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AVERAGING A SINGULARLY PERTURBED EQUATION
WITH RAPIDLY OSCILLATING COEFFICIENTS
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ABSTRACT. A complete asymptotic expansion is constructed for a second-order equation of
elliptic type with a small parameter in the highest-order derivative and rapidly oscillating
coefficients.

Bibliography: 11 titles.

In this paper in the layer a < χΎ < b of the space R" we study the problem

dxj '{ ' eldx, \ ' t) ' (̂

with a small positive parameter ε. We assume that the coefficients α^(χ, y), b^x, y), and
c(x, y) are smooth functions which are periodic in the second argument y. We further
assume that the matrix (atj) satisfies the condition of uniform ellipticity

λ|ξ| < au{x, y)£,£j < Λ|ξ| , 0 < λ < Λ.

Our aim is to find conditions on the coefficients of equation (1) under which the
solution ue(x) can be represented as an asymptotic series in powers of the small parameter
ε and also to construct such an asymptotic expansion when these conditions are satisfied.

The first section is of independent interest. There we study the behavior of a solution of
the equation

a* (2)

defined in the cylinder (yx,... ,yn) e (0, + 00) x T" * with toroidal cross-section for large
y1. Existence of a bounded solution of problem (2) and stabilization of any bounded
solution to a constant as^j -* 00 are proved under the assumption that the right side f(y)
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decays sufficiently fast. Necessary and sufficient conditions are obtained for uniqueness of
a bounded solution of (2).

We note that for equations in divergence form a similar problem was solved in [1]. The
behavior of solutions of various boundary value problems in domains close to a cylinder
was investigated in [2] for equations of divergence type.

A method of constructing an asymptotic expansion of a solution of (1) is presented in
§2. This method is applicable if an auxiliary vector field Ί>,(χ) constructed on the basis of
the coefficients of (1) satisfies certain conditions which are close to the condition of
regular degeneracy of [3].

Near each of the boundary planes the asymptotic expansion of u"(x) contains functions
of boundary-layer type which are found by applying the results of §1. Here in a
neighborhood of one of the boundary planes a boundary layer occurs already in the zeroth
approximation, while in a neighborhood of the other it occurs only in first approximation.

In this same section the solvability of problem (1) is proved for sufficiently small ε, and
the sign of the coefficient c(x, y) can be arbitrary. Estimates of the solution in terms of
the right side and the boundary functions are also obtained. These results are proved by
probabilistic methods.

Equations of the form (1) with nonoscillating coefficients have been studied in [3], [4],
and many other works. If the lower order terms bt(x, y) and c(x, y) are not present in
problem (1) an asymptotic expansion of the solution can be constructed by the methods of
[5], but this expansion has a form different from that obtained by us.

§1
In an infinite cylinder which is the product of the half-line (0, + oo) and the (n - 1)-

dimensional torus Γ"" 1 we consider the equation

4 4 h = / ω >

 (20

Here the coefficients atj{y) and bt{y) are bounded and measurable. Moreover, the matrix
{al-.Λ satisfies the condition

λ| | |2 < a^y)^ < Λ|ξ|2, 0 < λ < Λ .

We begin the study of problem (2') with the simplest case where the coefficients atj{y)
and bj(y) are periodic in the variable yl and are twice continuously differentiable. We
denote by S/Q the operator formally adjoint to s/0, and on the torus of periods T" we
consider the problem J&QP = 0. A nontrivial solution p{y) of this equation exists; it is
unique up to a factor and vanishes nowhere (see [6]). In order to uniquely determine the
choice of p(y) we assume that its average over the torus T" is equal to one. We now
construct the auxiliary vector

THEOREM 1. Suppose that the operator s/Q has coefficients which are twice continuously

differentiable and periodic in the variable yv and suppose that the boundary condition in (2')

is given by a bounded function, while the right side f{y) decays exponentially as yx -> oo:

ΙΙφΙΙΐ-σ-1) < °°> Ik^/IL-ao.+ooxr-i) < °°> β > ο-
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Then any bounded solution of problem (2') stabilizes as y1 -> oo to a constant at an

exponential rate:

\u(y) ~ MN ce~ay\ a > 0.

The inequality T)l < 0 holds if and only if a bounded solution of problem (2') exists and is

unique; the inequality Ί>λ > 0 holds if and only if for any real μ problem {!') has exactly one

solution which tends to μ at infinity.

PROOF, We first prove the assertion of the theorem for zero right side. To this end we

consider the diffusion process corresponding to the o p e r a t o r ^ :

where

We denote by Γο the lower base of the cylinder and by TN the section of the cylinder by

the hyperplane {y1 = N}. Let r(y) be the Markov time at which the process ξ{ first

reaches the lower base Γο. If ξ{ does not reach Γο we set τ(y) = oo.

ASSERTION 1. Either the probability P { T ( J ) < oo} of the process ξ? reaching the lower

base is equal to one for ally, or it is less than one for ally not lying on Γο.

PROOF. We consider the process £f in the finite cylinder [y: 0 < y1 < N}, and we

denote by rN(y) the Markov time of first passge of the process £f onto the boundary

Γο U Fjy of this cylinder. According to [7], the probability P{££v(>;) ε Γ 0 } satisfies the

equation

jtfouN = 0, UN\TQ = 1, UN\TN = 0.

It is easy to verify by the maximum principle that the functions uN(y) are monotonically

increasing in ./V and satisfy the inequality 0 < uN(y) < 1. Therefore a function u{y) =

l i m ^ ^ ^ uN{y) is defined that, like all the uN(y), is a solution of the equation ^ u = 0

and satisfies the inequality 0 < κ ( 7 ) < 1 .

