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ON THE LIMIT BEHAVIOR OF THE DOMAIN OF
DEPENDENCE OF A HYPERBOLIC EQUATION WITH

RAPIDLY OSCILLATING COEFFICIENTS
UDC 517.946

A. L. PJATNICKII

ABSTRACT. In this paper, the behavior of the support of the solution to the Cauchy problem
for a hyperbolic equation of the form

4"e(*,o-^(-)^"eW*>-)^«e + 4*'-)"E=°
g/2 v ' 8x, J\ ε I dxj \ ε I dx, \ ε/

with periodic, rapidly oscillating coefficients a,y(y) and small parameter ε, is studied. It is
proved that, for small ε, the domain of dependence of this equation is close to some convex
cone with rectilinear generators.

In the case when the coefficients atj depend essentially on only one argument, e.g. ν,, this
limit cone can be found explicitly. Its construction uses the Hamiltonian, which does not
depend on ε and does not correspond to any differential operator.

Bibliography: 8 titles.

Consider the Cauchy problem for a hyperbolic equation of the form

Αχ, t) |/=o = φ(χ), 97«e(*, 0 |,=o = Ψ(*)·

The matrix of coefficients au{y) is periodic on R" with cube of periods [0,1]", and
satisfies the uniform ellipticity condition

λ ο |£ | 2 ^, 7 ω^<Λ ο |£ | 2 , 0<λο<Λο,

for any ξ ER" and y G R". The summation sign with respect to repeated indices will be
omitted. Assume, also, that the coefficients α^(γ) are sufficiently smooth, for example
C°°(R"). We shall consider problem (1) only with initial data <p(x) and ^(JC) of compact
support. Under the assumptions made above, problem (1) has a unique solution for each
ε > 0. If the initial functions φ(χ) and ψ(χ) are sufficiently smooth, then, according to [1]
and [2], as ε -» 0 the solutions ue(x, t) of problem (1) converge in L2(RW+1) to a function
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118 A. L. PJATNICKII

M°(JC, t), which is the solution of the equation with constant coefficients qtj (see [1] and

[2]):

3 ' ( 2 )

u°(x, t) |,= 0 = φ(χ), yt»°(x> 0 Uo = Ψ(*)·

From the explicit formulas for the solution of equation (2) (see [3]), it follows that the
support of the solution u°(x, t) of problem (2) lies in the set

x0 e supp φ U supp ψ

where QXo is the closed cone

Here (qiJ) is the matrix inverse of (#,·_,·)·
For each fixed ε, a set Ke can be singled out for problem (1), outside which the solution

u\x, t) vanishes. This set has the form

κ* - II ne

x0 G supp φ U supp ψ

but the domains Qi have a more complicated structure than 08 .
The goal of this paper is the study of the domains of dependence QXQ for equation (1) as

ε -» 0, and their connection with the domains QXQ. It will be proved that the domain QXo

tends, as ε -» 0, to some limit domain QXo in the following sense:

lim sup p((x,t),dQXo) = 0. (3)

In contrast to the domains Qe

Xo, which have a rather complicated structure, the domain QXo

is a cone with rectilinear generators, whose form does not depend on the point x0. A cross
section of this cone by the plane {t — const} contains a convex set. If the coefficients of
(1) depend only on the one variable^,, explicit formulas can be derived for the boundary
3QXo, where the limit (3) in this case exists uniformly in Τ and the following estimate is
valid:

sup p((x,t),dQXo)<C^.

The domain QXo turns out to be wider than QXo.
If the coefficients of (1) depend on all the variables, then explicit formulas for the limit

domain of dependence can be derived only in isolated special cases. The obstacle here is
the extremely nonregular behavior of the ^characteristics of problem (1) (see [5] and [6]).
At the conclusion, some examples will be given.

§1. Existence of the limit domain of dependence

First of all, let us point out two procedures for constructing the set QXQ. The first of
these consists of the following. Extend out from the point x0 all possible ^characteristics
of problem (1) lying on the zero level of the Hamiltonian. According to [4], there exists a
domain in R"fx whose boundary is formed by the projections of these bicharacteristics
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onto (x, /)-space, outside of which these projections no longer exist. This domain is QXQ.

In order to construct the domain of dependence by the second procedure, at each point

(x, t) of R + + ' , consider the cone

(t-t)2-ai^)(xi-xl)(xJ-xJ)>0t (4)

aligned in the positive direction along the /-axis. Further, from the point x0, draw all

possible curves whose tangents at all of their points lie inside the corresponding cones (4).

