f t h e p o t e n t i a l : 0 — x 0 , x { , ... , x k s u c h t h a t 0 = U(x0) < U{xl) <•••< U ( x k ) <
Uo - δ . This collection of points is finite because of the compactness of &δ in R"
and the assumption on the finiteness of the number of singular points on a period.
Let

For sufficiently small δ the sets BAS and &δ do not intersect. We introduce the
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Markov times

i<?s\BSi}, δ2<δ/2,

From standard estimates of the fundamental solution [11] it follows that for any
s > 0 we can find c(d), not depending on μ, such that for all χ in dB0

1 ^ ^ . (13)

We shall prove the estimate

where δχ -> 0 as δ —> 0 and χ € <?g. We denote U;=o B's by HJ
g . According to

[10], Chapter 6, Lemma 2.1, uniformly with respect to χ e dH]

s we have

ϋ{χ,)-υ{χί)-δΛ

- μ ) '

—°- Y1-^] , (15)

where I > j and i , —> 0 and (5 —> 0. For / > ;' and Λ: e 9//j we define the
quantities

pj'!(x) = Ρ({τ7

Ο < Γο} Π {ί/το ̂  € 8Β1

δι}),

pj'k+\x) = Ρ({τ;° < Γο} η {^> χ

here τ° is the Markov time when the process ηί x first reaches the set d(fg U

U/=_/+i 9-̂ a · From (13) for 5 = 2f/0 and the strong Markov property of r\t x we
have

T0/c{S)

ί=1 \ lm=l

+p ( { 0 , ( Ι ί τ - 'Λ € 9 / / ^ } n {T/"
Ta/C(d) / ( , - 1
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From this with the help of (14) we obtain

<cexp(̂  -£

Similarly,

(x)<cexpl

Further, by the strong Markov property of r\t x for χ e BJ

S we have

Σ
<-<iJ+l=fc+l m=0

< c e x p l -

In exactly the same way for an arbitrary χ € <?δ

Un-U(x)-(k+l)S-(k+l)S,
—

Considering now that ξ^ is distributed over a period with density €μβ~υ{χ^μ and
integrating (16) with this density, we obtain

Το,χ s ce-{U°-S>W, (17)

where δ{ —> 0 as δ —• 0.
We now prove the matrix inequality

C{e-(U^w<E%®%<c2e-(V^w. (18)

The lower bound obviously follows from (12) and the fact that η0 is an integer.
Further, according to [10], there exists L > 0 such that for any χ e [-1/2, 1/2]"

l J e - 2 k U o / " . (19)

With the help of the Markov property of r\t x , from this we obtain

ν{\ηΤοίΧ\ > kT0L} < T0e-2kU^ < c{e-(2U^Wf,

which together with (17) gives

^,2 r2 -<υη-δ,)/μ V~̂  2^,2,2, -l2Un-S,)/u^m - -(υη-δ,)/μ

T 0 L e l ° '" + 2 _ ^ c m T 0 L (e ^ ° ι " μ ) <cey° l"M.< T0

m=\

Finally, the estimate σ {μ) < ce~{U°~Sl)/li follows from (18) and the inequality ([9],
§20, Lemma 1)

E>/0 <8> r\k < 2(φ(^)1/2Εη0 ® η0 .
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The lower bound for σ (μ) requires more delicate arguments. In the conditions
of Lemma 1 we choose s >2U0. For the sequence r\k constructed on the basis of

the step size To = c(S)e 'μ we then have ^-mixing with ψ = (e~
2u°/>i)k~l. We now

specify (12): for this choice of To

(20)

where δχ may be chosen arbitrarily small. Indeed,

fj-\ TJT

l=J+l

here Γ and κ are taken from (11), and (17) and the Markov property of r\t x are
also used. _

In place of ηί we now consider the quantities 7/; corresponding to the time T o =

c(S)eES/li, Ξ > 1. By construction rj0 - Σίΐο ο~' Ά[ • As noted above, ^-mixing
with the same q>(k) remains in force for rji, while the coefficients of the limit
distributions of the sums r\i and rji are obviously connected by the relation σ(μ) =

