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A SCATTERING PROBLEM IN LAMINAR MEDIA

UDC 517.9

A. L. PJATNICKH

ABSTRACT. The scattering problem in a laminar medium

Δ Η ( Χ ) + k2q{xx xn,X]/e)u(x) = 0
with a radiation condition at infinity is considered. The potential q(x, y) is periodic in the
variable y. Here A: is a large parameter, and e is a small parameter with k ~ e~", a > 1.

In this paper a formal asymptotic expansion of the solution of this problem is found. To
construct it an operator analogous to the canonical Maslov operator is used which acts
on a certain Lagrangian manifold not depending on ε. An analogous problem for the
Schrodinger equation in a laminar medium is solved.

Bibliography: 10 titles.

In the space R" we consider the scattering problem

Au*,,(*) + k2q(x,,...,xn, ^)uktt(x) = 0 (1)

with Sommerfeld radiation conditions at infinity. Here A: is a large parameter, and ε is a

small parameter. The potential q(x\,... ,xn, y) is periodic in the variabley, is everywhere

positive, and goes to one uniformly with respect to y G R1:

In this paper an asymptotic expansion of the solution uk ε(χ) is constructed as k -* 00

and ε -» 0 with k ~ ε~α, where a > 1. The latter condition implies that there are many

wave lengths in a single layer of the medium.

We note that for potentials not depending on ε an asymptotic expansion was con-

structed in [1] and justified in [2]-[4]. In the physical literature the transmission of a wave

through a laminar medium is studied in [5].

In this paper the asymptotic expansion is constructed by means of an operator that is

an analogue of the canonical operator (see [1] and [6]) and acts on a certain Lagrangian

manifold Λ", while this manifold does not depend on ε. We call it the averaged manifold.

At points of R" not lying on caustics of the manifold Λ" the asymptotic expansion of uk e

is a finite sum of asymptotic series of the form

e l w^>l(e*)-V(x,^)| v = J t i / e, (2)
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where

SE(x, y) = S0(x) + eS^x, y) + · · · , φ/(χ, y) = φβχ, y) + εφ{(χ, y) + • • • .

It is easy to see that in the argument of the exponential function in (2) all terms with

indices greater than α tend to zero as k -> oo and ε -» 0, k ~ e~a, and that

eike'S,(x,y) — J -f θ ( ε ' ~ α ) .

The asymptotic expansion (2) is therefore well defined.

The averaged Lagrangian manifold Λ" is constructed in the following manner. We

consider the Hamiltonian system of ordinary equations with Hamiltonian

H(x, p)=p]- M^q(x, y) -\p'\2 j . (3)

Here M{f) denotes the average of a function/periodic in the variable^ over a period,

and p' denotes the vector (p2,...,pn). The family of trajectories of this system of

equations with the initial conditions

forms a Lagrangian manifold Λ" which we call the averaged manifold. Here the following

condition on the potential q(x, y) occurs: any solution of the Hamiltonian system with

Hamiltonian (3) and initial conditions (4) for all t and y satisfies the inequality

q(x(t),y)-\P'(t)\2>o. (5)

This condition is henceforth assumed satisfied. We observe that this is clearly the case if

the region in which q(x, y) differs from one is sufficiently small or if q(x, y) depends

weakly on the variable y.

In the last section an analogous expansion is constructed and justified for the Schro-

dinger equation

υ η
in-r-u — -z—Aw +

at 2m

Here conditions are imposed on the potential v(x{,... ,xn, y) which are analogous to the

conditions on q(x, y).

In exactly the same way it is possible to construct a formal asymptotic expansion for

any X^'-pseudodifferential operator with a symbol L(x, y, p) that is periodic in the

variable^ = xl/e.

§1. A special case

In this section we consider a situation in which the manifold projects injectively onto

the plane x,,.. .,xn.

For simplicity we consider a two-dimensional problem, since the case of a greater

number of variables differs in no practical way from the two-dimensional case.