On the other hand,

for all y, and hence u(y) = P { T ( J ) < oo}. Assertion 1 now follows from the strong

maximum principle.

ASSERTION 2. Suppose that Ρ{τ(>>) < oo} < 1 for ally not lying on Γο. Then there exists

θ > 0 such that for all y

P{r(y) < oo} < α Γ β Λ . (3)

PROOF. We use the strict Markov property of the diffusion process |f. We may assume

with no loss of generality that the period of the coefficients of s/0 in the variable y1 is

equal to one. From the hypotheses of the assertion and the continuity of P{ r(y) < oo} it

follows that

m a x P { T ( j ) < oo} = 0X < 1.
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Suppose now that y e Γ2. We denote the Markov time of the process iy

t reaching the
section Γχ by η(γ). By the strict Markov property of £f we have (see [7])

P{r(y)< O O } = P { ( I J O 0 < oo) n ( r ( j ) - T,(J) < oo)}

= E[P{(,(^) < oo) n(r(y) -

= E ( X { T ) ( > , ) < O O ) P { T ( J 0 -V(y) <

= E ( X O K , ) < 0 0 } P { / ( T J O ' ) ) < ° ° } )

here Ε denotes the expectation corresponding to the probability P, and J^(>)) is the
σ-algebra generated by the Markov time η(.μ); here a n d henceforth χ denotes the
characteristic function of a set.

In exactly the same way, for y lying on TN we obtain by induction the inequality

Further, again using the strict Markov property, it is easy to obtain (3).

LEMMA 1. Suppose that the probability P{r(y) < oo} is equal to one for all y. Then {!')
has a unique bounded solution, and this solution stabilizes to a constant at an exponential
rate.

PROOF. Existence. In the bounded cylinders {0 < y1 < Ν} we consider the sequence of
problems

The solution of each of these is given by

Since by hypothesis P { T ( J ) < oo} = 1 for any y, as Ν -> oo the probability P{rN(y) Φ
r(y)} converges to zero for all y. From this and Lebesgue's theorem it follows that for
eachy there exists the limit

u(y)= lim uN{y) = Ε ( φ ( ^ , ) ) . (4)
iV —* oo

The limit function u{y) is defined in the cylinder {0 *£ y^ < oo}, is bounded, and satisfies
the equation J^0u = 0, since all the uN{y) satisfy this equation. Moreover, the function
<p(y) serves as boundary condition for u(y) on Γο.

Uniqueness. We suppose that there is another bounded solution v{y) of (2') distinct
from u(y). We fix an arbitrary point y and note that in the cylinder {0 < y1 < N] we
have

N(y))) (5)

It follows from the hypotheses of the lemma that

By hypothesis v\r = <p(y). Therefore, passing to the limit as Ν -> oo in (5) and using the
boundedness of v(y) we obtain v(y) = E(<p(££(j;))). From this and (4) it follows readily
that v(y) = u(y).
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The semigroup property. We shall prove the following property of the operator J&0 which
is important for our purposes. Let z(y, v) be a bounded solution of the problem

sfoz = 0, ζ | Γ | = w|r>. (6)

Thenz(j, v) = u(y) iory1 > v.
Indeed, u{y)\ >v is a bounded solution of (6). It remains to use the uniqueness of a

bounded solution.
Stablization to a constant. In the cylinder yx^- k + 1/2 we consider the problem

J / O Z = O, z\T =V0{y)·

Here A: is a natural number, and ψ*(y) is a smooth, nonnegative function with support in
a ball of radius ρ > 0 with center at the point χ which is equal to one in a ball of radius
p/2. Then for any>> in the section Tk+1

z(y)>y(p)>0, (7)

where γ(ρ) does not depend either ony or on x. Indeed, for fixed χ inequality (7) follows
from the maximum principle and the compactness of Tk+1. Further, using the probabilistic
representation for z(y) or the maximum principle, it is easy to verify the continuous
dependence of z(y) on x, after which the uniformity of the estimate (7) in χ follows from
the compactness of the torus Tk+1/2.

We denote by m(t) the maximum of u(y) on the set Γ, and by m{t) the minimum of
u(y) on Γ,; we set ω(ί) = fn(t) — m(t). From the representation (4) for u(y) and the
semigroup property it follows that m(t) decreases monotonically, while m(t) increases
monotonically. Our problem is to prove that ω(ί) «ξ ce~at, where the positive number α
does not depend on φ but only on J / 0 . To this end we consider the solution u(y) over a
single period (k =ξ y1 < k + 1), and we prove that u(k + 1) < β1ω(^, where βλ < 1
does not depend onkor <p(y).

Because of the linearity of the problem, we may assume with no loss of generality that
m(k) = 1 and m(k) = - 1 . If m(k + 1) < 1/2 or m(k + 1) > -1/2, then for ft it is
possible to take 3/4. Otherwise, on Tk+1/2 we have

m(k + 1/2) > 1/2, m(k + 1/2) < -1/2. (8)

We denote by y' and y" respectively the points of the maximum and minimum of u{y).
Noting that the quantity |M(>0I is bounded by one, from Schauder's inequality we obtain

ΝΙθ>(* + 1/4<Λ<* + 3/4) < θΐ(·^θ)- (9)

The uniformity of this estimate in k follows from the periodicity of the coefficients of sf0.
It follows from (8) and (9) that for some ρ > 0 in a ball of radius ρ with center at y' we

have u(y) > 1/4. Similarly, in a neighborhood of the minimum point we have u(y) <
-1/4. We now represent u(y) as the sum ux{y) + u2(y), where ux(y) is the solution of
the problem

and M2(y) is the solution of the same equation with the initial condition

ri+l/2 'I*+ 1/2
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It is easy to see that u2\T > -1 on Tk+l/2; this same inequality therefore holds on

Tk+1 as well. From (7) we have

M l r A + 1

Hence,

In precisely the same way,

and so

To complete the proof of the lemma it remains to choose for βχ the quantity

ητιη(3/4,1-γ(ρ)/4).