\/Το/Τοσ(μ); it therefore suffices to obtain a lower bound for Jji. Formula (20) for

i/0 takes the following form:

and hence for an appropriate choice of Ξ

EO/o ® %) > 8E(??0 ® η0). (21)

Further,

/το/το-ι το/το-\

i=0 i=0

0/r0®^0/r0-i)+ Σ
7>'+2

On the right side of the last equality each term of the second sum can be estimated by
the quantity 2φΧΙ2{2)Ε{η0 ® η0), while the first term satisfies Ε(ηψ /τ ® ηψ /τ _ t) <
E(i70 <8> η0), which by virtue of the choice of φ gives E(7/o ® 7/J < 2Ε(η0 <S> η0).
Combining this obtained with (21) and considering the ^-mixing of rji, we obtain

k=l

which completes the proof.
To conclude the section we present an answer in the nonisotropic case, i.e., we

suppose that under the conditions of Theorem 1 the quantity inf ,x( f)j sup, U{x(t))
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depends on the point of Z" to which the path x(t) joins the origin. Let

Ul = min inf sup U(x(t)) (22)

and let zx be a unit vector collinear with the vector /, delivering the minimum of
(22). We denote by {z{, ... , zk} the linear hull of z,, . . . , zk and construct

Ul = min inf sup U(x(t)) (23)
0 !<ΞΖ"\{0},/£ {ζ,} {x(t),x(0)=0,x(l)=i} t

and we denote by z2 a unit vector orthogonal to z, and lying in the plane {ζχ, i2}
formed by zx and the vector i2 realizing the minimum (23). Continuing this pro-
cedure, at the kth step we find

U min inf sup U(x(t))
/*{z, zk_,} {x(t),x(0)=0,x(l)=i} t

and we construct a unit vector zk orthogonal to the subspace {z,, . . . , zk_l} and
lying in {z,, . . . , zk_}, ik}

Let A(UQ) be a matrix having diagonal form in the coordinates ζχ, ... , zn with

coefficients i/J , . . . , UQ . In this case a minor modification of the proof of Theorem
1 enables us to obtain the following assertion.

THEOREM 2. For the covariance matrix σ (μ) the following asymptotics holds:

Ιπημΐησ(μ) = -A(Un).
/i—0

§2. Averaging of problems with symmetric coefficients

In this and the following sections we shall assume that the coefficients of equation
(3) are infinitely differentiable and that the matrix a^iy) is uniformly elliptic:

λ ^ ξ ^ α ^ ξ ^ κ λ ^ 2 , 0 < A 0 < A 1 , £ e R " .

The conditions most used below we formulate as individual conditions.
I. The coefficients aij{y) and vt{y) are periodic in all variables with unit period.
II. The vector field v(y) has asymptotically stable, attractive singular points at the

vertices of the integral lattice.
III. For any isometry S (SS* = I, detS = 1) of the space R" taking the cube

of periods /" = (-1/2, 1/2)" into itself

a^Sy) = Sau(y)S*, v(Sy) = Sv(y).

Condition III implies symmetry of the equation relative to motions preserving the
cube of periods.

In this section we shall consider equations of the form (3), assuming that μ = ea

with a > 0, and that conditions I—III hold. In order to formulate still another
condition we construct the diffusion process ξε

( corresponding to the operator

We denote by K* the ball of radius R with center at the origin from which all

balls of radius r with centers at the remaining points of Z" contained entirely within

it have been removed. Let pr (y, ε) be the probability that the process issuing from y

first reaches the boundary of K.f at a point not lying on the sphere {y € R" | \y| = R] .
We set pf(e) = min y e r p*(y, ε).
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THEOREM 3. Suppose conditions I—III are satisfied, and suppose there exist positive
constants, r,R, and β such that the closed ball of radius r is attracted by the field
v(y) toward the origin, and pf(e) > β for all ε > 0. Then ue(x) converges as ε —> 0
to a function u°(x) harmonic in Ω with the boundary condition φ(χ).