We investigate the following scattering problem:

Δ«*,β(*) + k2i(x, xx/t)ukt£x) = 0,
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Here χ G R2, r = \ χ \ , k is a large parameter, and ε is a small parameter with k ~ ε~α,

α > 1. The function q(x, y) is infinitely smooth, positive, periodic in the variable^, and

goes to one uniformly with respect to y\

\x\>a = ! ·

It is also assumed that condition (5) formulated in the Introduction is satisfied.

THEOREM 1. Suppose that the Lagrangian manifold An projects injectwely onto the plane

xx, x2. Then the solution of problem (Γ) admits a formal asymptotic expansion, and this

expansion has the form

I «*..(*) ~ eikS^>i<p«{x, y) + {eky\\{x, y) + • • •) \y=Xi/e, (2')

where, just as in (2), the function Se(x, y) and all the functions φ/(.χ, y) are asymptotic series

in powers of ε.

PROOF. In place of the variable χ,/ε we introduce the independent variable^. Then the

operators 3/9x, and 3 2/3x 2 in the new variables take the form

dxx

We now substitute the expansion (2') into (Γ) and equate coefficients of like powers of k

and ε. The group of equations for k2 and all possible powers of ε must be used to find the

terms of the expansion of the phase, while the remaining equations, which are simpler,

make it possible to find the amplitude in (2'). We begin with the equation for k2 and ε°:

= ^ ,_ ( 6 )

3X] dy ι \ U A 2

We seek all the functions Sj(x, y) as periodic functions in the variabley.

We rewrite (6) in the form

We assume that the expression under the square root sign does not vanish, and therefore

this transformation is legitimate. It will be clear below that this assumption is justified.

The function S^x, y) must be a periodic function of y. It is clear that the solvability

condition for (7) in functions periodic in y is the equality

Thus, for S0(x) we obtain a nonlinear equation of first order. We define the boundary

condition for S0(x) as follows:



430 A. L. PJATNICKII

It is henceforth convenient to denote the square root \q(x, y) — pi by Q(x, y, p2).

Solution of (8) now reduces to integrating along a trajectory of the Hamiltonian system

X\ — ~ _ — x» Λ 2 — o _ - Λ Ϊ

χ , | , = 0 = - α , />,|,= 1 = 1, / 7 2 | i = 0 = 0, (9)

with Hamiltonian H(x, p), while this trajectory can be replaced by any other curve joining

the given points and lying on the Lagrangian manifold Λ" (see [1] and [6]). Because of the

assumptions made in this section concerning Λ" the function S0(x) is defined on all R"

and is equal to

S0{x) = -a+ fpdx.
Jx0

After S0(x) has been found, using (8), we can write (7) in the form

τ—5,(x, ^) = Q\ x, y, —? - M\Q\ x, y, —j \,
9 j 1V ' · " ^ \ 9x2 / [^\ ^ 9Λ:2 /j

whence we immediately find 5,(JC, >̂ ) up to a function not depending on y. It will be

convenient for us to write it in the form

It is clear that M{Sx(x, y)} = 0 .
We now consider the equation for k2 and ε1:

dS0(x) dS](x,y)\ldS,(x,y) dS2(x,y)\ dS0(x) dSx(x, y)

Since

) _ L 3 S , ( * , J ' ) _ J .. 9S0(x)

both sides of (10) can be divided by Q = Q(x, y, dS0/dx2):

dS,(x,y) dS2(x,y) dS0(x) dS,(x, y) [

3>- 3JC 3 Χ ^9JC, 3>- 3JC2 ^

We take the mean of both sides of the last equality over a period:

Μ
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Using the original Hamiltonian system (9), the last equation can be transformed to the

form

= -M\p2(t)
dt

It is natural to take zero as the initial condition for μ,.

Continuing this process, from the next equations for k2 we find all functions

| r = o = 0.