The set which comprises these curves is QXQ.

THEOREM 1. There exists a convex cone QXo, whose form does not depend on the point JC0,

such that for all Τ < oo

lim sup p((x,t),dQxJ=0.
e^° dQl

t<T

The convergence is uniform with respect to x0.

PROOF. Denote by ^x(t) the cross section of the domain QXo by the plane {t = t). Let

ε0 be an arbitrary number less than one, say ε0 = \. Set ek+l = ε\. Now fix some direction

ρ — (p\,- · ·,ρη) Φ 0 and let χε(ρ) be the point of intersection of the boundary 8*3^(1)

with the ray emanating from x0 in the direction/?, which is farthest removed from x0. We

get a sequence of points χε-ο(ρ), xe](p% χ

ε/ί(Ρ) o n t n e r a v Ρ emanating from x0. For

convenience, let us introduce a coordinate on this ray—distance from Λ;0. Using the

second procedure for constructing the limit domain of dependence, it is easy to show that

there exists a constant C,, not depending on the number k, such that

Ci*k (5)

for all k. Moreover, the segment [x0, xtk{p) — Cxek] lies entirely in ^Px

e*+1(l). In fact, since

xe(p) is contained in ^ e *( l ) , then a curve passes through it, whose tangents at all of its

points lie inside the corresponding cones (4).

Let us construct a curve which passes through the point χ along the ray x0 + rp, where

For that, consider the set of points which differ from x0 by an integral number of periods.

Shrink the set obtained this way (ε^)" 1 times and select from the resulting set the point x'

closest to JC0. Since | JC0 — J C ' | < Jnek+l, x0 and x' can be joined by a curve whose length

does not exceed jn/\ ek+v From the point x' we now extend a curve shrunk ( ε ^ ) " ' times

which joins J>C0 and χε(ρ)- Repeating this procedure up to the moment of time t = 1 — Cek,

we will move away from the ray x0 + τ ρ no more than Cek. The remaining time is

expended in reaching this ray. It is clear that one can also get any point on the segment

k

From (5) and the boundedness above of the sequence xeo(p),... ,xe (/>),. . . we deduce
the existence of the limit

lim xEk{p) =x(p).
k->oc k

Upon singling out the quantity x(p) on each ray emanating from x 0, we get a set which

we shall denote by tyx (1). With the help of arguments analogous to those given above, one
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can prove that the set % (1) is convex, and obtain the existence of the limit

lim sup p(x, dtyx(l)) = 0.

It is now easy to check that one must take as QXQ the cone with vertex at (JC0, 0) and with
cross section Φχ (1) by the plane {t = 1}. Actually, in order to construct <$x (/), it suffices
to shrink all the curves and the period (f)" 1 times.

§2. Construction of the limit domain of dependence for an

equation whose coefficients depend on one argument

In this section, we shall suppose that the coefficients atj depend essentially only on the
argument yx. For ease of presentation, consider first the case η — 2 and au = a2l=0.
Problem (1) assumes the following form:

θ ( 6 )

We shall investigate the behavior of the ̂ characteristics of this equation; therefore, let us
find the corresponding Hamiltonian:

H'(x, ,,t, E) = E> - axx{^)p\ - a

We are only interested in those bicharacteristics for which

He(x,p,t,E) = 0. (7)

From now on, we shall use the following version of (7):

Note that p2 is constant along the bicharacteristics, and that, by homogeneity of the
Hamiltonian, it suffices to consider only the bicharacteristics on which Ε — 1.

From now on, we shall study separately two types of trajectories:

1. The quantity (E2 — a22(x\/e)pl) i s positive for all jq.
2. This quantity changes sign.
It is easy to see that trajectories of the second type stay inside the layer {\xl — χοι\< ε)

for all τ.
Let us consider the first case. It will be clear later on that trajectories of the first type

carry basic information concerning the domain of dependence. From the continuity of
a22(y) it follows that there exist points x[ < xOi and x'{ 3s x01 close to xox such that

We construct four bicharacteristics with the following initial conditions:
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The projections of these bicharacteristics onto the (*,, x2)-plane divide this plane into

four regions. Let us denote by Wx the one which contains the set {(Λ;,, JC2) | JC, > x").