REMARK. The condition pf (ε) > β has conditional character. Essentially, this
condition forbids mixing of a diffusion particle at large distances without seizure by
one of the centers of attraction. Thus, it cannot be satisfied if v(y) has unbounded
integral curves on R" . For a potential periodic field this is usually impossible for
topological reasons, and it will be shown below that in the case of a potential field
v{y) the conditions of the theorem are satisfied for any potential having on a period
a finite number of singular points of which only one is a minimum point.

In the proof of the theorem an important role is played by the following fact.

LEMMA 2. Suppose that in the domain Ω c R"

where c|^| < α^(γ)ξίξ^ < c~l^\2, and suppose the vector field v(y) has the asymp-
totically stable singular point 0. Then for any compact set Κ c Ω which is attracted
by the field v(y) toward the point 0 there exist constants c, and c2, not depending
on ε, such that

maxz£(y) -min z\y) < c, sup\ze(y)\e~C2/e. (25)
y€K y€K Q

The proof will be given in §5.

Using the strong Markov property of ξ* , we can easily verify

PROPOSITION 1. Under the conditions of Theorem 3,

l-pr^)<cQe , c> 0.

We introduce the following notation: QJ

r = {x e R"| \x - j \ < r}, j e Z " ;

Li = \jQ'r, H = i n f W C e Lr°), p\y, ;) = P ( ^ y e Q>r}.

PROPOSITION 2. On the set R"\L^ the functions pe (y, j) satisfy the equation

Bepe(y,j) = 0 (26)

and the following collection of boundary conditions:

9Ql dQJ

Moreover,

£ / ( } > , ; ) = ! · (28)

PROOF. Equality (28) follows immediately from Proposition 1. To prove (26), on
the expanding family of sets Kr we consider the following sequence of problems:

N = 0,
SQ'r

e
li»,

ε
= ! ' UNJ

\y\=NR
= 0.
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The solution of each of them determines the probability that the point of first exit

of the process ξ] y onto the boundary of K^R lies on QJ

r. It is obvious that the

sequence ue

N is monotone increasing in Ν and is bounded by one; therefore the

limit u* = l im^^^ ue

N . exists. The functions ue(y) are generalized solutions of

problem (26), (27), and so by virtue of the smoothness of the coefficients they are

classical solutions of it. On the other hand, the event {ξε

τ e QJ.} can be represented

in the form UJV=I{£T y

£QJ

r}> n e r e TN
 d e n o t e s the Markov time when the process

ξε first reaches the boundary of K^R . Therefore, l i m ^ ^ ue

NJ(y) = pe(y, j) for

each y . Hence pc(y, j) = u'Ay), and the proposition is proved.

From Lemma 2 and the last two propositions we obtain

PROPOSITIONS. In each ball eQJ

r lying entirely in the region Ω the solution ue(x)
of problem (3) satisfies

~cl*
nj \\L°°(dil)e

PROPOSITION 4. The following inequalities hold uniformly with respect to ε > 0 in

maxpe(y, j) - minpe(y, j) < exp \-c,\j\ — „ ) .
Q°r Ω° ν ε /

Our next step is to pass from equations (3) to a family of difference schemes. For

this we note that the functions ue(ey) in the region ε"1 Ω satisfy the equation

Beue(ey) = 0, u{ey) _ =q>{ey). (29)

We consider an arbitrary integral vector j in ε" 1 Ω at a distance of no more than
l/y/ε from the boundary Θ(ε~ιΩ). According to [12], for ue{ey) there is the rep-
resentation

u'(ej) = E(u\e?lljJ)); (30)

here Μ is the Markov time that the process ξ* first reaches the boundary of the

set ε ~ Ώ \ ^ . With the help of Propositions 1, 3, and 4 we can transform (30) as
follows:

Σ e \ £ i ) + O(e-c/c°'), (31)

where a, = min(a, 1/2). We now introduce the quantities

Since by Propositions 1 and 2

\i\<l/Vi

equality (31) is unchanged if in it we replace ρε(0, i) by qs(i):

με(εβ = Σ q\i - j)u\ei) + O^1^). (32)
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We note the following properties of the numbers qe(i):