We seek the functions φ° from the group of equations for the first power of k. The first

of these is kx and ε" 1 :

dx. dy2

Dividing this equation by (dSQ/dx] + 3S,/3 v) 1 / 2 , we rewrite it as follows:

_3_
dy PO(*. y) dx. dy

1/2

whence we easily find that

*?(*, y) =
dSQ(x)

= 0 ,

1/2

ι 9.V

Here c(x) is an arbitrary function of x. In order to find it, we use the equation for ε°:

( Π )

+ * « ^ + 2.
dx2 oxxoy dy ι vy ~-·ί ~--ί U A 2

Dividing both sides by (3S0/3x, + dSx/dy)x/1 and making simple transformations, we

find, using (11), that

2 3 <P, dy
+ 2-

1/2

M , 9 ^ 2

:, 3j

dx}dy

+ c(x)
3Λ:,

d (dS0

3JC, 3^ dx-

250 = 0. (12)



4 3 2 A. L. PJATNICKII

Applying the equality

we transform (12) to the form

- 1

The solvability condition for this equation is that the mean of both sides be equal to
zero:

The last equation reduces to an equation along trajectories

— M i i^r |2(*( ' ) ,^?rr l l \=o. (η )

According to the Liouville theorem (see [1]), the determinant

/(,,{) = to »&i | i i , ί = χί|,.β,

satisfies the equation

which together with (13) leads to the following equation for c(x):

Recalling that c | / = 0 = 1, we find that

All terms of the asymptotics of the amplitude <pj(JC, y) are constructed in a similar way.
The principal term of the expansion we have constructed has the form

•1/2

REMARK. The principal term of the phase function S0(x) does not correspond to any
differential operator.

§2. Construction of the asymptotics in the general case

In this section the asymptotic expansion of problem (1) will be constructed under the
assumption that the Lagrangian manifold Λ" is a manifold of general position in R2".
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LEMMA 1. Let M" be a Lagrangian manifold in R2", let (x°, p°) be a point on this

manifold, and suppose that in a neighborhood of this point on M" there are given coordinates

£,,. . . ,£„. Let the inequality 9JC,/9£, > 0 be satisfied at the point (x°, p°). Then in a

neighborhood of (x°, p°) it is possible to choose canonical coordinates so that px is not a

coordinate.

PROOF. We first prove the lemma in the three-dimensional case. Suppose that in a

neighborhood of (x°, p°) on M3 there are coordinates 0, £, η . The fact that M 3 is

Lagrangian ensures that

9.x, 9/? ι

9.x, 9/?,

9JC2

dx2

90

dp2

dp2

8ft

9.x3 dp3

dx3 dp3

00 θη

9^3 op3

9JC,

n

dp χ

9/?,

90

9JC2

9JC2

dp2

90

9JC3

9x3

n

'dp3

dp3

90

9 ^ 9 ^ 9 x 2 ^ 2 9x3^P3 _ 9 ^ dp±_ 9^2 dpi _ 9^3 ^h = n (λΔ\
d£ 9η 9£ 9η 9^ 9η 9η 9£ 9η 9^ 9η 9£ U J

We multiply the first equality by 9.χ2/9η, the second by 9JC 2 /9£, the third by 9.x2/90, and

we add them:

In exactly the same way, multiplying (14) by the derivatives of x3, p2, and p3 in place of

x2, we obtain three equalities analogous to (15).

We now suppose that in a neighborhood of (Λ:°, p°) it is not possible to take χ, as the

first canonical coordinate. The first coordinate is then/?,. It may be assumed with no loss

of generality that the two other coordinates are x2 and x3. Since the variables JC1? x2, and

χ 3 cannot be taken as coordinates, we have

therefore

and at least one of the numbers α and β is nonzero by the hypotheses of the lemma.
Suppose that α Φ 0. Then

Hence by (15)

Therefore,
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i.e., in a neighborhood of (x°, p°) it is possible to take x,, p2, x3 as coordinates on M".

