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In the present article, we study the temperature effects on two-phase immisci-
ble incompressible flow through a porous medium. The mathematical model
is given by a coupled system of 2-phase flow equations and an energy balance
equation. The model consists of the usual equations derived from the mass con-
servation of both fluids along with the Darcy-Muskat and the capillary pressure
laws. The problem is written in terms of the phase formulation; ie, the satura-
tion of one phase, the pressure of the second phase, and the temperature are
primary unknowns. The major difficulties related to this model are in the non-
linear degenerate structure of the equations, as well as in the coupling in the
system. Under some realistic assumptions on the data, we show the existence
of weak solutions with the help of an appropriate regularization and a time dis-
cretization. We use suitable test functions to obtain a priori estimates. We prove
a new compactness result to pass to the limit in nonlinear terms.
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1 INTRODUCTION

Modeling 2-phase flow through porous media is an important topic that spans a broad spectrum of engineering disciplines.
Examples include geothermal systems, oil reservoir engineering, ground-water hydrology, and thermal energy storage.
More recently, modeling multiphase flow received an increasing attention in connection with gas migration in a nuclear
waste repository and sequestration of CO2.

This work aims to incorporate the temperature effects into immiscible incompressible 2-phase flow in heterogeneous
porous media. The basic equations for nonisothermal 2-phase flow in a porous medium involve mass conservation, Darcy's
law, energy conservation, saturation, and capillary pressure constraint equations. The governing fluid and heat transport
equations used to model thermal recovery processes are highly nonlinear. As fluid properties are defined as a function of
temperature and pressure, there is a strong coupling between the mass balance and energy balance equations.
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During recent decades, mathematical analysis and numerical simulation of multiphase flows in porous media have
been the subject of investigation of many researchers owing to important applications in reservoir simulation. There
is an extensive literature on this subject. We will not attempt a literature review here but will merely mention a
few references. Here we restrict ourselves to the mathematical analysis of such models. We refer, for instance, to
the books1-7 and the references therein. The mathematical analysis of the system describing isothermal flow of 2
incompressible immiscible fluids in porous media is quite understood. Existence, uniqueness of weak solutions to
these equations, and their regularity have been been shown under various assumptions on physical data; see for
instance some related studies1,2,4,8-14 and the references therein. A recent review of the mathematical analysis devel-
oped for immiscible 2-phase flow in porous media and compressible miscible flow in porous media can be viewed
in Amaziane et al.15

Let us note that all the aforementioned works are restricted to the case where flows are under isothermal conditions,
contrarily to the present work. This assumption is too restrictive for some realistic problems, such as thermally enhanced
oil recovery, geothermal energy production, and high-level radioactive waste repositories. The present work was moti-
vated by a need to incorporate the thermal behavior for such problems. In this work, a coupled reservoir 2-phase flow
model is described, which accounts for varying reservoir temperature to capture flow physics accurately. Although con-
siderable progress has been made in the computational simulation of 2-phase problems under nonisothermal conditions
(see, eg, some related works16-27 and the refrences therein), to the best knowledge of the authors, the mathematical analy-
sis of such coupled models under nonisothermal conditions is still incomplete. The previous results on the existence of a
weak solution of a simplified system describing nonisothermal 2-phase flow in porous media were obtained in Bocharov
and Monakhov28-31 and then revisited in Monakhov.32 The model studied in these works considers a simplified form of
the conservation of energy expression, where there is no energy exchange between the phases, which reduces to the con-
ventional advective-diffusive scalar equation for the temperature, which is too restrictive for realistic problems. More
precisely, the corresponding system consists of 3 equations: The first 2 equations describe the evolution of the phase pres-
sures and the saturation, and the last equation the evolution of the temperature function, all 3 equations being coupled.
However, in contrast to our model, the above mentioned works deal with a simplified version of the temperature equation;
in particular, the evolution term does not involve a coefficient that depends on the saturation function and the porosity
as in our model. This fact allows one to obtain the compactness result for the temperature directly from the uniform esti-
mates for the spatial derivatives and the estimate for the time derivative of the temperature in the space H−1. This is not
the case in our situation, we have to prove the compactness of the saturation function and of the temperature simultane-
ously. Closer to the present problem, in Li and Sun,33 the authors proved the global existence of a weak solution for the 1D
multicomponent heat-air-vapor transport model in porous textile materials. Recently, existence of a global weak solution
for Richard's model arising from the heat and moisture flow through a partially saturated porous medium was obtained
in Beneš and Pažanin.34

Let us mention that the main difficulties related to the mathematical analysis of such equations are the coupling,
the strong nonlinearity, and the degeneracy of the diffusion term in the saturation equation. In particular, the degen-
eracy of the relative permeability implies that we have no uniform estimates for the gradients of the phase pressures.
This is the reason why we have to pass to the formulation of our problem in terms of the global pressure and satura-
tion. But even in this formulation, we have no uniform estimates for the gradient of the saturation. This creates the
difficulties in the proof of the compactness results. Also, because of the degeneracy and strong coupling, the solutions
do not have much regularity. We follow the strategy used in Amaziane et al35 and Galusinski and Saad36; that is, we
first regularize the phase pressures in our model by introducing a small parameter 𝜂, and then we use the time dis-
cretization to get a sequence of elliptic problems, which introduces second small parameter h. To apply the fixed point
argument to the regularized problem, we need 2 further regularizations, which are used in construction of the fixed
point mapping.

The presence of the temperature brings additional difficulties in obtaining a priori estimates and passage to the limit
and makes the proof essentially more involved. Our approach also relies on the proof of a new compactness result. Thus,
we extend our previous results to the case of nonisothermal 2-phase flow in porous media. This study was intended
as a first step to the homogenization of nonisothermal immiscible incompressible 2-phase flow through heterogeneous
reservoirs.

The rest of the paper is organized as follows. In the next section, the basic equations for 2-phase flow through porous
media and heat transport are presented. First, in Section 2.1, we give a short description of the physical model and formu-
late the corresponding mathematical problem. In Section 2.2, we provide the assumptions on the data. Then in Section
2.3, we introduce the notion of the nonisothermal global pressure generalizing the well-known notion of the global pres-
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sure introduced earlier in the analysis of the incompressible and compressible 2-phase flow. In Section 3, we present our
main result and a short description of the scheme of its proof. In Section 4, we introduce the regularized problem with
a regularization parameter 𝜂 > 0, for all the equations of the model including that corresponding to the temperature
function and its time discretization with a small parameter h > 0, and, using the Leray-Schauder fixed point theorem,
we establish, as in Amaziane et al,35 the existence of a weak solution to this problem. Moreover, we prove the maximum
principle for the saturation and temperature functions. Section 5 is devoted to the study of the non degenerate system.
In Section 5.1, we use suitable test functions to get uniform estimates with respect to h. In Section 5.2, a new approach
is proposed to prove a compactness result adapted to our model. The proof is essentially based on Simon's compactness
theorem for the spaces of functions depending on the space and time variables (see Simon37). These estimates allow us
to pass to the limit, as h tends to zero, and to justify the existence of weak solutions of the regularized problem with con-
tinuous time. In section 6 we complete the proof of the main result. To this end, we perform the limit as 𝜂 tends to 0 and
obtain a solution of the degenerate system. This part of the proof relies on the compactness results established in Section
5.2. Lastly, some concluding remarks are forwarded.

2 FORMULATION OF THE PROBLEM

The section is organized as follows. First, in Section 2.1, we introduce the physical-mathematical model, which will be
studied in the paper. In Section 2.2, we formulate the main assumptions on the data. In Section 2.3, we introduce the notion
of the nonisothermal global pressure and obtain some important relations, which will be used below in the derivation of
the a priori estimates.