2) qe(i) < c,e~c''', where c and c, do not depend on ε .
3) They are symmetric relative to any isometry preserving the cube of periods.
In particular, from 1) and 2) it follows that, uniformly with respect to ε > 0,

0 < σ < Σ Ι'Ί V ( 0 < σ"1 < oo. (33)
;ez"

We have thus arrived at a family of difference schemes connecting the quantities
ue(ej) on the set {j e ε~ιΩ\ρ{ί, θ(ε~ιΩ)) > l/y/ε} . However, so far we know noth-
ing about the behavior of ue{ej) near θ(ε~ Ω). Correct definition of the boundary
conditions affords the following assertion, in which ρε(δ, Ω, j) denotes the prob-
ability that ξε reaches the boundary 9(ε~Ώ) without leaving a <ϊ ̂ -neighborhood
of the point j .

PROPOSITION 5. For any δ > 0

lim min ρε(δ, Ω, j) = 1.

For the proof we consider a family of random walks in R" depending on ε with
independent increments and transition probabilities ρε(0, i). From l)-3) it follows
that for this family of random walks normalized in a suitable manner the Lindeberg
condition is satisfied, and therefore ([13], Russian p. 525, English p. 446) it converges
weakly as ε -+ 0 to a Wiener process in R" . From this property of weak convergence
it follows that the limit relation of Proposition 5 is satisfied with the diffusion ζ*

in the definition of ρε(δ, Ω, j) replaced by the random walk.
We further construct the Markov times: μ*(./) is the time when ξε first reaches

any of the balls Q'r' , i{ Φ j ; μ\ϋ) is the first time after μ\(ΐ) of reaching Q'r
2,

i2 Φ i j ; etc. According to Proposition 4, in the Markov chain <!y(j) j the transi-

tion probabilities from Q'r to Qr differ from ρε(0, I — i) by a quantity of order

6>(exp(-Cj|/ - /| - c/ea'), and hence the proposition follows from the analogous

assertion for the random walk constructed above. The proposition is proved.
In a neighborhood of d Ω we now introduce coordinates, the first of which is di-

rected along the normal to ΘΩ, while the remainder are coordinates on the boundary.
The image of the point ej in an ^-neighborhood of d Ω is carried onto d Ω along
the first of the coordinates introduced; we denote it by ~x(ej).

PROPOSITION 6. In an ^-neighborhood of <9Ω

lim max \uE(ej) - q>(x(ej))\ = 0.
O(jdQ)<l//

PROOF. It suffices to write the solution ue(x) of problem (3) in probabilistic form
and then use Proposition 5 and the continuity of the function φ(χ).

We further consider the auxiliary family of difference schemes

v) -
(34)

υ) = <p(x{£j)), p(ej, ΘΩ) < Ve.
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From [14] it follows that a family of difference schemes of the form (34) whose
coefficients are subject to conditions l)-3) is compact, and any limit point of this
family is a solution of an elliptic equation of the form Au (x) = 0, u \aa = φ(χ).
Therefore, the entire family of grid functions converges as ε —> 0 to a function
harmonic in Ω with the boundary condition φ(χ).

To complete the proof of the theorem it remains to note that the maximum princi-
ple is applicable to the difference schemes (34), and to use Proposition 6 and standard
estimates for elliptic difference schemes, according to which an exponentially right
side in (32) gives an exponentially small correction to the solution of the correspond-
ing difference equations. The theorem is proved.

REMARK. The results of Theorem 3 remain in force for equations of the form
(3) in which the vector field v{y) on a period has an attracting limit cycle or an
attracting region satisfying certain additional conditions. Work with such equations
requires involving the method developed in [10].

§3. Averaging symmetric equations.
Realization of the tentative theorem

Verifying the conditions of the theorem of §3 may be very difficult. We shall give
some sufficient conditions for its applicability.

Our first result pertains to equations for which the attractive zones of the field
v(y) do not abut one another.

THEOREM 4. Suppose the coefficients of problem (3) satisfy conditions I—III, and
suppose one of the following conditions is satisfied:

PI. On I" the field v(y) has compact support and forms a nonpositive inner
product with the radius vector.