We have obtained a contradiction.

In a space of higher dimension the lemma is proved similarly by using the following

simple proposition which makes it possible to pass from equalities of the type (14) to

equalities of the type (15).

PROPOSITION. Suppose there is given an η Χ η matrix A. Fix any two rows of this matrix

with indices i and). Then there is the following formula for computing the determinant of this

matrix:

A V l) a.: fl_., "ijms-

Here Aijms are the complementary minors of order (n — 2) X (n — 2).

This proposition is a special case of a theorem of Laplace (see [7]).

It is henceforth assumed that on Λ" there are given canonical coordinates, and the

variable/?, is not a coordinate in any local chart. We also suppose that the manifold Λ" is

in general position, i.e., the set of points of this manifold in a neighborhood of which it is

not possible to take * , , . . . ,xn as coordinates has dimension no more than η — 1.

In a singular local chart, i.e., in a local chart where certain pj enter as canonical

coordinates we seek a solution of (1) in the form

u(x) = ^t~),-*,-"(*/' Pi)·

Here Xj, pf are coordinates in the corresponding local chart, Ι Π Ϊ = 0 and / U / =

{1,...,«}. Here i ^ ^ ^ - d e n o t e s the operator of fast Fourier transform

, I'!/2

The original equation (1) can now be rewritten as follows:

, ̂ )]ivJr^A..(*/. Pi) = 0-

As before, we seek a solution «λ e(xf, pj) of this equation in the form

00

fi* ,(*/. ΡΓ) - eiki*x>->™ Σ W V W Pl· y) U.<,A·

For simplicity we again consider the two-dimensional case. The general case can be

studied in a completely similar way.

THEOREM 2. The action of the operator (16) on a function uk e(xj, pf-) defined by the

asymptotic series (17) can be represented by the formula

;> — ) \Fk,]p2^x2

iikAxi' Pi)

„ oikSc(xup2,y)

y=o / ν /=o v =
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where the &J

S are differential operators of order j . Here

+
3.x, dy

dSo 35^

dx} dy

35, 352

3.x, dy

35,

, 3 \ / 350 35, \ 325,

(2',φ =

3.x,

3 \ / 3 5 0 , 35",

2 '

Ο ι 'Λ

r + 2

ι 9 ^

325,

+ 2 Ιττ
3 -\ / 35

3x, +

1 / 3
x2

= -dS0/dp2'

PROOF. In place of χ,/ε we introduce the independent variable^, and we consider^ and

ε as independent quantities. In (17) it is then possible to extend ε to the interval (-ε0, ε0).

We are now in the situation where the method of stationary phase with a parameter is

applicable (see [8], Theorem 2.2). The remainder of the theorem is proved just as Theorem

5 of [1]. For ε > 0 we obtain the required formulas.

In order to construct solutions of the equations obtained in Theorem 2 it is necessary to

obtain a collection of initial conditions in the singular chart. To this end it is necessary to

study how the fast Fourier transform acts on functions of the form (17).

THEOREM 3. Suppose that some neighborhood of the manifold A2 projects injectively onto

the planes JC,, x2 andxvp2. Then the following transition formulas hold:

y-o

where

-X2P2 + S0{x), p2 = dS0/dx2,

xi,P2>y) = Sx(x, y),

8x?

-1/2

Here the vm are linear fractional functions of the derivatives of Sj with denominators that are

powers of d2SQ/dx\. The functions <pj are expressed in terms of"φ*, h < s,j < /, by means of



436 A. L. PJATNICKII

differential operators with coefficients depending on Sj. The expression inerdex A denotes the

number of negative eigenvalues of the matrix A. In the present two-dimensional case this is 1

if d2S0/dxl < 0 and is 0 otherwise.