2.1 Governing equations
We consider a nonisothermal immiscible incompressible 2-phase flow process in a porous reservoir Ω ⊂ Rd(d = 1, 2, 3),
which is a bounded Lipschitz domain. The time interval of interest is (0,  ) and  = Ω × (0,  ). Let Φ = Φ(x) be
the porosity of Ω; K = K(x) be the absolute permeability tensor of Ω; 𝜚w, 𝜚o and 𝜚s are the densities of the wetting and
nonwetting phases, and the skeleton, respectively; Sw = Sw(x, t), So = So(x, t) are the saturations of the wetting and
nonwetting phases; kr,w = kr,w(Sw), kr,o = kr,o(Sw) are the relative permeabilities of the wetting and nonwetting phases;
pw = pw(x, t), po = po(x, t) are the pressures of the wetting and nonwetting phases; T = T(x, t) is the temperature;
hw = hw(T), ho = ho(T), hs = hs(T) are specific enthalpies of the wetting and nonwetting phases and the solid part;
𝜇w = 𝜇w(T) and 𝜇o = 𝜇o(T) are the viscosities of the wetting and nonwetting phases, respectively; and kT = kT(x) is the
effective thermal conductivity of the combined 3-phase system.

In this paper, we focus our attention on a model where both fluids are assumed incompressible; that is, the densities of
the wetting and nonwetting phases are strictly positive constants, and the skeleton density is also assumed to be a strictly
positive constant. It is assumed that no exchange of mass between the 2 phases can take place and each phase remains
homogeneous. We assume that the phase enthalpies are linear functions of the temperature and are given by

hw(T) = CwT, ho(T) = CoT, hs(T) = CsT, cw = 𝜚wCw, co = 𝜚oCo, cs = 𝜚sCs, (2.1)

where Cw,Co,Cs are the specific heat capacities of the wetting, the nonwetting, and the solid part, respectively, and cw, co, cs
are the specific heat capacities per unit volume. They are assumed to be positive constants.

The basic equations for nonisothermal 2-phase flow in a porous medium involve mass conservation, Darcy-Muskat's
law, energy conservation, saturation, and capillary pressure constraint equations. For nonisothermal 2-phase flows, one
more governing equation is required to determine the temperature field. This can be obtained from the total energy
conservation equation for a combined solid matrix-multiphase mixture system and by invoking the assumption that local
thermodynamic equilibrium prevails among the solid matrix and the phases.

In what follows, for the sake of presentation simplicity, we neglect the source terms. Let

𝚿(S,T)
def
= 𝜓(S) T where 𝜓(S)

def
=
(

cwS + co[1 − S]
)
Φ(x) + cs [1 − Φ(x)

]
. (2.2)
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Then the conservation of mass in each phase and conservation of energy can be written as (see, eg, Chen et al,3 Helmig,5

Kaviany,38 and Wu39): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ⩽ S ⩽ 1 in ;
Φ(x)𝜕S

𝜕t
− div

{
K(x)𝜆w(S,T)

(
∇pw − 𝜚w g⃗

)}
= 0 in ;

−Φ(x)𝜕S
𝜕t

− div
{

K(x)𝜆o(S,T)
[
∇po − 𝜚o g⃗

]}
= 0 in ;

𝜕𝚿
𝜕t

− div
{

TK(x)
[

cw𝜆w(S,T)
(
∇pw − 𝜚wg⃗

)
+ co𝜆o(S,T)

(
∇po − 𝜚og⃗

)]}
−

− div (kT∇T) = 0 in ;
Pc(S) = po − pw in ,

(2.3)

where here and in the rest of the paper, we set S
def
= Sw; the velocities of the phases q⃗w, q⃗o are defined by the Darcy-Muskat

law:
q⃗w

def
= −K(x) 𝜆w(S,T)

[
∇pw − 𝜚w g⃗

]
, with 𝜆w(S,T)

def
=

kr,w(S)
𝜇w(T)

; (2.4)

q⃗o
def
= −K(x) 𝜆o(S,T)

[
∇po − 𝜚o g⃗

]
, with 𝜆o(S,T)

def
=

kr,o(S)
𝜇o(T)

; (2.5)

with g⃗ is the gravity vector.
The system 2.3 has to be completed by appropriate boundary and initial conditions. We assume that the boundary 𝜕Ω

consists of 2 parts, 𝛤1 and 𝛤2, such that Γ1 ∩ Γ2 = ∅, 𝜕Ω = Γ1 ∪ Γ2 and |𝛤1| > 0. The boundary conditions read:{
po(x, t) = pw(x, t) = T(x, t) = 0 on Γ1 × (0,  );
q⃗w · 𝜈 = q⃗o · 𝜈 = kT∇T · 𝜈 = 0 on Γ2 × (0,  ); (2.6)

where the velocities q⃗w, q⃗o are defined in 2.4 and 2.5.
The initial conditions read:

pw(x, 0) = p0
w(x), po(x, 0) = p0

o(x), and T(x, 0) = T0(x) in Ω. (2.7)

2.2 Main assumptions
The main assumptions on the data are as follows:

(A.1) The porosity Φ ∈ L∞(Ω), and there are positive constants 𝜙−, 𝜙
+ such that 0 < 𝜙− < 𝜙

+ and

0 < 𝜙− ⩽ Φ(x) ⩽ 𝜙+ < 1 a.e. in Ω. (2.8)

(A.2) The tensors K, kT ∈ (L∞(Ω))d×d and there exist constants K−,K+ such that 0 < K− < K+ and

K−|𝜉|2 ⩽ K(x) 𝜉 · 𝜉, kT(x) 𝜉 · 𝜉 ⩽ K+|𝜉|2 for all 𝜉 ∈ R
d, a.e. in Ω. (2.9)

(A.3) The capillary pressure function Pc ∈ C1([0, 1];R+). Moreover, it is a decreasing function of the saturation, ie,
P′

c(S) < 0 in [0, 1] and Pc(1) = 0.
(A.4) The functions kr,w, kr,o belong to the space C(R) and satisfy the following properties: (1) 0 ⩽ kr,w, kr,o ⩽ 1 on R; (2)

kr,w(S) = 0 for S ⩽ 0 and kr,o(S) = 0 for S ⩾ 1; kr,w(S) = 1 for S ⩾ 1 and kr,o(S) = 1 for S ⩽ 0; (3) there is a positive
constant k0 such that kr,w(S) + kr,o(S) ⩾ k0 > 0 for all S ∈ R.

(A.5) The viscosities 𝜇w, 𝜇o ∈ C1(R) are functions of the temperature T. Moreover, these functions, for any T ∈ R, satisfy
the following bounds:

0 < mw ⩽ 𝜇w(T) ⩽ Mw, 0 ⩽ |𝜇′
w(T)| ⩽ Mw < +∞; (2.10)

0 < mo ⩽ 𝜇o(T) ⩽ Mo, 0 ⩽ |𝜇′
o(T)| ⩽ Mo < +∞. (2.11)
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(A.6) The function 𝛼 defined in 2.18 is such that 𝛼 ∈ C1([0, 1];R+). Moreover, 𝛼(0) = 𝛼(1) = 0 and 𝛼 > 0 in (0, 1).
(A.7) The function 𝛽−1, inverse of 𝛽 defined in 2.18, is a Hölder function of order 𝜃 with 𝜃 ∈ (0, 1) on the interval [0, 𝛽(1)].

Namely, there exists a positive constant C𝛽 such that for all u1,u2 ∈ [0, 𝛽(1)] the following inequality holds:||𝛽−1(u1) − 𝛽−1(u2)|| ⩽ C𝛽 |u1 − u2|𝜃.
(A.8) The initial data for the phase pressures are such that p0

o, p0
w ∈ L2(Ω) and 0 ⩽ p0

o − p0
w ⩽ Pc(0). The initial data

for the saturation 0 ⩽ S0 ⩽ 1 are defined by the capillary pressure law: p0
o − p0

w = Pc(S0). The initial temperature
T0 ∈ L∞(Ω) satisfies Tm ⩽ T0(x) ⩽ TM for some constants Tm and TM, such that Tm ⩽ 0 ⩽ TM .

The assumptions (A.1) to (A.8) are classical for 2-phase flow in porous media.

Remark 1.

• Let us note that it follows from (A.4) and (A.5) that the relative mobility functions 𝜆w, 𝜆o, defined in 2.4, 2.5, belong
to the space C([0, 1] × R;R+) and satisfy the following properties: (i) 𝜆w(0,T) = 0 and 𝜆o(1,T) = 0; (ii) there is a
positive constant L0 such that 𝜆(S,T)

def
= 𝜆w(S,T) + 𝜆o(S,T) ⩾ L0 > 0 for S,T ∈ R.