REMARK. It is evident from the proof of Lemma 1 that in the estimate

u{y) - μ\ ce~ayi

in our case the constant c can be chosen equal to 2ea | |<p||£3= ( r y

LEMMA 2. Suppose that P{T(J>) < oo} < 1 for all y not lying on Γο. Then for any real μ

there exists a unique solution of problem (2') which converges to μ at infinity. The stabilization

occurs exponentially. Problem (2') has no other bounded solutions except those which stabilize

to a constant.

PROOF. AS in the preceding lemma, in the bounded cylinders {0 < y1 < N} we consider

the sequence of problems

Each of the solutions uN{y) is given by

uN{y) =

It is clear that for any y the sequence uN{y) converges as Ν -* oo to the quantity

= oo} ( ( ) )

Since all the functions uN(y) are solutions of the equation J?QUN = 0, it follows that

s?ou = 0. Further, it is easy to verify that u\To = <p(y).

We shall show that our solution u{y) tends to μ exponentially as yx -> oo; to this end

we estimate the difference

lM(.v) ~ Η ̂  ΙΗ^ί T(.y) < °°} + ll<p|li°°(r0)'>{T(j;) < °°}

+ llvlL-(r0)
the second inequality here follows from Assertion 2. It follows from the maximum

principle that any solution of (2') which tends to μ at infinity coincides with u(y).

We shall verify that there are no other bounded solutions. We suppose that there is a

bounded solution of (2') which does not stabilize to a constant. We denote it by v(y). The
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lack of stabilization implies that for some ε0 > 0 for any k in the cylinder {yl > k) there
are points/ andy" such that

\v(y')-v(y")\>e0. (10)

We now extend the coefficients of jtf0 to the cylinder {-00 < yx < +οο} in periodic
fashion, and we consider the problem

jfozN = 0, ZN\TN = O\TK, (11)

which can be solved "below", i.e., on the set (-oo, Ν) Χ Γ""1. We observe that for any y,
-oo < y1 < N, the probability that the process ξ{ defined in the cylinder {-oo < y1 <
+ oo} reaches the section Γ^ is equal to one. Indeed, for each finite ν the probability that
the process ξ{ reaches the boundary Tv U Γ^ of the cylinder { ν < y1 < Ν } is equal to one
(see [7]), and by the hypotheses of the lemma the probability of reaching the lower base Tv

for fixedy tends to zero as ν -> -oo. From what has been said it follows that Lemma 1 is
applicable to problem (11); therefore ZN(y) stabilizes exponentially to a constant as
(y1 — N) -» -oo. Here

where fN(y) is the Markov time of first passage of |f onto Γ^.
In the cylinder {0 < y1 < Ν } the function v(y) can be defined by

Further, by Assertion 2

w0,) e Γο} < P{T(y)

and hence for any y' and y" in the cylinder { k < yx < N/2) on the basis of the formulas
for the solutions zN(y) and v(y) we have

My') - v(y")\ < My') - %(/)l +1

Choosing first k and then Ν sufficiently large, we obtain a contradiction to (10). The proof
of the lemma is complete.

LEMMA 3. The condition &j > 0 is necessary for the inequality P { T ( J ) < oo} < 1 to be

satisfied for ally not lying on Γο.

PROOF. Suppose that P { T ( J ) < oo} < 1 for ally not lying on Γο. In this case Lemma 2
guarantees the existence of a solution of the problem

We multiply by p(y)u(y) and integrate over the cylinder 0 < yx < iV:
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We now integrate I(N) by parts:

3* '
dy'

-^u(y) dy'

= 0.

From the definition of p(y) we obtain

~a~p (y) ~ ~a~{bi(y)p(y))\ dy' = o.

We now integrate I(N) with respect to Ν over the interval from η to η + 1:

^p(y) - b1(y)p(y)} dy'

+ f^1dyifTu(y)p(y)alj(y)^u(y)dy' = 0.

In this equality we pass to the limit as η -* oo. Since the function u(y) converges to one as
yx -> oo as its first derivatives tend to zero, the third integral on the left side of the last
equality drops out, and we arrive at the relation

dyif p(y)aij(y)j-u(y)-^-u(y)dy'

The first integral here is positive, while the second is Τ>γ by definition; therefore, ~bx > 0.
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LEMMA 4. The condition T)x «ζ 0 is necessary in order that P{ r(y) < 00} = 1 for ally.

PROOF. Suppose that P{r(y) < 00} = 1 for all y. In the cylinders {0 < j x < Ν} we
consider the sequence of problems

s#QuN = 0, UN\TQ = 1, UN\TN = 0. (12)

It follows from the hypotheses of the lemma that on the set (0 < y1 < 3} the functions
uN{y) tend to one as JV -» 00. The derivatives of these functions tend to zero on the set
(1 <>Ί < 2} asiV -» 00; this follows from Schauder's inequality [8]. As in the proof of
Lemma 3, we multiply (12) by p(y)uN(y) and integrate over the cylinder {17 < yx < N}.
Integrating by parts, just as in the preceding lemma, we obtain

-/ <fyif
η 1 y

- f p(y)uN(y)aji(y)j-uN(y) dy

r = 0.