P2. In I" the support of v(y) coincides with the closure of some region G with a
smooth boundary, all points of G are attracted by the field v(y) to the origin, and in
a sufficiently small neighborhood of dG the angle between v{y) and the direction of
the inner normal does not exceed π/2.

Then ue(x) converge as ε —> 0 to a function harmonic in Ω with the boundary
condition φ{χ).

PROOF. We shall verify the conditions of Theorem 3. We choose r > 0 such that
the closed ball of radius r with center at a point with integral coordinates is attracted
by the field v(y) to this point, and we shall verify that pf (ε) can be bounded below,
uniformly with respect to ε > 0, by a positive constant if R > 2\fn .

Since the process ζ* possesses the strong Markov property, in the case PI it

suffices to use the following assertions. First of all, with probability one ξ] reaches

dl" for all y e /" . Suppose, further, that s = p(G, dl"). We construct the set ω 1 =

(-1/2 + 5, 1/2 -s)n, ω2 = (-1/2 -s, l/2 + s)n, ω 3 = {y e R"| \y\ < 1/2 - 2s/3},

and ω = ω2\{ωι U ω 3 } . Let π{ be the Markov time when the process ξ* y first

reaches the boundary dω. Then, uniformly with respect to y e dl" and ε > 0,

i f J >!/,><), (35)

since in ω this probability is delivered by an operator which does not depend on e.
We now consider ξ* in the spherical layer {y\r < \y\ < 1/2 — i/3} . Let π2 be

the Markov time when ξ* first reaches the boundary of the spherical layer. The

probability P{|i* | = r] 'satisfies Beu = 0, u\w=r = 1, and «lM = 1 / 2_ j / 3 = 0. To
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estimate the solution we choose a barrier function of the form

Since by hypothesis (v{y), y) < 0, for sufficiently large γ in the indicated spherical
layer for all ε > 0 we have Βεζ0 > 0, whence by the maximum principle P{|£* y\ —
r}>v2>0 for all y e {y\ \y\ = l/2-2s/3} , which together with (35) and the strong
Markov property of ξε gives the required assertion.

We now suppose that P2 holds. We define s = p{G, dl"),

and the Markov time π 3 = inf{i > 0|£ε ^ ω4} . Since by hypothesis v(y) - 0 in

ω 4 , it follows that P { ^ y e dG} does not depend on ε for all y e ω 4 , and hence,

uniformly with respect to y € dl" and ε > 0,

In a neighborhood of dG we introduce coordinates z } , . . . , zn , where ζχ is the
inner normal to dG, while z 2 , ... , zn are coordinates on the boundary, so that
dG = {z\zx = 0} . In the new coordinates Be takes the form

where for some sufficiently small δ > 0 in a neighborhood {z| |z,| < δ} of the

boundary dG we have the estimate v\{z, ε) > -ce, which follows directly from

P2. Suppose π 4 is the Markov time at which the process ξ\ first reaches the

boundary of the set {z\ \zx\ < δ} . The probability Ρ{(ί* ^)j = +<5} is a solution of

the problem B\u = 0, u\z =_δ — 0, u\2 =s = 1. A lower bound for it is given by a

barrier function of the form {eyZ{ - e~yS)(eyS - e~yS) for sufficiently large γ . From
this, uniformly with respect to y e dG and ε > 0,

Finally, since all the points of G are attracted by the field v{y) toward the origin,
uniformly with respect to y e {y e G\zx{y) = δ} the probability P{|f£ y\ = r}
converges to one as ε —• 0 (see [10]); here π 5 is the Markov time when the process
f* first reaches the boundary of the set G\{y\ \y\ < r) . The required estimate
follows from the last relations via (36), (37), and the strong Markov property of

Another sufficient condition for convergence is given by

THEOREM 5. Suppose equation (3) satisfies conditions I—III, and suppose that each
point of I" is attracted by the field v(y) toward the origin. Suppose also that for
each ζ e dl" and y e /" such that \z - y\ is sufficiently small, the angle between
the vector of the inner normal at the point ζ to dl" and v(y) does not exceed π/2.
Then the assertion of Theorem 3 holds.