• Condition (A.5) is in good accordance, for example, with the Reynolds model for shear viscosity (see, eg, Seeton40).
Namely, 𝜇(T) = 𝜇0 exp(−bT), where 𝜇0 and b are constants.

2.3 Global pressure and useful relations
In the sequel, we will use a formulation obtained after transformation using the concept of the so-called global pressure.
For isothermal incompressible immiscible 2-phase flow, this concept was introduced for the first time in Antontsev et al1

and Chavent and Jaffré.2 Then it was generalized to the nonisothermal case in Bocharov and Monakhov.28-31 This concept
plays a crucial mathematical role for a priori estimates and compactness results. Following Bocharov and Monakhov,28

we define the nonisothermal global pressure P as follows:

po = P +

S

∫
1

𝜆w

𝜆
(𝜉,T) P′

c(𝜉) d𝜉
def
= P + Go(S,T), (2.12)

where
𝜆(S,T)

def
= 𝜆w(S,T) + 𝜆o(S,T). (2.13)

Then using the capillary pressure relation in 2.3, one can easily obtain that

pw = P −

S

∫
1

𝜆o

𝜆
(𝜉,T) P′

c(𝜉) d𝜉
def
= P + Gw(S,T). (2.14)

It is easy to see that

∇po = ∇P + 𝜆w

𝜆
(S,T) ∇Pc(S) + Bo ∇T and ∇pw = ∇P − 𝜆o

𝜆
(S,T) ∇Pc(S) − Bw ∇T, (2.14)

where

Bo = Bo(S,T)
def
=

S

∫
1

𝜕

𝜕T

[
𝜆w

𝜆
(𝜉,T)

]
P′

c(𝜉) d𝜉; Bw = Bw(S,T)
def
=

S

∫
1

𝜕

𝜕T

[
𝜆o

𝜆
(𝜉,T)

]
P′

c(𝜉) d𝜉. (2.15)

Taking into account that Bw = −Bo, after some calculations, we obtain

𝜆o |∇po|2 + 𝜆w |∇pw|2 = 𝜆 |∇P|2 + 𝜆w𝜆o

𝜆
|∇Pc|2 + 𝜆 B2

o |∇T|2 + 2 𝜆 Bo ∇P · ∇T. (2.16)

Remark 2. The equality 2.16 can be interpreted in the following way: The total energy of the fluid is separated into the
convection energy, capillary energy, and thermal energy. However, there is no complete separation between convective
and thermal energies because the heat is transported by the convection, and therefore, a nonquadratic term 2 𝜆 Bo ∇P·
∇T is present in the equation.
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We observe that in contrast to the isothermal case the second term on the right-hand side of 2.16 depends both on the
saturation and the temperature. However, in our analysis, we will need a function depending on the saturation only and
having a bounded gradient. We introduce this function as follows:

𝛽(S)
def
=

S

∫
0

𝛼(𝜉)|P′
c(𝜉)| d𝜉 with 𝛼(𝜉)

def
=

√√√√√√ kr,w(𝜉)
Mw

· kr,o(𝜉)
Mo

kr,w(𝜉)
mw

+ kr,o(𝜉)
mo

, (2.18)

where the constants Mw,Mo,mw,mo are defined in condition (A.5).
Furthermore, we introduce the functions

Λ0(S,T)
def
= MoMw

momw

kr,o(S)mw + kr,w(S)mo

kr,o(S)𝜇w(T) + kr,w(S)𝜇o(T)
; (2.19)

Λ1(S,T)
def
=
√
Λ0(S,T)

√
𝜆w(S,T)𝜆o(S,T)

𝜆(S,T)
. (2.20)

Note that the function Λ0, due to (A.4) and (A.5), satisfies

0 < Λ0,min ⩽ Λ0(S,T) ⩽ Λ0,max < +∞, (2.21)

with some constants Λ0,min and Λ0,max. The function Λ1 preserves degeneration because it is zero for S = 0 and S = 1.
With these new functions, we can write:

𝜆o∇po = 𝜆o∇P + Λ1 ∇𝛽(S) + 𝜆oBo ∇T, (2.22)

𝜆w∇pw = 𝜆w∇P − Λ1 ∇𝛽(S) + 𝜆wBo ∇T, (2.23)

𝜆o |∇po|2 + 𝜆w |∇pw|2 = 𝜆 |∇P|2 + Λ0|∇𝛽(S)|2 + 𝜆 B2
o |∇T|2 + 2 𝜆 Bo ∇P · ∇T. (2.24)

By simple calculation, we can prove the following estimate.

Lemma 2.1. Assume (A.1) to (A.8) hold. Then there exists a constant C such that|Bo(S,T)| ⩽ C, (2.25)

for all T ∈ R and all S ∈ [0, 1]. If the functions kr,w and kr,o are extended on R as bounded continuous functions and Pc
is extended on R as bounded smooth function, then 2.25 holds for all T, S ∈ R.

3 FORMULATION OF THE MAIN RESULT

Before presenting our main result, we introduce the following Sobolev space:

H1
Γ1
(Ω)

def
=
{

u ∈ H1(Ω) ∶ u = 0 on Γ1
}
.

The space H1
Γ1
(Ω) is a Hilbert space. The norm in this space is given by ||u||H1

Γ1
(Ω) = ||∇u||(L2(Ω))d .

Now we give the definition of weak solutions to the system 2.3 to 2.7 and then state our main result.

Theorem 3.1. Let assumptions (A.1) to (A.8) be fulfilled. Then there exists a set of functions {po, pw, S,T} such that

(I) The functions po, pw, S,T have the following regularity properties:

pw, po ∈ L2() and
√
𝜆w(S,T) ∇pw,

√
𝜆o(S,T) ∇po ∈ L2(); (3.1)

𝛽(S) ∈ L2(0,  ;H1(Ω)) and P ∈ L2(0,  ;H1(Ω)); (3.2)

𝜕

𝜕t
(ΦS) ∈ L2(0,  ;H−1(Ω)); (3.3)
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T ∈ L2(0,  ;H1
Γ1
(Ω)); (3.4)

𝜕𝚿
𝜕t

∈ L2(0,  ;H−1(Ω)), (3.5)

where the function 𝜳 is defined in 2.2.
(II) The maximum principle for the saturation holds:

0 ⩽ S ⩽ 1 a.e. in . (3.6)

(III) The maximum principle for the temperature holds:

Tm ⩽ T ⩽ TM a.e. in . (3.7)

(IV) For any 𝜑w, 𝜑o, 𝜑T ∈ C1([0,  ];H1(Ω)) satisfying 𝜑w = 𝜑o = 𝜑T = 0 on Γ1 × (0,  ) and 𝜑w(x,  ) = 𝜑o(x,  ) =
𝜑T(x,  ) = 0, we have

−∫

Φ(x)S𝜕𝜑w

𝜕t
dx dt − ∫

Ω

Φ(x)S0(x)𝜑w(x, 0) dx + ∫


K(x)𝜆w(S,T)
[
∇pw − 𝜚wg⃗

]
· ∇𝜑w dx dt = 0; (3.8)

∫

Φ(x)S𝜕𝜑o

𝜕t
dx dt + ∫

Ω

Φ(x)S0𝜑o(x, 0) dx + ∫


K(x)𝜆o(S,T)
[
∇po − 𝜚o g⃗

]
· ∇𝜑o dx dt = 0; (3.9)

− ∫

𝚿𝜕𝜑T

𝜕t
dx dt − ∫

Ω

𝚿0𝜑T(x, 0) dx

+ ∫


{
TK(x)

[
cw𝜆w(S,T)

(
∇pw − g⃗

)
+ co𝜆o(S,T)

(
∇po − 𝜚og⃗

)]
+ kT∇T

}
· ∇𝜑T dx dt = 0,

(3.10)

where 𝚿0 def
= 𝜓(S0)T0.