PROOF. It is necessary to investigate the integral

In order to apply the method of stationary phase to this integral it is necessary to find a

root of the equation

dS0 35",

d x 2 d x 2 hT2

Since the neighborhood considered projects injectively both onto the plane x,, x2 and onto

xx,p2, the equation

* = g 09)
has a unique solution for p2 in the corresponding region, and d2S0/dxj Φ 0. As in

Theorem 2, we use the following technique: we assume that y — χχ/ε is an independent

variable, and we extend ε to the interval (-ε0, ε0). Because of the implicit function

theorem, for the same p2 as in (19) equation (18) has for | ε | < ε 0 a unique solution

provided that ε0 is sufficiently small. For this solution there is the representation

χε

2 = x°2 + εα, + · · · + εΝαΝ + Ο(εΝ). (20)

Here x2 is the root of (19). Substituting (20) into (18), we find ay.

a, = - (dSl/dx2)(d2S0/dxl)~\ etc.

Applying now the method of stationary phase with a parameter (see [1] and [8]), we

obtain

y - — /TT/2inerdex d2S0

p°0(xx, x e

2 , y ) + · · · )

2 ~1 / 2

^{x2P2- SQ(x,y) ) L = x 5

Substituting the expression (20) for x\ and expanding Sj and φ] in Taylor series, we obtain

the assertion of the theorem.

On the basis of Theorems 2 and 3 it is possible to extend the solution into a singular

chart. In a singular chart the equation for k2 and ε° has the form

A 2
+P =

9 x t " 3 ^ / ' - 2 y \ ^ ' 3 / > 2 '

o r

From this we find that - 5 0 is the Legendre transform of the function SQ (see [1] and [6]),

and hence So and So give the phase of the averaged equation in different representations:

SQ(X) - x2p2.
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Further,

9S,
-jjy = Q(x, y, Pi) ~ M{Q{x, y, p2)}.

Thus, the functions «S, and 5, coincide on the manifold Λ2.
We consider the equation for k2 and ε1:

dS0 9S1, \ / 9S\ dS2 I 9 / λ . 95\
9 J C I 9 V / 1 9 X , 9 V / 9 J C - , ' 2 ~ σ Λ η / ^ ρ ^ Λ ^

o r

437

(21)

We shall show that along a trajectory this equation coincides with the equation for μ,. For
this we simplify the right sides of both equations:

^ 2 "

M\

= M
Pi

r
yo

PI

- M
dxj

Q(x, y, Pi)
dz

-M

Ζ7!"

- M\
Q(x,z,p2) Ι ρ(χ, j , /?2)

/ 9?

dz

1 r dx-
(x,z)

- Λ Λ
ρ(χ, ζ, p2) \Q(x,y,Pi)

dq

dz

= -M
Pi

Q(x,z,p2) r
v

-M

i i

r
Vo

dx-
- M\

Q(x,z,p2) ] Q(x,y,p2)

dq

dz

- Μ
dx-ix,y)

Q(x,z,P2) Q(x,y,p2)
dz

-M ί
dq , ν - \

- Μ
dx

Q{x,z,p2) Q(x, y,p2)
dz
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Similarly, transforming the right side of (21), we find that

Ml
Q(x,y,p2)

- " { / ; ( ζ, Pi) [Q{x, y, Pi)

By integration by parts it is not hard to verify that the right sides in the last two formulas

coincide, whence we obtain the equality /i1 = μ, and hence also Sx = Sx and also the fact

that these functions have no points of discontinuity on Λ2.

The functions S2 and S2 do not coincide, but their difference is a known function

depending only on So and S1, (or So and Sx). One of the functions S2 or S2 (but not both at

once) may become infinite. The same holds for all the remaining Sj.

In the case of higher dimension we proceed similarly; namely, to each point of the

manifold Λ" we assign not one function 5, but rather a collection of 2n~x functions

S:(x, y),.. .,Sj(xx, p2,... ,pn, y). Several elements of this collection, but not all simulta-

neously, may become infinite. By means of Theorems 2 and 3 it is easy to verify the

following assertions.