The proof, which consists in verifying the conditions of Theorem 3, is altogether
identical to the proof of the preceding theorem.
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REMARK. From the conditions of Theorem 5 and the periodicity of the field v(y)
it follows that v(y) must be tangent to the boundary of the cube dl" .

We consider the potential case. The next result is a direct corollary of Theorem 3
and the estimates of § 1.

THEOREM 6. Suppose conditions I—III are satisfied, where v{y) — -VU(y) and
the potential U(y) has on the torus of periods only a finite number of singular points
(VU(y) = 0), among which only one is a minimum point. Then as ε —• 0 solu-
tions ue(x) of problem (3) converge to a function harmonic in Ω with the boundary
condition φ(χ).

§4. Further examples

In this section we give further examples of the application of the properties ob-
tained above of the diffusion process ξ* .

It is frequently necessary to investigate equations of the form (3) in which there
is symmetry in not all but only a part of the variables yx, ... , yk , 0 < k < η (for
k = 0 there is no symmetry).

As in [10], suppose that

W(y) = inf inf / \a~\x{t)){x{t)-v(x{t)))\2 dt,
T>o{x(t)x(O)oX(T)y}J " n

where the matrix a(y) is such that a(y)a*{y) — (a,..

THEOREM 7. Suppose the coefficients of problem (3) satisfy conditions I and II, and
condition III in part of the variables yx, ... ,yk, k>\, and suppose that each point
of the cube I" is attractedby the field ν (y) toward the origin. Suppose further that the
restriction of W(y) to dl" achieves a minimum only at points situated within those
2k faces of the cube which are parallel to the subspace {y e tin\yl = • • · = yk = 0} .
Suppose, finally, that in a neighborhood of dl" the field v(y) forms an acute angle
with the vector of the inner normal to dl" . Then as ε —> 0 solutions ue(x) of problem
(3) converge to a function uo(x) which in each section of the region Ω by the plane
{x € R"|*fc+1 =ck+l, ... , xn = cn} satisfies the equation

k Q2

This assertion, as in the proof of Theorem 3, is obtained by passing to a family
of random walks on the discrete lattice. A typical transition time is characterized by
the quantity W, while the random walk itself decomposes into independent random
walks over planes of lower dimension.

For k = 0, i.e. in the absence of symmetry, the limit operator may be of first
order, in contrast to the potential case.

Suppose conditions I and II are satisfied, and suppose all points of / " are attracted
by the field v(y) toward the origin, where in a neighborhood of dl" the field v(y)
forms an acute angle with the vector of the inner normal. We suppose that the
restriction of W(y) to dl" achieves a minimum only on one face of the cube /"—
say on the face where y{ = 1/2. Then as e —> 0 the solutions uc(x) of problem
(3) converge to a solution of the equation duQ(x)/dxl = 0 with boundary condition
<p(x) given on that portion of the boundary where the first coordinate axis is directed
to the exterior of the region Ω.
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In this case the random walk corresponding to the process ξ\ y reduces to a se-
quence of jumps in the direction of the first coordinate vector, which leads to degen-
eration of the limit operator to an operator of first order.

In the remainder of the section we consider the problem of the contact of two
media. We consider equation (1), (2) with v(y) — -VU(y).

Suppose there are two symmetric periodic potentials Uy(y) and U2(y) possessing
the following properties:

A. C/jO>) and U2(y) have strict minima at points of Z" .
B. All points of In are attracted by each of the potentials toward the origin.
C. The restriction of i/(-(y), i = 1, 2, to dl" achieves a minimum only at interior

points of the (« - 1 )-dimensional faces of dl" .
D. min e / . Ux{y) < min e / . U2{y).
We call problem (1), (2) the problem of contact of two media if the potential U{y)

of the field v(y) coincides with Ux{y) for yx < -1/2 + δ , δ > 0, with U2(y) for
yx > 1/2 — δ , and is periodic and symmetric in the variables y2,... ,yn.