Analogously, W2 is the region containing {(*,, x2) | x, < x\). To each p2 in the interval

(~Va22max)~1' (^«22max)~')' which we shall denote by £ for brevity, we can associate two

trajectories: on one of them/?, > 0, and on the otherpx < 0. If these trajectories are now

projected onto (x, /)-space, then two mappings (p2, t) -> (xx(p2, t), x2(p2,t)) arise,

which we denote by Re

x and R2. The following three assertions are valid; we omit their

proofs.

ASSERTION 1. Re

x andR2 are diffeomorphisms of the region t X (0, + oo) onto Wx and W2,

respectively.

ASSERTION 2. The following estimate is valid for any trajectory of the second type:

1*5(0 -^02l</«22max^·

ASSERTION 3. Consider the portion of the boundary of the domain QXQ included in the strip

x[ < JC, < x". There exists a function ρ(ε), ρ(ε) -* 0 as ε -» 0, such that for any boundary

point

\/fl22max'-p(0 < 1*5(0 ~ *Q2 I ·

For now we shall not study in greater detail the behavior of the trajectories, but we will

find the Hamiltonian which corresponds to the limit domain of dependence QXQ. This is

naturally called the mean Hamiltonian. In order to construct this Hamiltonian, let us recall

formula (8):

„ - + / Ε α2ΐ(Χ\Λ)ΡΙ

For bicharacteristics of the first type, in this formula there is either a plus sign for all τ, or

a minus sign for all τ. It will be proved below that the mean Hamiltonian has the form

H(x,p,t,E)= ±px-M\ > Ε

where M{f) is the average of a periodic function / over its period. Before proving this, let

us study the properties of the equations associated to the Hamiltonian (9):

jc, = ± 1 , χ-, = Μ\

(10)

ρχ=0, ρ2 = 0, t- Μ'
D(y)\-

Here D(y) denotes the radical yaix(y)(l — a22(y)pj). Note that the system (10) is

defined only for p2 in the interval £. The projections of the solutions of the system (10)

onto (x, i)-space are rays emanating from the point (·ΧΟΌ). *ty symmetry it suffices to

consider just one sign in (9), e.g. the plus sign.
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ASSERTION 4. The mapping (p2, t) -» (χλ(ρ2, 0> xi(p2, 0) given by (10) is a diffeomor-
phism of the region £ X (0, + oo) onto {(xv x2) \ xx > xOi}·

This assertion is a special case of Lemma 2, although it is easy to give a direct proof,
which we omit here.

Thus, the two families of rays corresponding to the plus and minus signs in (10) bound
some cone QXo in R1^'. This is the desired limit domain of dependence.

THEOREM 2. Let x\t) and x(t) be solutions of the systems of equations corresponding to
the Hamiltonians He(x, p, t, E) and H(x, p, t, E), respectively, and to the same initial
condition

Herep2 is an arbitrary number in the interval t. Then

| x«( f)-*(0 |<Ce (11)

uniformly with respect to p2, t and x0.

PROOF. Consider both systems of equations

p2 = 0, p2 = 0,

ί = 2, t = M' X

Let us introduce the new independent variable xx into the first of these. This change is
permissible since, for trajectories of the first type, x{ = 2αη(χ1/ε)/?1 > 0. After changing
the variable, the system assumes the following form:

au{xx/e)px D(x,/e)

On comparing the mean system of equations with the resulting system, it is easy to obtain
the required estimate (11). The uniformity of this estimate with respect to t and xQ is
obvious. Let us prove its uniformity with respect to p2. For that, observe that for x,
satisfying the condition x, — JC01 = εΝ, where Ν is any integer, the trajectories pass
through the same point. Now consider both trajectories at the same moment of time t:
t = te(x\) = t(xx). This equality is equivalent to the following relation between xf and 3c,:
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By the inequalities εΝ < χ* < ε(Ν + 1) and εΝ < JC, < ε(Ν + 1), we get immediately that

| x\ — jc, | < ε. It remains to estimate the expression

JeN
f
eN D(z/e)

_ , _
D(y)

Ν D(z/e) D(y)

-(3c, -εΝ)Μ
(a22(y) - a

D(y)

By (12), the first terms add up to zero, and therefore

dyx

where the constant C depends only on λ 0 and Λο.

So, the limit domain of dependence QXQ is a cone whose form does not depend on x0.