Remark 3. Let us note that the initial conditions in Theorem 3.1 are satisfied in a weak sense as follows:
For any 𝜒 ∈ H1

Γ1
(Ω),

∫
Ω

Φ(x)S(x, t)𝜒(x) dx,∫
Ω

𝚿(x, t)𝜒(x) dx ∈ C ([0,  ]) , (3.11)

and it holds ⎛⎜⎜⎝∫Ω Φ(x)S 𝜒 dx
⎞⎟⎟⎠ (0) = ∫

Ω

Φ(x)S0 𝜒 dx and
⎛⎜⎜⎝∫Ω 𝚿 𝜒 dx

⎞⎟⎟⎠ (0) = ∫
Ω

𝚿0 𝜒 dx. (3.12)

Consider the first relation in 3.12. It is easy to see that if we set 𝜑w = 𝜐(t)𝜔(x), where 𝜐 ∈ (0,T) and 𝜔 ∈ H1
Γ1
(Ω),

in 3.8, we get
d

d t ∫
Ω

Φ(x)S(x, t) 𝜔(x) dx + ∫
Ω

K(x)𝜆w(S,T)(∇pw − g⃗) · ∇𝜔 dx = 0 (3.13)

in the sense of distributions. From the regularity properties of the solutions, we deduce that the integral t →
∫ΩΦ(x)S(x, t) 𝜔(x) dx belongs to space W1,1(0,T) and, consequently, this function is continuous. Multiplying 3.13 by
𝜐 ∈ C∞([0,T]) such that 𝜐(0) = 1 and 𝜐(T) = 0 and integrating by parts, we get

−
⎛⎜⎜⎝∫Ω Φ(x)S 𝜔(x) dx

⎞⎟⎟⎠ (0) = −∫


K(x)𝜆w(S,T)(∇pw − g⃗) · ∇𝜑w dx dt + ∫

Φ(x)S 𝜔(x)d 𝜐

d t
dx dt.

Comparing this equation and 3.8, where 𝜑w(x, t) = 𝜐(t)𝜔(x), we observe that⎛⎜⎜⎝∫Ω Φ(x)S 𝜔(x) dx
⎞⎟⎟⎠ (0) = ∫

Ω

Φ(x)S0(x) 𝜔(x) dx, (3.14)
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which makes the initial condition at t = 0 well defined. The second relation in 3.12 can be shown in the same way.

The proof of Theorem 3.1 relies on an appropriate regularization, a time discretization, a priori estimates based on the
concept of nonisothermal global pressure and maximum principles for the saturation and the temperature. It will be done
in 2 main steps. First, we consider the following regularized system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φ 𝜕S𝜂

𝜕t
− div

{
K𝜆w(S𝜂,T𝜂)

[
∇p𝜂w − 𝜚wg⃗

]
+ 𝜂 ∇

(
p𝜂w − p𝜂o

)}
= 0 in ;

−Φ 𝜕S𝜂

𝜕t
− div

{
K𝜆o(S𝜂,T𝜂)

[
∇p𝜂o − 𝜚o g⃗

]
+ 𝜂 ∇

(
p𝜂o − p𝜂w

)}
= 0 in ;

𝜕𝚿𝜂

𝜕t
− div

{
K T𝜂

[
cw𝜆w(S𝜂,T𝜂)

(
∇p𝜂w − 𝜚wg⃗

)
+ co𝜆o(S𝜂,T𝜂)

(
∇p𝜂o − 𝜚og⃗

)]}
−

−cw 𝜂 div
{

T𝜂∇
(

p𝜂w − p𝜂o
) }

− co 𝜂 div
{

T𝜂∇
(

p𝜂o − p𝜂w
)}

− div (kT∇T𝜂) = 0 in ;
Pc (S𝜂) = p𝜂o − p𝜂w in ,

(3.15)

where 𝜂 > 0 is a small positive parameter.
The boundary conditions for the system 3.15 read:{

p𝜂o = p𝜂w = T𝜂 = 0 on Γ1 × (0,  );
q⃗ 𝜂

w · 𝜈 = q⃗ 𝜂
o · 𝜈 = kT∇T𝜂 · 𝜈 = 0 on Γ2 × (0,  );

(3.16)

where

q⃗ 𝜂
w

def
= −K(x) 𝜆w(S𝜂,T𝜂)

[
∇p𝜂w − 𝜚wg⃗

]
− 𝜂∇

(
p𝜂w − p𝜂o

)
;

q⃗ 𝜂
o

def
= −K(x) 𝜆o(S𝜂,T𝜂)

[
∇p𝜂o − 𝜚o g⃗

]
− 𝜂 ∇

(
p𝜂o − p𝜂w

)
.

Finally, the initial conditions are the same as for the original problem:

p𝜂w(x, 0) = p0
w(x), p𝜂o(x, 0) = p0

o(x), and T𝜂(x, 0) = T0(x) in Ω. (3.17)

3.1 Notational convention
In what follows, the upper index corresponds to the “working parameter,” ie, to the parameter for which we study the
limit behavior of the corresponding functions.

The existence result for the system 3.15 to 3.17 will be formulated and proved in Section 5. The proof of this result is
based on the existence result for a system with a time discretization. Namely, we will consider the following nondegenerate
elliptic problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΦΔhSh
𝜂 − div

{
K𝜆w(Sh

𝜂 ,Th
𝜂 )
[
∇ph

w,𝜂 − 𝜚wg⃗
]
+ 𝜂∇

(
ph

w,𝜂 − ph
o,𝜂
)}

= 0;

−ΦΔhSh
𝜂 − div

{
K𝜆o(Sh

𝜂 ,Th
𝜂 )

[
∇ph

o,𝜂 − 𝜚o g⃗
]
+ 𝜂 ∇

(
ph

o,𝜂 − ph
w,𝜂
)}

= 0;

Δh𝚿h
𝜂 − div

{
K Th

𝜂

[
cw𝜆w(Sh

𝜂 ,Th
𝜂 )
[
∇ph

w,𝜂 − 𝜚wg⃗
]
+ co𝜆o(Sh

𝜂 ,Th
𝜂 )
[
∇ph

o,𝜂 − 𝜚o g⃗
]]}

−

−cw 𝜂 div
{

Th
𝜂∇

(
ph

w,𝜂 − ph
o,𝜂
) }

− co 𝜂 div
{

Th
𝜂∇

(
ph

o,𝜂 − ph
w,𝜂
)}

− div (kT∇Th
𝜂 ) = 0;

Pc(Sh
𝜂 ) = ph

o,𝜂 − ph
w,𝜂 ,

(3.18)

where

ΔhSh
𝜂

def
=

Sh
𝜂 − S⋆𝜂

h
, and Δh𝚿h

𝜂

def
=

𝚿h
𝜂 −𝚿⋆

𝜂

h
, (3.19)

S⋆𝜂 ,𝚿⋆
𝜂 are given functions, and the boundary conditions 3.16 are imposed.

The rest of the paper is organized as follows. In Section 4, we are dealing with the time discrete regularized model. The
existence result is proved in 2 main steps. In the first step, we consider the system 3.18, 3.19, and 3.16 with nondegenerate
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relative permeabilities k𝜖r,w
def
= kr,w+𝜖, k𝜖r,o

def
= kr,o+𝜖 with 𝜖 > 0, and then we apply the Leray-Schauder fixed point theorem.

In the second step, we pass to the limit as 𝜖 → 0. In Section 5, we pass to the limit as h → 0. This proves the existence result
for the regularized system 3.15. Finally, in Section 6, we pass to the limit as 𝜂 → 0 to prove the main result of the paper.

Remark 4. In fact, the temperature equation does not need a regularization. However, in 3.15, we add the term

−cw 𝜂 div
{

T𝜂∇
(

p𝜂w − p𝜂o
) }

− co 𝜂 div
{

T𝜂∇
(

p𝜂o − p𝜂w
)}

with the idea to have the accordance between the 3 equations.

4 EXISTENCE RESULT FOR THE ELLIPTIC SYSTEM 3.18

In this section, we deal with the time discrete regularized model 3.18, 3.19 with the boundary conditions 3.16, where the
dependence on the parameter 𝜂 will not be indicated explicitly for the sake of brevity.

The main result of the section is given by the following theorem.