The conditions arising in the limit equation on the separation boundary of the
two media, i.e., on the hyperplane {x e R"|Xj = 0} , depend on the structure of the
potential in the layer {y e R"| - 1/2 + δ < yx < 1/2 - <5}. Apparently, the most
natural is the following behavior of U(y) for -1/2 < yx < 1/2:

a) U(y) has a minimum point at zero which attracts all trajectories beginning in
/" .

b) The restriction of U(y) to dl" has minimum points only on that face of the
cube where yx = -1/2.

If these conditions are satisfied, ue(x) converge as e —> 0 to a solution of the
problem

UQ{X)

uo(x),

JC e {x e 0}

= uo
JC,=O

dUQ /dXy = 0.

To illustrate the fact that the limit problem may depend on the properties of the
potential in the layer we consider two examples of the contact of two media. In the
first of them we replace condition b) by the following condition:

b') The restriction of U(y) to dl" has minimum points only on those faces of
the cube where -1/2 < y, < 1/2. The limit problem then has the form

x € {χ e X e {x € Ω|χ, < 0} ;

= 9\Xl=
Xl=0i=2

In the second example we consider a potential for which the minimum on each
of the faces {y e dln\yx = -1/2} and {y € dl"\yl = 1/2} of the cube /" is
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strictly less than the minimum on the union of the hyperplane {y € Rn\yl = 0} with
the remaining faces of the cube. In this case the limit function is a solution of the
problem

UQ(X), X [ > 0 , AMQ(X) = 0, χ e {x e Ω\χι > 0};

u~(x), xx < 0 ;
uQ[x) =

«olen

χ e {χ e Ω|χ, < 0};

= 0,
χ,-υ

and, generally speaking, it is discontinuous on the hyperplane {x e R"\xl = 0} .

§5. Proofs of technical lemmas

PROOF OF LEMMA 2. We assume with no loss of generality that the point of
attraction is situated at 0. We choose R > 0 so that the ball B^ = {x e R"| \x\ < R}
is attracted by the field v(x) toward the origin. By hypothesis, there exists δ > 0
such that the trajectories of the equation χ — υ (χ) issuing from points of the sphere
S2S = {x G R"| |x| = 25} for all ί > 0 lie in Br/2 and x{t) -> 0 as t -» oo. By
the continuity of the dependence of the solution on the initial conditions and the
compactness of the sphere, from this it follows that there exists t0 > 0 such that
x(t) € Bs for all t > tQ . Suppose ξ? χ is the diffusion process corresponding to the
operator

and let τ° be the Markov time when the process ξ? χ first reaches the boundary of
the spherical layer

Qe-K/> 2S = {x €R"\e-K/fl < \x\ < 2δ}.

We shall prove that, uniformly with respect to χ e Ss ,

"KTo χ ε be-Kin) > ce , (38j

where q and λ do not depend on μ. For this in the spherical layer Οε-κ/μ 2δ

we consider the problem Αμιι = 0, u\\x<=e-«/» = 0, u\^=2S = 1, whose solution
determines the probability

To construct a barrier function we consider the auxiliary equation
1 Λ Λ \

-γΓ+λ-ο-ήΰ = 0, «lw=e-«/, = 0 , « I W = M = 1 ·
Since the solution Μ depends only on r — \x\, the last equation can be rewritten as
follows:

After this it can be integrated explicitly:

u{r) =
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We estimate 1 - ΰ(δ):

c2S , , ( f2d
-q-λτ/μ,^Ι / -g-λτ/μ1 - ΰ(δ) = Ι τ-"β-Λνμ dx | / χ~"β-Λτ/μ dx

-«/* J (39)

We also note that u(r) is monotone increasing with r. To prove the estimate u(x) <
u(\x\) we act with the operator Αμ on (u - u):

Αμ(η-ΰ)=-Αβΰ= ί-μα^-^-ν^^Λΰ
•r~j

In the last equality the function a(x) can be bounded below by the minimum eigen-
value of the matrix (a,· ·(*)), and b{x) can be bounded above by the quantity «Λ,
where Λ is the maximum eigenvalue of (α^(χ)), \ϋ(χ)\ < \υ(χ)\. Further,

/ d^_ b(x}]_d_ ν(χ)(ΛΉ=( <f_ Q_d_ χ9_\-
ydr2 a(x)rdr a{x)drj ~ ydr2 μ r dr dr]