The boundary of ^ (1) is.given parametrically by the following equations:

- 1

X2 ~ XQ2 = M

-ι
(13)

The parameter/?2 in this formula ranges over the set \p2\
< (v/«22max ) '· Let us find the

points of intersection of the boundary of ^ (1) with the lines passing through x0 parallel

to the coordinate axes. These four points have the following coordinates:

» •X02 ~

' ·Χ02

The smoothness of 3^.(1), as we see from (13), can be disrupted only at the points of

intersection with the line parallel to the x2-axis. Let us find the one-sided derivatives at

these points:

lim

Hence we deduce that the constructed cone QXo has a smooth boundary if and only if the

function a22 does not depend on yx, i.e., is constant. It is interesting now to compare the

sets %o(\) and ^ ( l ) . The set 3^(1) is the ellipse (see [1] and [2])

a2xf b2xj =

where a = (M{(]/aX](y]) )~'})1 / 2 and b = (M{a22(yx)}y1/2. If both coefficients axx(yx)

and a22(yl) axe not constant, then ^°(1) is strictly contained in % (1).
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Let us proceed to the equation of the general form (1). The coefficients aijt as before,
depend only on >>,. To this equation there corresponds the Hamiltonian

We proceed right to the construction of the mean Hamiltonian. For that, we solve the
equation

with respect to the variable /?,, and then take the mean of both sides with respect to yx:

( r—-—~~n ~—" " "—

Τ4ΤΤΛ - \ "" Ά Ρι + g " / ) . . / " Ά °'J Ά PiJ

LEMMA 1. Let {au) be a positive definite matrix. Then the matrix

b = ( a αχ*α'χ \ I"

is also positive definite.

PROOF. Consider an arbitrary nonzero vector (£2>· · · >£„) in R""1. Since (a/y·) is positive
definite, we have

fli i T ~r 2.0 Λ ιΤζ ι ι" y, ύ · ς · ς · > U

for all τ. Thus, the discriminant of this trinomial is less than zero:

1=2 I i,7 = 2

Hence the assertion of the lemma quickly follows.
Using Lemma 1, we may write down the mean Hamiltonian in the following form:

Here 6 / 7 (>Ί) is a smooth, positive definite matrix, and

λΌΙ€|2<Μ*)^< ΑΌΙ*Ι2·

THEOREM 3. Consider the region in the space of(p2,...,pn)E:Rn~l given by

following inequality is satisfied for trajectories of the equations with Hamiltonians

H\x, p, t, E) and H(x, p,t, E) coming from the same point xQ with the same p' =

(p2,...,pn)int:

\x'(t)-x(t)\<CE. (14)
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The estimate is uniform with respect to JC0, t andp' satisfying the condition

bij(y\)PiPj<l-&,

where 8 is an arbitrary positive number.

PROOF. First, £ is actually an open set. This follows from the fact that the functions
bij(yi) are continuous and defined on a compact set. The rest of the proof repeats the first
part of the proof of Theorem 2.

Note that the set £ is convex.
REMARK. In contrast with the two-dimensional case considered above, already in the

three-dimensional case the uniformity of estimate (14) breaks down on approaching the
boundary of £. For any positive ε one can find trajectories which, after a time / of order
one, separate from each other by a quantity of order one. Nevertheless, the limit domain
of dependence propagates linearly with respect to t, a fact which follows from Theorem 1.
This will be proved below by another method which enables Qx to be found, gives an
estimate of the proximity of the sets QXQ and QXo, and proves the uniformity of this
proximity for all t.

Let us show that the boundary of QXo coincides with the set of projections of the
bicharacteristics of the condition of Theorem 3 onto (JC, t)-space.

LEMMA 2. The mapping (p2,· · · ,Pn, 0 -* (Jc,(i)>·.. ,xn(t)) is a diffeomorphism from the
region £ X (0, + oo) onto the half-space {(JC,,. .. ,xn) | JC, > JC 0 1 ).

PROOF. The mapping which puts the vector (jc,(f),... ,3cw(i)) in correspondence with the
vector (p2,. ..,pn,t)is linear in t. Therefore, it suffices to prove that the mapping

which we shall denote by Q, is a diffeomorphism from £ to R"~'. Here, G(y) denotes the

radical yau(y)(l — bjj(y)pipj) . For the proof, consider the auxiliary mapping F~x

from £ onto the unit ball:

where max \p'\ is taken in the direction of the vector p' in £. The mapping F~' is a
homeomorphism. Let us show that QF maps the unit ball in R""1 onto all of R""1. For
that, consider an arbitrary vector £ in R""1. It is clear that, for/?' in £ sufficiently close to
the boundary 9£,

Therefore, there exists ρ < 1 such that for anyy, \y\— p,

(QFy -t,y)> 0.