Theorem 4.1. Let assumptions (A.1) to (A.8) be fulfilled, 𝜂 be a fixed positive parameter, and let 0 ⩽ S⋆ ⩽ 1,Tm ⩽ T⋆ ⩽
TM and 𝚿⋆

def
= cw Φ(x) S⋆T⋆ + co Φ(x) (1 − S⋆) T⋆ + cs [1 −Φ(x)

]
T⋆ be given functions. Then for all h > 0, there exists

a set of functions {ph
o , ph

w, Sh,Th} such that

(I) The functions ph
o , ph

w, Sh, and Th have the following regularity properties:

ph
w, ph

o ,Th ∈ H1
Γ1
(Ω) and 1 − Sh ∈ H1

Γ1
(Ω). (4.1)

(II) The maximum principle for the saturation holds:

0 ⩽ Sh ⩽ 1 a. e. in Ω. (4.2)

(III) The maximum principle for the temperature holds:

Tm ⩽ Th ⩽ TM a.e. in Ω. (4.3)

(IV) For any 𝜑w, 𝜑o, 𝜑T ∈ H1
Γ1
(Ω),

∫
Ω

{
Φ(x)ΔhSh 𝜑w +

[
K(x)𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ 𝜂∇

(
ph

w − ph
o
)]

· ∇𝜑w
}

dx = 0;

∫
Ω

{
−Φ(x)ΔhSh 𝜑o +

[
K(x)𝜆o(Sh,Th)

(
∇ph

o − 𝜚o g⃗
)
− 𝜂∇

(
ph

w − ph
o
)]

· ∇𝜑o
}

dx = 0;

∫
Ω

{
Δh𝚿h𝜑T +

(
K(x) Th

[
cw𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ co𝜆o(Sh,Th)

(
∇ph

o − 𝜚og⃗
)])

· ∇𝜑T+

+
[
cw 𝜂 Th ∇

(
ph

w − ph
o
)
+ co 𝜂 Th ∇

(
ph

o − ph
w
)
+ kT∇Th] · ∇𝜑T

}
dx = 0.

4.1 Regularized system of equations
First, we shortly describe the scheme of the proof of Theorem 4.1. We follow the steps developed in Khalil and Saad41

and Amaziane et al.35 Before establishing Theorem 4.1, which is the main goal of this section, we consider a regularized
problem. Namely, we consider the system 3.18, 3.19, and 3.16 with nondegenerate relative permeabilities k𝜖r,w, k𝜖r,o given by

k𝜖r,w
def
= kr,w + 𝜖 and k𝜖r,o

def
= kr,o + 𝜖, (4.4)
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where 𝜖 > 0 is a small parameter. In addition, we replace the regularization terms in 3.18 with their projections on
finite-dimensional subspaces defined in terms of the eigenbasis of the Laplace operator in Ω with corresponding bound-
ary conditions. This further regularization allows us to truncate high frequencies in the additional terms containing the
parameter 𝜂 and makes it possible to apply the Leray-Schauder fixed point theorem.

The passage to the nondegenerate mobilities leads to the loss of the maximum principle for the saturation Sh. In this
connection, the functions 𝜆𝜖w, 𝜆𝜖o are extended on S ∈ (−∞, 0] and S ∈ [1,+∞) as functions of the temperature in such a
way that the extended functions are continuous and strictly positive (see (A.4)). It is clear that they are bounded in R×R.
For the same reason, we introduce the extension of the functions Sh and Th. Namely,

ZS(Sh)
def
=
⎧⎪⎨⎪⎩

0 for Sh ⩽ 0;
Sh for Sh ∈ [0, 1];

1 for Sh ⩾ 1.
, ZT(Th)

def
=
⎧⎪⎨⎪⎩

Tm for Th ⩽ Tm;
Th for Th ∈ [Tm,TM];

TM for Th ⩾ TM .

(4.5)

Similarly, to write the saturations Sh as functions of the unknowns ph
w and ph

o , we construct an extension P̂c of the
capillary pressure function Pc with the following properties:

P̂c ∈ C1(R), P̂′
c ⩽ −m0 < 0, P̂′

c is bounded on R and P̂c|[0,1] = Pc. (4.6)

This is possible because of the condition (A.3). Finally, we introduce an extended capillary pressure law; Sh =
P̂ −1

c
(

ph
o − ph

w
)
.

Remark 5. The nondegenerate mobilities 𝜆𝜖w, 𝜆𝜖o and the extended capillary pressure function P̂c can be used to define
the global pressure by the formula 2.12. The global pressure defined in this way will be denoted P𝜖 . Consistently, the
functions Bo, 𝛼, 𝛽, Λ0, and Λ1 defined in 2.15, 2.18, 2.19, and 2.20, when defined from nondegenerate mobilities and
the extended capillary pressure function, will be denoted by B𝜖

o, 𝛼
𝜖, 𝛽𝜖 , Λ𝜖0, and Λ𝜖1. With this notation, we preserve the

equalities 2.22 to 2.24, which can be written as

𝜆𝜖o∇p𝜖o = 𝜆𝜖o∇P𝜖 + Λ𝜖1 ∇𝛽𝜖(S𝜖) + 𝜆𝜖oB𝜖
o ∇T𝜖; (4.7)

𝜆𝜖w∇p𝜖w = 𝜆𝜖w∇P𝜖 − Λ𝜖1 ∇𝛽𝜖(S𝜖) + 𝜆𝜖wB𝜖
o ∇T𝜖; (4.8)

𝜆𝜖o |∇p𝜖o|2 + 𝜆𝜖w |∇p𝜖w|2 = 𝜆𝜖 |∇P𝜖|2 + Λ𝜖0|∇𝛽𝜖(S𝜖)|2 + 𝜆𝜖 (B𝜖
o)2 |∇T𝜖|2 + 2 𝜆𝜖 B𝜖

o ∇P𝜖 · ∇T𝜖. (4.9)

It is easy to verify that the perturbed functions B𝜖
o(S,P) and Λ𝜖i (S,P) are bounded functions and converge uniformly

on R × R to Bo(S,P) and Λi(S,P) when 𝜖 → 0. Also, 𝛼𝜖(S) → 𝛼(S) uniformly on R when 𝜖 → 0 (however, this is not
true for 𝛽𝜖) and the functions 𝜆𝜖 and Λ𝜖0 are bounded below by constants independent of 𝜖 (see (A.4) and (2.21)).

The existence of solutions to 3.18, 3.19, and 3.16 is proved in 3 steps. At the first step, assuming that the parameters
𝜖,N, h, 𝜂 > 0 are fixed, we study the following regularized elliptic system (the dependence on the parameters h, 𝜂 > 0 is
omitted for brevity):

∫
Ω

Φ(x)ΔhS 𝜖,N 𝜑w dx + ∫
Ω

K(x)𝜆𝜖w(S 𝜖,N ,T 𝜖,N)(∇p𝜖,Nw − 𝜚wg⃗) · ∇𝜑w dx

+ 𝜂 ∫
Ω

∇
(N

[
p𝜖,Nw

]
− N

[
p𝜖,No

])
· ∇𝜑w dx = 0;

(4.10)

−∫
Ω

Φ(x)ΔhS𝜖,N 𝜑o dx + ∫
Ω

K(x)𝜆𝜖o(S 𝜖,N ,T 𝜖,N)(∇p𝜖,No − 𝜚og⃗) · ∇𝜑o dx

+ 𝜂 ∫
Ω

∇
(N

[
p𝜖,No

]
− N

[
p𝜖,Nw

])
· ∇𝜑o dx = 0;

(4.11)
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∫
Ω

Δh𝚿𝜖,N𝜑T dx + ∫
Ω

K(x)ZT(T𝜖,N) cw𝜆
𝜖
w(S 𝜖,N ,T 𝜖,N)(∇p 𝜖,N

w − 𝜚wg⃗) · ∇𝜑Tdx

+ ∫
Ω

K(x)ZT(T𝜖,N) co𝜆
𝜖
o(S 𝜖,N ,T 𝜖,N)(∇p 𝜖,N

o − 𝜚og⃗) · ∇𝜑Tdx + ∫
Ω

kT∇T𝜖,N · ∇𝜑T dx

+ ∫
Ω

(co − cw) 𝜂 ZT(T𝜖,N) ∇
(N

[
p𝜖,No

]
− N

[
p𝜖,Nw

])
· ∇𝜑T dx = 0,

(4.12)

for all 𝜑w, 𝜑o, 𝜑T ∈ H1
Γ1
(Ω). Here N is the orthogonal projector in L2(Ω) on the first N eigenvectors of the eigenproblem

−Δpi = 𝜆ipi in Ω;
pi = 0 on Γ1;

∇pi · n = 0 on Γ2.