(b(x) \ 1 d (v{x) Λ θ _
+ μ\α(χ) q rdr+\a(x) A)dr

a{x) rdr
fJLd_Ji_ Λ ϋ(χ)\ d _

For a suitable choice of q and λ we have q-b(x)/a(x) > 0 and λ-ν(χ)/ά(χ) > 0,
and hence

A (u-u) - -a(x) I q - ^7—I 1 —-^-ΰ-ά(χ) ( λ - ̂ - 4 ) -r-ΰ. > 0 .
" v \ " a(x) r dr \ a(x) dr

From this by the maximum principle u < u, and hence

l-u>l-u>e-{XS+KqW.

We now construct the sequence of Markov times
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~ΘΙμAccording to [10], for χ e S2S we have P{{£ x 6 Ss} < β~ΘΙμ , θ > 0, and so, by

(38),

1=0

here τ is the Markov time when the process ξ* χ first reaches the boundary of
Βκ\Βε-κ/μ. For a suitable choice of δ and κ the preceding estimate gives

n^,x^BR}<e-ej>l, 0 , > O . (40)

In the ball 2^-*/,., by standard estimates of the derivatives of a solution of an
elliptic equation in terms of the maximum modulus in a broader domain we have

max u(x) - min u(x) < c— sup \u(x)\e~K . (41)
Β

ί-κ/μ B

e-KlH β Ω

Representing u(x) in probabilistic form and using (40) and (41), we now get

maxM(jc) -minM(jc) < csup\u(x)\e~e/>l, Θ2>Ο. (42)
Β7δ B1i Ω

We now consider an arbitrary compact set Κ c Ω which is attracted by the field
v(x) toward the origin. Let τ = inf{i > 0\ξ? x $ Ω\Β2δ} . According to [10], for JC
in Κ

vKx*Bu}<e-e>/11, 03>O. (43)

To complete the proof it remains to estimate u(x) in probabilistic form, and use
(42) and (43).

PROOF OF LEMMA 1. Let ξ^ be the diffusion process corresponding to the oper-
ator Αμ on the torus of periods, and let p(t, χ, y) be the density of the transition
probability of this process (p(t, χ, y) is also a fundamental solution of the operator
d/dt - A on T"). In the proof of the lemma the decisive step is the following
inequality: for each δ > 0 there exist ίο(δ) and <J, > 0 such that for all χ e Tn

and y e Qs = {y e T"\ \y - <?\ < <5J we have

P{to,(d),x,y)>e-*l2*\ (44)

here <9 is the attracting singular point of the field v(y). To prove (44) it suffices to
use a result of [16] and [17]: for any t > 0, χ , and y

ft ,
inf / \<j> - υ(φ(ί))\ dt,

we then consider the structure of the vector field v(y) on Tn .
We denote by co(t) the oscillation of a solution of the problem

(θ/θί-Αμ)ιι = 0, «|(=0 = / 0,

at time t:
ω(ή = max u{t, x) - min u(t, χ),

T" x€T"
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and we estimate ω(ίο(<5) +1) in terms of ω(ή . We assume with no loss of generality

that maxx u(t, x) - - min^ u{t, x) - \ω{ί). We denote by Qg and QJ the subsets

of Qg where u(t,x)>0, and u(t, x) < 0 respectively. Then, by (44),

u(to(S) + t,x)= f ρ(ίο(δ), χ, y)u{t, y)dy
JT"

< (1 - β~δ/2μmeasQ~)mnxu(t, χ) = \ω{ί){\ -

and, similarly,

Μ(ίο(δ) + ί,χ)>-^ω(ή(1-β-δ/2μ

Hence

2 oj

Choosing now for Γο the quantity c(d)to(d)es^/K(d), we find that

ω(Τ0 + t)< ω(0(1 - KQy

and for a suitable choice of c(S) we obtain

for any prescribed c.
Inequality (6) can be derived from this by means of standard estimates of the

maximum modulus of a solution of a second-order parabolic equation in terms of its
L -norm in a broader domain (see [11]).
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