By the continuity of QF([7], Lemma 4.3), it follows that for s o m e y , \y\< p ,

QFy = i.
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This is equivalent to

Qp' = i

for some/?' Ε £.

Let us check that Q is a local diffeomorphism. We have

1 (G(y)f

The matrix of the first terms is positive definite, since (biJ(yl)) is positive definite for all

yv Regarding the second terms on the right-hand side of (15), we note that the matrix

Cjj = λ,λ;, for an arbitrary vector (λ,,... ,λπ), is nonnegative:

It remains to prove that, as a local diffeomorphism, the mapping Q is a global diffeomor-

phism. Indeed, we shall prove that the equation Qp' = xf has a unique solution for each

x'. Since the constant vector in the definition of the mapping Q does not affect

uniqueness, we shall neglect it. Assume that there are two solutions for some x'. It is easy

to check that in a small neighborhood of the origin in the space (x2,... ,xn) £ R"~\ the

solution is unique and the set of such solutions is a neighborhood of the origin in

(p 2, ..·,/?„) 6 R"~". Let p0 be the precise upper bound of ρ such that for all x' in the open

ball of radius ρ the solution is unique. By hypothesis, 0 < p0 < oo. We claim that there

exists x, | χ | = p0, whose inverse image consists of at least two distinct elements p and p.

Assume the contrary. Then there exist a sequence Jc,, x2,... and two sequences ρ,, p2,...

and /· , , p2,... such that ζ>(/>,) = (?(/>,) = xt and | x,, |-> p0 as i -» oo. It is clear that all

the/>, ana pi belong to some compact set in £. Since Q is a local diffeomorphism, it follows

that \pt — p,,\> δ0 > 0. Passing to a subsequence, we find thatp t ->·ρ andp t^>p, and so

\P ~ ΡI ̂  ^o· Passing to the limit, we have, by continuity of Q,

Since | xt \ -* p0, | χ | = p0. Thus, χ exists. But then, since β is a local diffeomorphism, two

solutions exist for x' in a whole neighborhood of x. This contradicts the fact that p0 is the

precise upper bound. The lemma is proved.

The cross section of the constructed cone by the plane {t = 1} has the form

1
x\ ~ *oi = - I M

X2 XQ2 ~l2 Λ 0 2 f ι

G{y)\ (16)

Xn X0n ~
Μ

G(y)
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Here the parameters (ρ2,····>Ρη) vary in the region £. From Theorem 1, Theorem 3 and

Lemma 2, it follows that the surface (16) is the boundary of the set ^ (1). Let us clarify

what happens to the cross section of ^ (1) by the plane {xx = 8} as 8 -> 0. For that, we

shall prove several auxiliary statements.

Consider the ellipsoid in R^

For any point £ of this ellipsoid, we define the conjugate point in the following manner:

TJ, = Cjji-j. The resulting set of points is again an ellipse, whose equation is c'^^j = 1.

LEMMA 3. Let the ellipsoids 3 , , . . . , 3 ^ of the form (17) have a common point £ 0 . Then all

its conjugate points lie in one hyperplane {η | (η, £ 0) = 1}, where the conjugate ellipsoids

3*,...,3*N are tangent to this hyperplane at the points conjugate to £ 0 . The converse is also

true: if the ellipsoids of the form (17) are tangent to the same hyperplane, then the points

conjugate to the tangency points coincide. Moreover, (3*)* = 3 .

The proof is carried out by direct verification.

LEMMA 4. Consider a family of ellipsoids 3 a satisfying the condition λ | ξ | 2 < c(y («)£,£, <

Λ | £ | 2 . Let £ be the intersection of the ellipsoids 3 a , and let S be the convex hull of the set of

conjugate ellipsoids 3* . Let the ellipsoid 3 0 contain £. Then the conjugate ellipsoid 3 * is

contained in S.