We integrate this equality with respect to η from 1 to 2. Passing to the limit as JV -> 00, we
obtain

Since the limit on the left is nonpositive, it follows that Ί>1 < 0.
We now observe that Assertion 1 implies that the necessary conditions formulated in

Lemmas 3 and 4 are also sufficient. The assertion of Theorem 1 has thus been proved in
the special case f(y) = 0.

We continue the proof of Theorem 1 in the general case; for this we consider the
problem

s/ou=f(y), U\TQ = 0.

As previously, we consider two cases independently: Ί>λ > 0 and Τ>χ < 0. Suppose first that
b1 < 0. We denote by uN(y) the solution of the problem

•^OUN = f(y)> UN\T0 = °. "ΛΊΓ* = °·

We multiply both sides of this equation by p(y)uN(y) and integrate it over the cylinder
0 < > Ί < Ν. Integrating by parts, we obtain

-ji

= / dyj f(y)p(y)uN(y)dy'.
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For brevity we denote the function /(y)p{y) by f(y). Just as f(y), it decays exponen-
tially asy1 -» oo. We shall prove that/(j>) can be represented in the form

where all the gt{y\ i = 1,...,n, decay exponentially as yx -» oo. Indeed, let fiiyj be the
average oif(y) over the section Γ :

Λ(Λ) = ί /(>0 dy'-

As g^y) we choose the function

fi(z)dz.

A

It is clear that gi(y) decays exponentially as j ^ -» oo. The difference f2(y) = f(y) - A(y)
has zero mean over Γ for almost allyx. We define the function g2(y) as follows:

f 2= f 2 ( i z i f 2 ( y ^ z ' y 3 ' - - ^ y n ) d y 3 ••• dyn.

Continuing this process, we find the desired representation iorf(y).
Equality (13) can now be rewritten as follows:

g,(y) jju

From this by the exponential decay of the functions g,(j) we obtain

(14)

where the constant c(f) does not depend on N. Noting that all the uN{y) vanish on Γο,
from (14) we easily find that for any k, 1 < k < Ν - 1,

ΙΙ«ΛτΙΙί.2{*-κΛ<*+ΐ} < cc(f)k. (15)

From this by known estimates [9] we obtain

IKIIc°(iV) < c2c{f)k. (16)

Estimates of the Holder norms of uN{y) which are uniform in Ν (see [9]) enable us to
choose from the sequence uN(y) a subsequence uN,{y) which converges uniformly on each
compact set to some function u(y). It is clear that u{y) is a solution of the equation
JI/OU = f{y) and satisfies the boundary conditions u\T = 0. The estimates (15) and (16)
remain valid for u{y).

We now define the function vN{y, k) as the solution of the problem

For yx > k the function zN(y, k) = vN(y, k) - uN(y) satisfies the equation

From the sequence vN(y, k) for each fixed k it is possible to select a subsequence
converging to some function v(y, k). In this case it is easy to verify that the function
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z(y, k) = v(y, k) — u(y) is a bounded solution of the problem

sfoz = O, Ζ | Γ Α = - Μ | Γ Λ ; (17)

and hence from the part of the theorem already proved it follows that the oscillation of
z(y, k) on the set 2k < yx < 2k + 1 does not exceed c3ke'ak. From the exponential
decay of the right side f(y) and estimates of the type (16) for v(y, k) we obtain

here β is the coefficient in the argument of the exponential function in the estimate of the
rate of decay of f(y). For yx > k the function u(y) can be represented as the sum
u(y) = v(y> k) + z(y> k), and hence the oscillation of u{y) on {2k < y1 < 2k + 1} does
not exceed c5e~"llc, ĉ  > 0. From this it follows immediately that u(y) converges exponen-
tially to a constant.

The case Τ)λ > 0 is considered similarly; the only difference is that in problem (17) there
is the additional condition at infinity z(y, k)\yi_x = 0. The proof of the theorem is
complete.

REMARK 1. By analyzing the proof of the theorem it is easy to verify that in the estimate

the quantity α depends only on the operator jtf0 and the number β present in the
formulation of the theorem, while the constant c further depends also on ||<p||£»(r0)>

REMARK 2. If in the hypotheses of Theorem 1 the coefficients of jtf0 are continuously
differentiable / times, / > 2, while the right side/(>>) decays exponentially together with
its derivatives to order /, then all the derivatives of the bounded solution u(y) of order no
higher than / + 1 also decays exponentially. This follows immediately from Schauder's
inequalities.

Periodicity of the coefficients of problem (2') in the variable yx played a fundamental
role in the theorem just proved. The condition of periodicity of the coefficients of J / 0 i n ^
can be replaced by a considerably weaker condition. Namely, we have the following result.

THEOREM 2. Suppose that the coefficients aij{y) and b({y) of the operator J / 0 are bounded
and measurable, and that in the cylinder {0 < y1 < oo} there exists a solution p(y) of the
homogeneous, formally adjoint equation $0ξρ = 0 which for ally satisfies the inequality

0 < κ0 ^p(y) < iq < oo.

Then for any k > 0 there exists the limit

Λ*= hm fN+kdyJ ib1(y)p(y)-ajl(y)^-p(y))dy',

the quantities Ak are connected by the relation Ak = kA1, and all the assertions of Theorem 1
continue to hold if in the hypotheses the quantity ϊγ is replaced by Λ1 and the additional
condition ||<p||/fi/2(r0)

 < oo is imposed on the boundary condition y{y).