1. The collections do not depend on the decomposition of Λ" into charts or on the choice of

local coordinates in them, but depend only on the point of the manifold.

2. The elements of this collection are connected by a known additive relation.

We return to the two-dimensional case. We find the leading term of the amplitude φ%

from the equation for k and ε~':

Solving this equation, we obtain

The equation for kx and ε° can be written in the form

1 - o 9 ^ 3
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Transforming this equation in analogy to (12), we obtain the equation along trajectories

where J denotes the determinant

From this we find c(x,, p2). We note that c(x) and c(x,, p2) are connected by the relation

c{xx,p2) =
dx- » .

We therefore introduce the Maslov index on the manifold Λ" in the usual way, and we
construct the following analogue of the canonical operator.

Suppose that on Λ" there is given a smooth function Κ(Γ), where r is a point of Λ", and
suppose that on Λ" a canonical atlas and a subordinate partition of unity are fixed. We
define an operator mapping functions on Λ" into functions on R" as follows.

1. In a nonsingular chart Ω̂

1/2

det ""
dx

X
-1/4

2. In a singular chart Ω7 with coordinates xf, pf-

.- e

X

ik(S0(x,,pJ)+ • • • +eNSN(x,,p,-x,/e))

det

1/2

-\p'\2)
-1/4

Here /y are the elements of the partition of unity, supp /y C Ω7, and r° is a fixed point of
Λ" satisfying the condition Λ:,(Γ°) < -a. We now define the operator K{n by means of a
partition of unity:

It can now be verified that, up to lower order terms, the operator we have constructed
does not depend either on the atlas or on the partition of unity. If for κ0 we take the
leading term of the amplitude of the averaged equation, then on substituting Κ{ηκ0 into
(1) we obtain a function of order O(kl~s). It is possible to refine the construction of the
operator K^·, and to construct asymptotics satisfying (1) to accuracy O(k~N), where Ν is
any number. This can be done in analogy to [1] and [6]. However, in this case the atlas and
the partition of unity must be fixed, and the construction of subsequent approximations
depends on them. For example, it is convenient to choose the atlas and the partition of
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unity as in [9]. To construct subsequent terms of the expansion it is necessary to seek /c(r)
as an asymptotic series

( Ό - («»('•) + iKo{r'~) + •·•)

The next terms of the expansion are constructed as in [1] and [6].

§3. The Schrodinger equation

In this section we consider the equation

with the initial conditions

Of the potential υ(χ, χχ/έ) we require that the following conditions be satisfied: υ(χ, y) is
a smooth function periodic in y, and v(x, y) does not depend on>> for χ in R" \ Ω, where Ω
is a bounded domain. For each fixed ε the function v(x, χ,/ε) lies in the Schwartz class
S(R"). Suppose, finally, that supp;c o nfl= 0. For this problem it is possible to
construct an asymptotic expansion just as in §§1 and 2.

We consider the Hamiltonian equations with Hamiltonian

L(x, p, /, E ) = P l - Μ { ] Ε - \ ρ ' \ 2 - υ ( χ , γ ) } .

THEOREM 4. Suppose that for t < Τ there exist solutions of the indicated Hamiltonian
system with initial conditions

9 5 0 Λ

x | T = 0 G suppt|/0, PlT=o = -gJ» ' | T = 0 = °> £ | T =o =

Then for t < Τ there is the asymptotic formula (A -> 0)

v(x).

For the proof it is necessary to repeat the arguments of the preceding section.
The asymptotics found in the present problem can be justified. Using Theorem 10.6 of

[1], for the remainder term of the expansion we get

sup ||ψ(χ, t) - ψά(Ν)(χ, 0IIL 2

(R«) < ch~N.

In conclusion the author expresses his gratitude to M. I. ViSik for his attention to the
work, and to S. M. Kozlov for assistance in formulation of the problem and discussion of
the results.
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