PROOF. Without loss of generality, we can assume that the family of matrices (c^^a)) is

closed in the space of d X d matrices. Using the conditions of the ellipsoids 3 a , we can

show that the set 5 has boundary of class C 1. Suppose that, for some point £ 0 of 3 0 , the

conjugate point η 0 turns out to be outside S. Shrink the conjugate ellipsoid so that it does

not have points outside S, but could only have points on the boundary dS. Such points are

tangency points. On the other hand, during this procedure the ellipsoid 3 0 expands and,

as before, will contain £. Consider one of the tangency points thus formed, call it η. Let us

first prove that 35" consists of two types of points: points which are conjugate to points

lying in 3£, and points which arise on squeezing the convex hull and which are not

conjugate to any of the ellipsoids 3 a . For that, choose an arbitrary point £ on the ellipsoid

3 a o lying outside 3£, and construct the point ξ lying on the intersection of the ray £ with

3£. From the definition of 6, it follows that £ lies on the surface of some ellipsoid 3 a . The

ellipsoids conjugate to 3 and 3 a are tangent to parallel planes at the points ή and ή

conjugate to £ and £, where the ellipsoid 3 * o is tangent to the plane lying closer to the

origin. From this it is clear that rj cannot lie on dS. Now let Γ be the plane passing

through η and tangent to 3 * and 35. From the above comments it follows that on 3£ a

point | can be found lying on the surface of an ellipsoid 3 O 2 , whose conjugate point lies

on Γ, while the conjugate ellipsoid 3 * 2 is tangent to Γ at this point. Consequently, | lies

simultaneously on 3 0 and 3£. We have arrived at a contradiction.

Now consider the family of ellipsoids in R"~~' given by the matrices btj(y),

j ^ I-

Construct the sets £ and S corresponding to this family. We shall show that, as 8 -* 0, the

cross section of the set tyx (1) by the plane (x, — JC01 = 8} converges to S:

sup p(x',dS) ^0 .

This results immediately from the following lemma.
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LEMMA 5. Consider the surface given by the equations

G(y)i)

1
Μ

G(y)l) { G(y) y (18)

χ» =

Project an arbitrary point χ on this surface onto (x2,· • • ,xn)-space. Denote the set of points

obtained in this fashion by /(δ). Now define the function r(8) by the equality

r{8) = sup p(x',dS).
χ'<=Ι(δ)

It is asserted that r(8) tends to zero as 8 -» 0, where

/•(«)< q/δ. (19)

PROOF. Consider an arbitrary vector (p 2 , . . .,pn) in the region £ for which JC,(1) = δ. All

the points y in a period of btj(y) divide up into two groups. To one group belong points

where

and all the remaining points belong to the other. In accordance with this, let us split the

integrals in (18) into the sum of two integrals over each of the indicated sets of y:

(x2,...,xn) = (x2,...,xn) + (x2,...,xn).

It is easy to see that the integrals over the first set have order y/8:

\(x2,...,xn)\<c{8;

therefore, it suffices to prove the proximity of the point (x2,. ..,xn) to dS. Taking the

convexity of 5 into account, it is easy to derive from (18) that (x2,...,xn) e S. Further,

let (p2,... ,pn) be the point of intersection of the ray (p2,... ,pn) with 3£. To the point

(p2,-.-,pn) there corresponds the plane Γ, to which are tangent the ellipsoids conjugate to

the ellipsoids passing through (p2,. .-,pn)· The set dS is also tangent to Γ,, where the

whole set S lies on one side of Γ,. Now note that, for all points y in the second set, the

vector (&2f/><'· · ->KiPi) s t aY s away from the plane Tx a distance of order 0(8). Hence, it is

easy to derive that the distance from (x2,.. .,xn) to Γ, does not exceed c-/8. Since

(x2,...,xn) £ S in this case, it follows that p((x2,...,xn),dS) < d/8. The lemma is

proved.

We come now to the proof of the uniform proximity of the domains ^ ( 0 and %0(t)

for all t.
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LEMMA 6. Consider the trajectories x\t) and x(t) corresponding to the Hamiltonians

H%x, p, t, E) and H(x, p, t, E), respectively, and identical initial conditions, where

(p2,...,pn) G £· Then the estimate for the projections of these trajectories in the direction

(Ρο>···>Ρη)

is valid uniformly with respect to all x0, t andp' G £.

The proof is the same as that of Theorem 2.

Now consider again the set tyx (1). It can be proved that for (p2,... ,pn) close to 9£, the

quantities χλ{ρ') and p(x\p'), dS) have the same order of smallness

p(x'(pf),dS)<cxl(p'). (20)

These calculations are not complicated, but they are extremely tedious, and so we omit

them. This means that in (19) one can replace γ/δ by δ.