PROOF. AS in the proof of Theorem 1, we first consider problem (2') with zero right side.
The existence of a bounded solution in this case can be obtained just as in Theorem 1. We
observe only that the existence of a solution of the problem

^ 1 ^ = 0, uN\T =<p(y), «jvlr = 0
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for each Ν is ensured by the finiteness of the i/1/2-norm of φ(y). We shall prove that any
bounded solution of (2') stabilizes to a constant as yx -> oo. For this we multiply (2') by
the functionp(y)u(y) and integrate this equation as in Lemma 3. As a result we obtain

k + s , fN + η , f , λ / χ θ / ^ 9

k -Ί) JTn 'J "/,•

3 , . , .
(18)

k + N

= 0.
t=k

Since M(J>) andp(y) are solutions of J/OM = 0 ands/^p = 0 respectively, the boundedness
of these functions implies the boundedness of their /f^-norms in the cylinders { Ν < yx <
Ν + s } uniformly with respect to Ν in (0, + oo). Therefore, from (18) we find that

ι p(y)au(y)fyu(y)-fyu(y) dy'< °°-

From the convergence of the last integral we obtain

J i m IIVu\\L2<N< <N+S, = 0.
;v->oo

Using Poincare's inequality, it can be deduced from this that for some numerical function
μ(Ν) the difference u(y) — μ(Ν) tends to zero in the norm of L2{N < yx < Ν + s} as
Ν -* oo. Therefore, according to [9], the maximum of \u(y) — μ(Ν)\ in the cylinder
{N + i/3 < yx < Ν + 2s/3} also tends to zero as Ν -» oo.

Further, using the methods of [8], it is possible to prove that the maximum principle
holds for the equationJ/OM = 0 in each cylinder {N < yx < Ν + s}.

From what has been said and from the boundedness of the solution u(y) it now follows
that the maximum and minimum of u(y) on the section Γ^ have finite, equal limits as
Ν -* oo. Of course, this is equivalent to the stabilization of u(y) to a constant.

Using the methods of Lemma 4, it is possible to prove that the uniqueness of a bounded
solution of (2') implies the existence of the limit Λ*, Λ* = &Λ1, where Λ1 < 0.

As in the proof of Lemma 3, it is possible to show that if for any real μ there exists a
solution of (2') converging to μ to infinity, then the limit Ak exists, Λ* = kA1, and Λ1 > 0.

Thus, to complete the proof of Theorem 2 in the present special case it remains to verify
that u(y) stabilizes to a constant at an exponential rate.

Suppose first that Λ' ^ 0. It can be shown that in this case the maximum of u{y) on the
section Γ^ decays monotonically with respect to N, while the analogous minimum
increases monotonically. By subtracting a constant from u(y) if necessary, we may assume
with no loss of generality that u\ = 0 0 = 0. This solution u(y) for any Ν satisfies the
inequality

We shall not consider the proof of this inequality in detail; we note only that here
estimates of the maximum modulus of u(y) in terms of its L2-norm in a broader domain
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are used. In (18) we now put Ν equal to oo. From the easily verified relation

/

OO />T] + S /> 9 / 3

Λ , Jr J 0 V: 0 V,

and (18) with Ν = oo we obtain

max

which in turn together with (19) implies the following estimate (see [9]):

ΓάηΓ 'dyJ \vu{y)\2 dy' ̂ c('+SdyJ \vu(y)\2 dy';
1 'I L ν, Ι Λ I ,,,

,2ihere we have used the fact that the maximum of w2(y) over Γ^ does not increase. For the
positive, continuous function

Il{t)=('+Sdyl( \vu{y)\2dy'

we have obtained

It can be shown that this inequality implies

/

CO

From this it is easy to obtain the exponential rate of stabilization of u(y).
In the case Λ1 > 0 we define the function

h{t) = i-

As previously, we here assume that u\ _x = 0; therefore, from (18) it is not hard to
obtain

( d7)( dyJ | V M ( J ) | dy'

— aa(y)-^—p(y) dy' < 8ll{\

c + ̂ rl lJ ayxi \vu(y)\2 dy' + max (u(y) - Ι2(ή)ι\;

f y i f
t 1 V l

here δ is an arbitrary positive number. Choosing it equal to Λ1/2 and considering the
estimate

max (u(y) + I2(t)f < c\\vu\\L2{t_s/2<yi<
)' *ζί + S

t + 3 s / 2 ] ,
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we obtain for u(y) the inequality

,cc ,η + s , 2 r , rt+is/2 r . . .2 , ,
/ di)\ dy^X | V M ( J ) | dy'^c dyx\ \Vu\y)\ dy',
t JT) JTn

 Jt-s/l JTn

from which, as above, we deduce an exponential estimate for the rate of stabilization of
u(y) to a constant.

The transition to a nonzero right side is accomplished as in Theorem 1.
REMARK 1. The condition of boundedness of the right side/(j>) was used in the proof of

Theorems 1 and 2 only to obtain estimates of the type ||w||C0(g<) < c||w||L2(e). However,
according to [9], these estimates are valid under much less stringent conditions on f(y).
Therefore, in the formulations of both theorems the conditions on the right side f(y) can
be substantially relaxed.

REMARK 2. The assertions of both theorems remain valid also for right sides/(j) in the
space /i"1{0 < yx < oo}, but in this case stabilization of the solution occurs not in the
norm of C° but in the norm of L2 over a section.

§2

In this section we construct an asymptotic expansion of the solution of problem (1) in
powers of the small parameter ε under the assumption that the coefficients of the operator
j / £ satisfy certain conditions which we call regularity conditions. The results of §1 are
used to study the asymptotics near the boundary planes.

We henceforth assume that the coefficients atj{x, y), bt(x, y) and c(x, y) of the
operator j / e are smooth functions periodic in the second argument y and the derivatives of
any order of the coefficients are bounded uniformly with respect to χ and y.