(4.13)

We scale the functions pi such that they form an orthonormal basis in H1
Γ1
(Ω). It is then easy to see that there exists a

constant CN such that for all p ∈ L2(Ω) it holds

||∇N
[
p
] ||L2(Ω) ⩽ CN ||p||L2(Ω). (4.14)

We also set

ΔhS𝜖,N
def
= ZS(S 𝜖,N) − S⋆

h
, Δh𝚿𝜖,N def

= 𝚿𝜖,N −𝚿⋆

h
(4.15)

with

S𝜖,N = P̂ −1
c

(
p𝜖,No − p𝜖,Nw

)
(4.16)

and

𝚿𝜖,N def
=
(
(cwZS(S 𝜖,N) + co[1 − ZS(S 𝜖,N)])Φ(x) + cs [1 − Φ(x)

])
ZT(T𝜖,N). (4.17)

At the first step, we establish the existence of the solution to 4.10 to 4.12. The second step is concerned with the passage
to the limit as N → ∞, while the third step with the passage to the limit as 𝜖 → 0.

4.2 Step 1: application of a fixed point theorem
In this section, for fixed N > 0 and 𝜖 > 0, we prove the existence of solutions to system 4.10 to 4.12. For the sake of brevity,
we omit here the dependence of the solutions on the parameters N, 𝜖.

We apply the following version of the Leray-Schauder fixed point theorem (see, eg, Gilbarg and Trudinger42):

Theorem 4.2. (Leray-Schauder's fixed point theorem.)
Let be a continuous and compact map of a Banach space into itself. Suppose that the set of x ∈  such that x = 𝜎x
for some 𝜎 ∈ [0, 1] is bounded. Then the map  has a fixed point.

The main result of Section 4.2 is the following proposition.

Proposition 4.1. Assume that S⋆,𝚿⋆ ∈ L∞(Ω). Then there exists a triple of functions {pw, po,T} ∈
[

H1
Γ1
(Ω)

]3
, solution

to 4.10 to 4.12.

Proof of Proposition 4.1. The proof is based on the Leray-Schauder fixed point theorem. Let be a map from
[
L2(Ω)

]3

to
[
L2(Ω)

]3 defined by

(
pw, po,T

) def
= {pw, po,T} , (4.18)
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where the triple {pw, po,T} is the unique solution of the following system of equations:

∫
Ω

Φ(x)ΔhS 𝜑w dx + ∫
Ω

K(x)𝜆𝜖w(S,T)∇pw · ∇𝜑w dx

−∫
Ω

K(x)𝜆𝜖w(S,T) 𝜚wg⃗ · ∇𝜑w dx + 𝜂 ∫
Ω

∇
(N

[
pw
]
− N

[
po
])

· ∇𝜑w dx = 0;
(4.19)

−∫
Ω

Φ(x)ΔhS 𝜑o dx + ∫
Ω

K(x)𝜆𝜖o(S,T) ∇po · ∇𝜑o dx

−∫
Ω

K(x)𝜆𝜖o(S,T) 𝜚o g⃗ · ∇𝜑o dx + 𝜂 ∫
Ω

∇
(N

[
po
]
− N

[
pw
])

· ∇𝜑o dx = 0;
(4.20)

∫
Ω

Δh𝚿𝜑T dx + ∫
Ω

kT∇T · ∇𝜑T dx+

+∫
Ω

K(x) ZT(T) cw𝜆
𝜖
w(S,T)∇pw · ∇𝜑Tdx + ∫

Ω

K(x) ZT(T) co𝜆
𝜖
o(S,T)∇po · ∇𝜑Tdx−

−∫
Ω

K(x) ZT(T) cw𝜚w𝜆
𝜖
w(S,T) g⃗ · ∇𝜑T dx − ∫

Ω

K(x) ZT(T) co𝜚o𝜆
𝜖
o(S,T) g⃗ · ∇𝜑T dx+

+∫
Ω

(co − cw)𝜂ZT(T)∇
(N

[
po
]
− N

[
pw
])

· ∇𝜑T dx = 0,

(4.21)

for all 𝜑w, 𝜑o, 𝜑T ∈ H1
Γ1
(Ω). Here

ΔhS
def
= ZS(S) − S⋆

h
, Δh𝚿

def
= 𝚿 −𝚿⋆

h

with S
def
= P̂ −1

c (po − pw), and 𝚿
def
=
(

cwZS(S) + co[1 − ZS(S)] + cs [1 − Φ(x)
])

ZT(T). Weobserve that the map  is

constructed by evaluating all nonlinear terms in 4.10, 4.11, and 4.12 at the known arguments pw, po,T. The fixed point
of the map  is then a solution to 4.10 to 4.12.

The system 4.19 to 4.21 can be rewritten in the following form:

Ww(pw, 𝜑w) = fw(𝜑w); Wo(po, 𝜑o) = fo(𝜑o); WT(T, 𝜑T) = fT(𝜑T ; pw, po), (4.22)

where
Ww(pw, 𝜑w)

def
= ∫

Ω

K𝜆𝜖w(S,T)∇pw · ∇𝜑w dx, Wo(po, 𝜑o)
def
= ∫

Ω

K𝜆𝜖o(S,T)∇po · ∇𝜑o dx,

and
WT(T, 𝜑T)

def
= ∫

Ω

kT∇T · ∇𝜑T dx,

with the terms fw(𝜑w), fo(𝜑o), and fT(𝜑T; pw, po) given by the remaining terms in the corresponding equations 4.19 to
4.21.

We observe that Ww(·, ·),Wo(·, ·), and WT(·, ·) are bilinear, continuous, and coercive mappings in the space H1
Γ1
(Ω)×

H1
Γ1
(Ω), and fw(·), fo(·), fT(·) are linear continuous mapping in H1

Γ1
(Ω) (pw and po are known functions in fT). Then we

can apply the Lax-Milgram theorem to get the existence of {pw, po,T} ∈
[

H1
Γ1
(Ω)

]3
, which ensures that the map  is

well defined in [L2(Ω)]3.
Furthermore, using standard energy estimates for the problems 4.22 and estimate 4.14, we obtain immediately the

following estimates for the solutions of 4.22 (see also Khalil and Saad43):||pw||2H1
Γ1
(Ω), ||po||2H1

Γ1
(Ω), ||T||2H1

Γ1
(Ω) ⩽ C, (4.23)

where C = C(Ω, 𝜂, h, 𝜖,N, 𝜙+,K+,K−, ||S⋆||L2(Ω), ||T⋆||L2(Ω), ||pw||L2(Ω), ||po||L2(Ω)).

Now to apply the fixed point theorem, we have to establish the following result.
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Lemma 4.1. Let  be the map defined in 4.18. Then

•  is a continuous operator, which maps every bounded subset of L2(Ω) into a relatively compact set;
• there exists r > 0 such that, if {pw, po,T} = 𝜎 (pw, po,T) with 𝜎 ∈ (0, 1), then

|| {pw, po,T} ||[L2(Ω)]3 ⩽ r.

Proof of Lemma 4.1. Let us prove the first statement of the lemma. Claim that  maps every bounded subset of L2(Ω)
into a relatively compact set follows from 4.23 and compact embedding H1(Ω) ⊂ L2(Ω). To show the continuity, we
consider a sequence {pw,n, po,n,Tn}(n→∞), which converges to {pw, po,T} ∈

[
L2(Ω)

]3, and let us prove that the sequence

{pw,n, po,n,Tn} = (
pw,n, po,n,Tn

)
converges to {pw, po,T} = (

pw, po,T
)
.

The sequences {pw,n}(n→∞), {po,n}(n→∞), {Tn}(n→∞) satisfy the Equations 4.19 to 4.21 and by 4.23 are bounded in
H1

Γ1
(Ω). Then, up to a subsequence, we have the following convergence results:

pw,n → pw, po,n → po, Tn → T, (4.24)

weakly in H1
Γ1
(Ω), strongly in L2(Ω) and a.e. in Ω. Therefore, we can pass to the limit n → ∞ in 4.19 to 4.21 and show

that the limit {pw, po,T} is a solution to 4.19 to 4.21. Because the solution of 4.19 to 4.21 is unique, this proves the
continuity of the map  and achieves the proof of statement (1) of Lemma 4.1.