Now let (JC,,. .. ,xn) belong to 3*3^(0 Π {0 < χ, — JC01 < ε}. From the linear depen-

dence of χ on t and (20) it follows that

p((x2,...,xn),t · dS) <ce.

From Lemma 6 it is now easy to derive that, in the layer (0 ̂  .x̂  — xm < ε),

sup p((xl,...,xn),№Xo(t))<ce. (21)
{ 0 }

We now use the fact that, for xx — xm = ε, the sets dtf* Π (JC, — xm — ε} and d^x Π

(χ, — JC01 = ε} coincide. Taking the point (*,,... ,xn) in d% Π {xx — xox — ε}, we can

repeat the same procedure in the layer ( ε ^ χ , — x0] < 2 ε } , with insignificant changes, as

in the layer {0 < χ, — JC01 ^ ε}, thanks to which we get the estimate

sup p(x,d%o{t))<ce.

Continuing this process, we get

sup p(x,d%o{t))<ce

uniformly with respect to t G (0, oo).

THEOREM 4. Let the coefficients of equation (1) depend only on the coordinate yv Let Qx

be the family of cones constructed above. Then the following estimate for the domain of

dependence is satisfied uniformly with respect to xQ and t G (0, oo):

sup p(x,d%o(t))<ce. (22)
3f;

PROOF. The major portion of the proof has already been dealt with. For its completion

it remains to study the bicharacteristics of the second type entering the layer. But for them

the estimate (22) inside the layer follows from the analogous estimate outside the layer.

§3. Some examples and generalizations

We first present several problems to which the foregoing construction carries over

without any substantial modifications. For one thing, the domain of dependence Qx , and



130 A. L. PJATNICKH

hence the limit domain of dependence QXo, is unchanged if, instead of (1), we consider the
equation

Αχ, t)|,=0 = φ(χ), yt»
e(x, 0 | , = 0 = ψ(*).

The divergence form of notation in problem (1) was chosen because, for this kind of
problem, the behavior of the solution for small ε has been most fully studied; here the
limit operator has constant coefficients which are easy to find in certain special cases.

For the limit domain of dependence QXQ, it is easy to get a distinctive "estimate from
above". For that, it is necessary to consider the family of ellipsoids in R"

and to construct for it the regions £ and S. Then $x (1) C S.
Further, in place of the coefficients α^(χ/ε), one can consider coefficients aiJ(x, χ/ε),

where the functions atJ{x, y) are smooth with respect to both variables, satisfy the
uniform ellipticity condition, and are periodic in y. In this case, at each point for a fixed
first argument, one must construct the corresponding cone depending on χ, and further,
having such a cone at each x, construct the limit domain of dependence in the usual way.

Let us consider the last example, in which the domain of dependence has been found
explicitly. In fact, let the coefficients atj be such that au = 0 for ι Φ j , and the functions
au depend essentially only on the argument j , :

ue(x, t) |,= 0 = <p(x), Yfu
e(x, t) Uo = Ψ(*)·

In this case, in the corresponding system of ordinary differential equations, the variables
separate, and we get

As a result, the limit domain of dependence has the form

where

J\ ; ;

Now let (JC, t) e QXo. Let U(x, t) be an arbitrary, small neighborhood of (x, t).
According to [8], no matter how small the neighborhood of x0, one can choose a function
ψε(χ) on it such that the solution ue(x, t) of problem (1) with initial condition ψε(χ) does
not vanish identically in U(x, t). However, in this case the functions ψε(χ) are generally
different for different ε. It is natural to ask whether a function ψ(χ) could be constructed
which would not depend on ε and, for small ε, would satisfy the aforementioned property.
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The answer to this question is affirmative. Let us present a plane for constructing such a
function φ(χ). Choose a sequence en which converges sufficiently rapidly to zero, e.g.
εη — \/2". As has already been mentioned above, for each εη we can construct a function
φε(χ) satisfying the required conditions. We take for φ(χ) the sum of the series

l
n=\

where the coefficients an decay so quickly that the series converges together with all its
derivatives, and the solution u%x, t) with initial function <p(x) differs from zero in an
arbitrarily small neighborhood of the point (x, t) £ dQx , for sufficiently small ε.

In conclusion, the author thanks M. I. Visik for his attention to this work, and S. M.
Kozlov for a discussion of the results.
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