Before formulating the main regularity condition, we introduce the following notation.
We denote by^ 0 the operator

which depends on χ as a parameter, and by p(x, y) a solution of the equation J#£p = 0
which is periodic in y and is normalized by the condition

f p(x,y)dy = 1;

under the assumptions made above regarding the coefficients of J / 8 the function/?(;c, y) is
a smooth function of both arguments. Finally, we define the auxiliary vector field fe,(x):

JT\
b i ^ = JT\ ~dy~.aij(x'

DEFINITION. We say that problem (1) is regular if | i x (x) | > Ε > 0 everywhere in the
layer a < xl < b.

To be specific, we henceforth assume that Τ)χ{χ) > 0.
We shall begin with the formal construction of an asymptotic expansion without having

for the time being either the existence of a solution ue(x) or any estimates. Within the
layer we seek a solution in the form of a series

u'(x) ~ uo(x) + Σ ε * ( κ , ( χ , ^ ) + Μ , ( * ) ) ; (20)
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here we seek functions uk(x, y) which are all periodic in the second argument y. We
represents in the following form:

/ if 9 ι \ 9

= | ε 1 | — an(x,y)-^

+ ε ° Ι ύ . α Ά χ > y ^ + jua'Ax> y^J7 + b<(x> rij7 + c ^ ' •, ( 2 1 )

x j

In the equation j / e « £ = / we represent J / £ in the form (21), and in place of ue we
substitute the series (20). Equating the coefficients of like powers of ε, we obtain the
following infinite system of equations:

ε1: s/0u2 + s^xux + s#2u0 = 0,

ε . ssiQuk+l -ι- •szluk -ι- J * 2 M / t - i = u>

We begin the investigation of this system with the equation for ε°. The condition for its
solvability in the space of functions periodic in the variable y is the orthogonality of the
functions/(x) — s/xu0 and p(x, y) in the space L2(T") for each x. This condition can be
rewritten in the form of an equation for uo(x):

bt(x)-£-uo(x) + c(x)uo{x)=f(x); (22)

here

c(x) = f c(x,y)p(x,y)dy.

The averaged equation (22), which the leading term of the asymptotic expansion uo(x)
satisfies, is an equation of first order; therefore, of the two boundary conditions in
problem (1) we can impose only one. For this condition we choose

this choice is explained by our assumption that bx > 0. Indeed, the boundary condition
must be imposed on that boundary plane onto which there pass trajectories beginning
within the layer of the equation generated by the field ft;(x): χ = b(x). After the function
MO(JC) has been found, from the same equation for ε° we find the function ux(x, y); the
solution M1(X, y) is determined up to a function depending only on x. We choose this
solution so that it depends smoothly on x. This can be achieved, for example, by requiring
that ux{x, y) have zero mean value over a period for each x.

So far we have not kept track of the boundary conditions. We note that on the
boundary {xx = a) the difference between φ(χ) and the first two terms of the asymptotic
series (20) has order 0(1), while on the boundary {xx = b) it has order O(e). In order to
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deal with the errors in the boundary conditions, in a neighborhood of the boundary
{ xx = a} we add to the series (20) an asymptotic series

ί_ | ι . , I Y ϊ x \ .ι. y — x! (">i\

ε / \ ε / ε ν /

and in a neighborhood of {x1 = b} a series

V" - ·•·, « = ̂ 4 " ^ . (24)

We seek all functions zk(x, ξ, y') and vk(x, Θ, y') periodic in the variablesy' = (y2,... ,yn)
which decay exponentially in ζ and θ toward the interior of the layer.

Before seeking these corrections, in a neighborhood of each of the boundary hyper-
planes we expand the coefficients a ; ;(x, y), bt(x, y), and c(x, y) in Taylor series in the
variable xx:

au{x, y) ~ au{a, χ , y) + l_, TJ 7~^ α ο( α ' x > y>\xi ~ a> <
k=\ °xl

bi{x, y) - bt{a, x', y)+ Σ ~n Τ Τ ^ ( Ω > x'> y)(xi ~ fl)*> (25)

00 1 3*
c(x, y) ~ c(a, x', y) + Σ ΤΤ ΤΊ°(α> χ'>

and we form analogous expansions near the hyperplanes {χλ = b).
Above we represented j / e as the sum (21) of operators acting on functions of the 2n

independent variables x, y. In the same way, here we write J ^ E in the form

where s?0, sfv and s£2 act on functions of the variables χ, ξ and y' and have a form
entirely analogous toj/ 0, s/lt andsf2. We shall not write them out in detail.

In each of the operators s/0, sflf and j#2 we now substitute in place of the coefficients
au(x, f, y'), bt(x, ξ, y'), and c(x, ξ, y') the series (25), replacing the quantities (x1 - a)k

and (Xj - b)k by (εξ)k and (εθγ respectively. Applying the operator j ^ e written in this
form to the asymptotic series (23) and (24) and equating coefficients of like powers of ε,
we obtain two systems of equations one of which must be satisfied by the functions
zk(x, ζ, y') and the other by the functions vk(x, Θ, y').