Now we turn to the proof of statement (2) of Lemma 4.1. Assume that there exists 𝜎 ∈ (0, 1) such that

{pw, po,T} = 𝜎 (pw, po,T).

Then {pw, po,T} satisfies the following equations:

∫
Ω

K(x)𝜆𝜖w(S,T)∇pw · ∇𝜑w dx = −𝜎 ∫
Ω

Φ(x)ΔhS 𝜑w dx

+𝜎 ∫
Ω

K(x)𝜆𝜖w(S,T)𝜚w g⃗ · ∇𝜑w dx − 𝜂 𝜎 ∫
Ω

∇
(N

[
pw
]
− N

[
po
])

· ∇𝜑w dx;
(4.25)

∫
Ω

K(x)𝜆𝜖o(S,T) ∇po · ∇𝜑o dx = 𝜎 ∫
Ω

Φ(x) ΔhS 𝜑o dx

+𝜎 ∫
Ω

K(x) 𝜆𝜖o(S,T)𝜚o g⃗ · ∇𝜑o dx − 𝜂 𝜎 ∫
Ω

∇
(N

[
po
]
− N

[
pw
])

· ∇𝜑o dx;
(4.26)

∫
Ω

kT∇T · ∇𝜑T dx = −𝜎 ∫
Ω

Δh𝚿𝜑T dx−

−∫
Ω

K(x) ZT(T)cw𝜆
𝜖
w(S,T)∇pw · ∇𝜑Tdx − ∫

Ω

K(x) ZT(T)co𝜆
𝜖
o(S,T)∇po · ∇𝜑Tdx+

+𝜎 ∫
Ω

K(x) ZT(T) cw𝜚w𝜆
𝜖
w(S,T) g⃗ · ∇𝜑T dx + 𝜎 ∫

Ω

K(x) ZT(T) co𝜚o𝜆
𝜖
o(S,T) g⃗ · ∇𝜑T dx−

−𝜎 𝜂 ∫
Ω

(co − cw)ZT(T)∇
(N

[
po
]
− N

[
pw
])

· ∇𝜑T dx.

(4.27)
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First, we set 𝜑w = pw in 4.25 and 𝜑o = po in 4.26. Summing these equations, we get

∫
Ω

K(x)𝜆𝜖w(S,T)∇pw · ∇pw dx + ∫
Ω

K(x)𝜆𝜖o(S,T) ∇po · ∇po dx

− 𝜎 ∫
Ω

K(x)𝜆𝜖w(S,T)𝜚w g⃗ · ∇pw dx − 𝜎 ∫
Ω

K(x) 𝜆𝜖o(S,T) 𝜚o g⃗ · ∇po dx

− 𝜎 ∫
Ω

Φ(x)ZS(S) − S⋆

h
P̂c(S) dx + 𝜂 𝜎 ∫

Ω

∇
(N

[
po
]
− N

[
pw
])

· (∇po − ∇pw) dx = 0.

(4.28)

Now taking into account the definitions of the functions 𝜆𝜖w, 𝜆𝜖o given in 4.4, the definition of the function ZS,
Cauchy-Schwartz, and Friedrichs' inequalities, from 4.28, we obtain that

𝜖 ||∇pw||2L2(Ω) + 𝜖 ||∇po||2L2(Ω) + 𝜂 𝜎 ∫
Ω

|||∇ (N
[
po
]
− N

[
pw
])|||2 dx ⩽ C1

[
1 + ||S⋆||2L2(Ω)

]
, (4.29)

where C1 is a constant, which depends on 𝜖 but does not depend on 𝜎 and N.
Now we turn to the estimate for the temperature. We set 𝜑T = T in 4.27 to get

∫
Ω

kT∇T · ∇T dx + 𝜎 ∫
Ω

Δh𝚿 T dx+

+ ∫
Ω

K(x) ZT(T)cw𝜆
𝜖
w(S,T)∇pw · ∇T dx + ∫

Ω

K(x) ZT(T)co𝜆
𝜖
o(S,T)∇po · ∇T dx−

− 𝜎 ∫
Ω

K(x) ZT(T)
(

cw𝜚w𝜆
𝜖
w(S,T) + co𝜚o𝜆

𝜖
o(S,T)

)
g⃗ · ∇T dx

+ 𝜎 𝜂 (co − cw)∫
Ω

ZT(T)∇
(N

[
po
]
− N

[
pw
])

· ∇T dx.

(4.30)

Now taking into account the uniform bound 4.29, the Cauchy-Schwartz inequality, from 4.30, we obtain that||∇T||2L2(Ω) ⩽ C2,

where C2 is a constant, which is independent of 𝜎 and N.
Thus, all the conditions of Leray-Schauder's theorem are fulfilled and Proposition 4.1 is proved.

4.3 Step 2: passage to the limit as N → +∞
In this section, we pass to the limit as N → +∞ in 4.10 to 4.12. For the sake of simplicity, we omit the dependence
on the parameter 𝜖 in the functions depending on N. It follows from the previous section that the triple of functions{

pN
w , pN

o ,TN} ∈
[

H1
Γ1
(Ω)

]3
is the solution of the system 4.10 to 4.12. We get the following estimate:

𝜖 ||∇pN
w ||2L2(Ω) + 𝜖 ||∇pN

o ||2L2(Ω) + ||∇TN ||2L2(Ω) + 𝜂 ∫
Ω

|||∇ (N
[
pN

w
]
− N

[
pN

o
])|||2 dx ⩽ C, (4.31)

where C is a constant, which does not depend on N. Then (up to subsequence), we obtain the following convergence
results:

pN
w → p𝜖w weakly in H1

Γ1
(Ω), strongly in L2(Ω), and a.e. in Ω; (4.32)

pN
o → p𝜖o weakly in H1

Γ1
(Ω), strongly in L2(Ω), and a.e. in Ω; (4.33)

TN → T𝜖 weakly in H1
Γ1
(Ω), strongly in L2(Ω), and a.e. in Ω. (4.34)

Taking into account that S = P̂ −1
c (po − pw), we also have

ZS(SN) → ZS(S 𝜖) strongly in L2(Ω) and a.e. in Ω. (4.35)
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Finally, it is easy to show from properties of the spectral basis 4.13 that for 𝛼 ∈ {w, g},

N
[
p𝛼
]
→ p𝛼 weakly in H1

Γ1
(Ω). (4.36)

Now we pass to the limit in 4.10 to 4.12 as N → +∞ using the convergence results 4.32 to 4.36. The corresponding
system of equations is as follows:

∫
Ω

Φ(x)Δh S𝜖𝜑w dx + ∫
Ω

K(x)𝜆𝜖w(S 𝜖,T𝜖)(∇p𝜖w − 𝜚w g⃗) · ∇𝜑w dx − 𝜂 ∫
Ω

∇P̂c(S𝜖) · ∇𝜑w dx = 0; (4.37)

−∫
Ω

Φ(x)ΔhS𝜖𝜑o dx + ∫
Ω

K(x)𝜆𝜖o(S𝜖,T𝜖)(∇p𝜖o − 𝜚o g⃗) · ∇𝜑o dx + 𝜂 ∫
Ω

∇P̂c(S𝜖) · ∇𝜑o dx = 0; (4.38)

∫
Ω

Δh𝚿𝜖𝜑T dx + ∫
Ω

kT∇T𝜖 · ∇𝜑T dx + ∫
Ω

(co − cw)𝜂ZT(T𝜖)∇P̂c(S𝜖) · ∇𝜑T dx

+ ∫
Ω

K(x) ZT(T𝜖)
(

cw𝜆
𝜖
w(S𝜖,T𝜖)

(
∇p𝜖w − 𝜚wg⃗

)
+ co𝜆

𝜖
o(S𝜖,T𝜖)

(
∇p𝜖o − 𝜚og⃗

))
· ∇𝜑Tdx = 0,

(4.39)

for all 𝜑w, 𝜑o, 𝜑T ∈ H1
Γ1
(Ω).

4.4 Uniform estimates with respect to 𝜖
First, we notice that as in the previous sections we omit the dependence of the corresponding functions on 𝜂, h and keep
the dependence on the small parameter 𝜖, only.