To construct zo(x, ζ, y') we use the equation for ε"1:

r\ Ci Ci ^

-^άη(α, χ', ζ, y')-^zo(x, ξ, y') + -^ay(a, χ', ζ, y')j-zo(x, ξ, y')

7\ 7x a 3

+ jy-.a<i(a> x'>f' y') 9^zo(-̂ >S, / ) + fyaij(a> x'>S> y')jyzo(x^£, y') (26)

+ bl{a, χ', ζ, y')^zo(x, ζ, y') + b,(a, χ', ξ, y')-^zo(x, ζ, / ) = 0,

zolf-o = Ψι(χ) ~ «ο(α,χ');

the indices / andy in this equation vary from 2 to n; the boundary conditions are chosen
so as to eliminate the error of zeroth order on the boundary {xx = a). The regularity
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condition enables us to apply Theorem 1 to problem (26); hence there exists a solution

zo(x, ζ, y') which decays exponentially together with its derivatives as ζ -* oo. In a

neighborhood of {xx = b) we now find υχ{χ, Θ, y') from the equation for ε°:
»-\ Ci ii c$

-^jdu(b, χ', Θ, /)g^fi(x, Θ, y') + g^aiy(Z>, χ', Θ, y^j-v^x, Θ, y')

+ jyaa(b, χ', Θ, y')^Vl{x, Θ, y') + j^au(b, χ', Θ, y'^v^x, Θ, y')

+ b1(b, χ', Θ, y')^vx{x, Θ, y') + b,{b, x', Θ, y'^v^x, Θ, y') = 0,

From Theorem 1 it follows that there exists a unique bounded solution of this problem.

This solution stabilizes at an exponential rate as θ -» -oo to a function v(x') depending

only on x'.

We can now constuct μι(χ). For this we write out the solvability condition of the

equation corresponding to e' in the system of equations for the functions uk{x, y):

*,•(*) g^-M^x) + ο(χ)μ1(χ) = g(x);

here g(x) is a known smooth function. To this equation we add the boundary condition

MiL1=ft = -v(x)·
In the same way at the A;th step the equation for ek x in the first system of equations

enables us to find uk{x, y). From the corresponding equations in neighborhoods of the

boundary hyperplanes {χλ = a) and {χλ = b] we then find the functions zk_l(x, f, y')

and vk(x, Θ, y'). Theorem 1 ensures the existence of such functions of boundary-layer

type. Finally, the solvability condition for the equation corresponding to ek gives an

equation for determining μ^χ).

Thus, corresponding to the original equation (1) we have formed the asymptotic series

ue(x) ~ uo(x) + zo(x, ξ, y') + Σ ^k{uk{x, y) + μ^χ) + zk(x, ζ, y')
\ k=i

We denote by as

e(x) the sum of the first s terms of this series.

PROPOSITION. Suppose that in problem (1) the right side f(x) and the boundary functions

Ψι(χ) and <p2(x) are bounded together with all derivatives uniformly with respect to x. Then

o,'\Xl-a = <PiW U ) , Z U * ΨΙ()

where the functions as

B(x), gj(x), and h\ s(x) satisfy the inequalities
2

R"-1} + Σ II^Jc'iR"-1)

/ \ < 2 7 )

< c(i , /)e"' | | / | | c i + , { ( f l f 6 ) x i r -i } + Σ IkUc'-iR-1) Κ / > 0, s > 0.
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We omit the proof, since it is obvious.

We shall now prove the existence of a solution of problem (1) for sufficiently small ε

and obtain estimates of this solution in terms of the boundary functions and the right side.

THEOREM 3. Suppose that problem (1) is regular and its coefficients atj{x, y), bt(x, y),

and c(x, y) are bounded uniformly with respect to χ andy together with their derivatives of

the first two orders. Then there exists an ε0 > 0 such that for all ε < ε0 and for any

sufficiently smooth f(x) and φ(χ) which are uniformly bounded in the layer problem (1) has a

unique bounded solution. Moreover,

I 2 \

(28)

PROOF. We first prove the theorem under the assumption that c(x, y) < 0. This

restriction will be removed below. We consider the operator

*. 3 β / , (*, ί )3 +blx,*-)i-
σχ(·

 J\ ει aXj \ ε) ox,

and the diffusion process £e'* corresponding to it, which for brevity we denote by ξε.

LEMMA 5. Let τε(χ) be the Markov time at which the process ξ* first reaches the boundary

of the layer (a, b) X R""1. Then there exists a constant c not depending on ε or χ such that

PROOF. Let vo(x) be the solution of the auxiliary problem

It follows from the regularity condition that vo(x) is twice continuously differentiable in

the layer. We find a function νγ(χ, y) periodic in j> from the equation

^ " > ^ b( ^ ^ 1

In order to uniquely determine the choice of solution vx{x, y) we assume that its mean on

y for each χ is equal to zero. From the construction of vo(x) and νγ(χ, y) we obtain

( / χ \\ Ι χ \

vo{x) + evAx,-\\ = - 1 + ey[x,-\,in which y(x, y) is a function bounded in the layer. We now choose ε0 so that
εοΎ(χ> y) < 1/2 for all χ and y. For suitable choice of the constant cx the sum vo(x) +

ευλ{χ, χ/ε) + c1 for all ε < ε0 satisfies the following relations:

vQ(x) + evJx, -)+c1> 0, @ε(ν0(χ) + evJx, -) + cA < -1/2.

Hence, according to [7],

E T £ ( X ) < 2max vo(x) + evAx, — I + cx I < c 2 .
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Continuing the proof of the theorem, in the bounded cylinders {x: a < xx < b,

\x'\ < k} we consider the sequence of problems

^K=f, «J|M_ fc = 0, Κ\Χι=α = Ψι(χ), Κ\Χι=, = φ2(χ). (29)

u'w{x) = E^V^exp/Jc^, f ) dsdt + «^(^Jexp/^c^, f) Λ

For each k this problem has a unique solution for which there is the probabilistic

representation

ε / ' \ ~ ' * Λ * ' > * Jo \"'' ε

here tk(x) is the Markov time at which the process i"t first reaches the boundary of the

cylinder {x: a < xx < b, \x'\ < k); <pk(x) denotes a function which coincides with φ(χ)

on the upper and lower bases of the cylinder and is equal to zero on the lateral surface.

It is easy to verify that each fixed ε the sequence τ%(χ) converges as k -» oo to τε(χ);

therefore, on the basis of Lemma 5 and Lebesgue's theorem we can pass to the limit in the

preceding equality and find the bounded solution of (1):

ue(x) = E\ Γ x /(£*)exp I c £J, — \ dsdt + φ ( ^ Ι ( Λ ) ) ε χ ρ Γ ' c ^ , - ώ

The estimate (28) is derived from this representation in elementary fashion by means of

Lemma 5.

We shall prove uniqueness of the bounded solution. Using the strict Markov property of

the process ξ% it is possible to obtain the estimate

- χ > N) < ce~m, δ > 0. (30)

in which the constants c and δ do not depend on k, ε or x.

We now suppose that there exists a nonzero bounded solution of the equation

and we consider a sequence of problems of the form

The functions vk(x) so defined coincide with v(x) inside the cylinder {x: a < xx < b,

\x'\ < k). On the other hand, using the probabilistic representation of vk(x) and (30), we

find that for each fixed χ the quantity vk(x) tends to zero as k -* oo. This contradiction

proves the uniqueness of a bounded solution.

We now show how to eliminate the restriction c(x, y) =ξ 0. To this end we prove the

following lemma.

LEMMA 6. There exists a number No such that for any θ > 0 the following inequality holds

uniformly with respect to χ and ε < ε ο(0):

Ρ{τ'(χ)>Ν) <«?-»<"-"<>>. (31)

PROOF. Since the process £* possesses the Markov property, it suffices to prove the

existence of an iV0 such that for each β > 0 for all χ and ε < εο(β) the following

inequality holds:

Ί>{τ*(χ)>Ν0}<β. (32)

We shall show that for iV0 it is possible to choose a constant bounded above by 2Ere(x).
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According to [11], Ετ ε(χ) and Ε(τε(χ))2 satisfy the equations

%ε(Ετε(χ)) = -1 (33)

and

( 2 ) = -2Ετ ε(χ)

respectively with zero boundary conditions. Using these equations, we see by direct
verification that the square of the variance Ε(τε(χ))2 - (Ετε(χ))2 of the Markov time
τε(χ) is a solution of the problem

2 = 2eatj(x, f ) ^ - Ε τ ε ( χ ) ^ - Ε τ * ( χ ) ,

( ) | Χ ι _ β = 0, Var r*(x)\Xi=b = 0.

Since for nonpositive c(x, y) the theorem has already been proved, we can estimate the
variance of τε(χ) if we construct an approximate solution of the last problem.

A procedure for constructing the formal asymptotics of a solution of (33) was described
in detail above. This asymptotic expression has the form

^ ^ ) • • · . ( 3 5 )

Substituting now the first several terms of (35) into the right side of (34) in place of
ETE(X), we obtain an asymptotic expression for this right side:

xl - a x'
erhi\x, — \+e^n\x, — - — , —

here %{x', ζ, y') is the boundary layer near the hyperplane {x1 = a}, and the function
w1(x, y) is periodic in j>. We shall seek a solution of (34) in the form of a series

Applying the same methods as above, we construct a function qo(x', f, y') of boundary-
layer type near the hyperplane [xx = a} and a function fhx{x, y) periodic my, etc.

In our expansion of (Var τε(χ))2 all terms except for qo(x', ξ, y') have order Ο(ε). Since
qo(x, L y') is exponentially small inside the layer, for all x, a - d < χλ < b, we obtain the
estimate Var τε(χ) < c/ε. This enables us to deduce (32) from the Tchebycheff inequality.

In order to prove (32) for all χ in the layer, we extend the coefficients a,7(x, y) and
bt(x, y) of the operator 31ε to a broader layer (a — d, b) X R""1 with preservation of
smoothness and periodicity in y. Carrying out constructions analogous to the above in this
broader layer, we prove (32) for all χ in the original layer.

The estimate of Lemma 6 now implies the finiteness of (Eexp(crE(x))) for all suffi-
ciently small ε; here c is chosen so that \c(x, y)\ < c for all χ and j ' . According to [4], from
this it follows that for all k a solution of problem (29) exists, is uniformly bounded with
respect to k, and can be represented in probabilistic form. Passing to the limit as k -> oo
in these equations, we find a bounded solution of problem (1).
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The estimate (28) and the uniqueness of a bounded solution also follow from Lemma 6.
The proof of the theorem is complete.

COROLLARY. Suppose that in the hypotheses of Theorem 3 the coefficients and the data of

problem (1) are uniformly bounded together with their first I derivatives, / ^ 2. Then for all

k^ I

Ikllc'K^xR»-1} < c(k)B-"l||/||c*{(a,6)XR»-i} + Σ IkllcMr-i) • ( 3 6 )

For the proof it is necessary to use (28) and Schauder's inequality.
We are now in a position to justify the asymptotic expression for the solution of

problem (1) constructed above.

THEOREM 4. Suppose that problem (1) is regular and its coefficients atj{x, y), bj(x, y),

and c(x, y) are bounded uniformly with respect to χ and y together with their first I

derivatives. Suppose further that the data of problem (1) are also uniformly bounded together

with their derivatives to order I. Then the first I terms of the asymptotic expansion for the

solution of problem (1) are well defined, and there are the following error estimates:

s > 0, k > 0, s + k «ξ /.

The proof reduces to substituting (27) into (28) and (36).
In conclusion the author expresses his thanks to M. I. Vishik, who proposed that the

author investigate the circle of questions considered here.
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