It follows from the results of Section 4.3 that for any 𝜖 > 0, there is
{

p𝜖w, p𝜖o,T𝜖
}
∈
[

H1
Γ1
(Ω)

]3
, which is the solution of

4.37 to 4.39. First, we obtain uniform estimates (with respect to 𝜖) for the solutions to pass to the limit in 4.37 to 4.39 as
𝜖 → 0. These estimates are given by the following lemma.

Lemma 4.2. Let
{

p𝜖w, p𝜖o,T𝜖
}

be a solution to 4.37 to 4.39, and let P𝜖 (the nonisothermal global pressure) and 𝛽𝜖 be the
functions defined in 2.12 and 2.18, respectively. Then we have

{
√
𝜖 ∇p𝜖w}𝜖>0 is uniformly bounded in L2(Ω); (4.40)

{
√
𝜖 ∇p𝜖o}𝜖>0 is uniformly bounded in L2(Ω); (4.41)

{∇P̂c(S 𝜖)}𝜖>0 is uniformly bounded in L2(Ω); (4.42)

{T𝜖}𝜖>0 is uniformly bounded in H1(Ω); (4.43)

{P𝜖}𝜖>0 is uniformly bounded in H1(Ω); (4.44)

{𝛽𝜖(S 𝜖)}𝜖>0 is uniformly bounded in H1(Ω). (4.45)

Proof of Lemma 4.2. We set 𝜑w = p𝜖w in 4.37 and 𝜑w = p𝜖o in 4.38. Then taking a sum of these equations, we get

𝜖 ∫
Ω

K(x)∇p𝜖w · ∇p𝜖w dx + 𝜖 ∫
Ω

K(x)∇p𝜖o · ∇p𝜖o dx+

+ ∫
Ω

K(x)𝜆𝜖w(S 𝜖,T𝜖)∇p𝜖w · ∇p𝜖w dx + ∫
Ω

K(x)𝜆𝜖o(S𝜖,T𝜖) ∇p𝜖o · ∇p𝜖o dx−

− ∫
Ω

K(x)𝜆𝜖w(S 𝜖,T𝜖) 𝜚wg⃗ · ∇p𝜖w dx − ∫
Ω

K(x)𝜆𝜖o(S𝜖,T𝜖) 𝜚o g⃗ · ∇p𝜖o dx+

+ 𝜂 ∫
Ω

|∇P̂c(S 𝜖)|2 dx = ∫
Ω

Φ(x)
h

[
ZS(S 𝜖) − S⋆

]
P̂c(S 𝜖) dx.
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Using the Cauchy-Schwartz inequality and taking into account the condition (A.2), we find that there exists a
constant C that does not depend on 𝜖 and 𝜂, such that

𝜖 ∫
Ω

|∇p𝜖w|2 dx + 𝜖 ∫
Ω

|∇p𝜖o|2 dx

+ ∫
Ω

{
𝜆𝜖w(S 𝜖,T𝜖) |∇p𝜖w|2 + 𝜆𝜖o(S𝜖,T𝜖) |∇p𝜖o|2 + 𝜂|∇P̂c(S 𝜖)|2} dx ⩽ C.

(4.46)

The uniform estimates 4.40 to 4.42 follow immediately from 4.46.
Let us turn to the uniform bound 4.43. In 4.39, we set 𝜑T = T𝜖 to have

∫
Ω

Δh𝚿𝜖T𝜖 dx + ∫
Ω

kT∇T𝜖 · ∇T𝜖 dx+

+ ∫
Ω

K(x) ZT(T𝜖) cw𝜆
𝜖
w(S𝜖,T𝜖)∇p𝜖w · ∇T𝜖dx + ∫

Ω

K(x) ZT(T𝜖) co𝜆
𝜖
o(S𝜖,T𝜖)∇p𝜖o · ∇T𝜖dx−

− ∫
Ω

K(x) ZT(T𝜖) cw𝜚w𝜆
𝜖
w(S𝜖,T𝜖) g⃗ · ∇T𝜖 dx − ∫

Ω

K(x) ZT(T𝜖) co𝜚o𝜆
𝜖
o(S𝜖,T𝜖) g⃗ · ∇T𝜖 dx+

+ ∫
Ω

cw𝜂ZT(T𝜖)∇ (p𝜖w − p𝜖o) · ∇T𝜖 dx + ∫
Ω

co𝜂ZT(T𝜖)∇ (p𝜖o − p𝜖w) · ∇T𝜖 dx = 0.

(4.47)

Now using the uniform bounds 4.40 to 4.42, 4.46, the Cauchy-Schwartz, and Friedreich's inequalities, from 4.47, we
obtain 4.43.

The uniform bounds 4.44 and 4.45 follow from 4.43, Remark 5, and equality 4.9. This completes the proof of Lemma
4.2.

4.5 Step 3: passage to the limit as 𝜖 → 0
The uniform estimates established in the previous section imply the following convergence results.

Lemma 4.3. Let {S𝜖}𝜖>0, {T𝜖}𝜖>0, {P𝜖}𝜖>0, {p𝜖w}𝜖>0, and {p𝜖o}𝜖>0 be the sequences of saturation, temperature, global
pressure, and the phase pressures, respectively. Then we have on a subsequence

T𝜖 → T weakly in H1(Ω) and a.e. in Ω ; (4.48)

P𝜖 → P weakly in H1(Ω) and a.e. in Ω ; (4.49)

𝛽𝜖(S𝜖) → 𝛽(S) weakly in H1(Ω) and a.e. in Ω ; (4.50)

P̂c(S 𝜖) → P̂c(S) weakly in H1(Ω) ; (4.51)

S 𝜖 → S a.e. in Ω ; (4.52)

p𝜖w → pw a.e. in Ω and p𝜖o → po a.e. in Ω , (4.53)
and po − pw = P̂c(S) a.e. in Ω.

Proof of Lemma 4.3. The convergence 4.48 to 4.51 follow directly from Lemma 4.2. In 4.51, we have P̂c(S𝜖) → 𝜉∗, for
some 𝜉* ∈ H1(Ω), but the function P̂c is invertible on R, and we can define S = (P̂c)−1(𝜉∗). This proves 4.51, and the
continuity of the function P̂c gives 4.52.

From ∇𝛽𝜖(S𝜖) = −𝛼𝜖(S𝜖)∇P̂c(S𝜖) and uniform convergence on R𝛼𝜖 → 𝛼, we have

∇𝛽𝜖(S𝜖) → −𝛼(S)∇P̂c(S) = ∇𝛽(S),

and 4.50 is proved.
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The phase pressures p𝜖w and p𝜖o are connected to the global pressure P𝜖 through the relations 2.12 and 2.14, namely,

p𝜖o = P𝜖 +

S𝜖

∫
1

𝜆𝜖w
𝜆𝜖

(𝜉,T𝜖) P̂′
c(𝜉) d𝜉, p𝜖w = P𝜖 −

S𝜖

∫
1

𝜆𝜖o
𝜆𝜖

(𝜉,T𝜖) P̂′
c(𝜉) d𝜉. (4.54)

By 4.48, 4.49, and 4.52, we obtain 4.53 where the limit functions po and pw are given by

po = P +

S

∫
1

𝜆w

𝜆
(𝜉,T) P̂′

c(𝜉) d𝜉, pw = P −

S

∫
1

𝜆o

𝜆
(𝜉,T) P̂′

c(𝜉) d𝜉, (4.55)

and po − pw = P̂c(S) is obviously satisfied.
Now we are in position to complete the proof of Theorem 4.1. To this end, we have to pass to the limit in 4.37 to 4.39 as

𝜖 → 0 and then prove the maximum principle for the saturation and the temperature functions.
Let us consider the second term on the left-hand side of 4.37. It follows from 4.8 that

∫
Ω

K(x)𝜆𝜖w(S𝜖,T𝜖)∇p𝜖w · ∇𝜑w dx

= ∫
Ω

K(x)(𝜆𝜖w(S𝜖,T𝜖)∇P𝜖 − Λ𝜖1(S
𝜖,T𝜖)∇𝛽𝜖(S𝜖) + 𝜆𝜖w(S𝜖,T𝜖)B𝜖

o(S𝜖,T𝜖)∇T𝜖) · ∇𝜑w dx.

Using the uniform convergence of the functions 𝜆𝜖w,Λ𝜖1, and B𝜖
o (see Remark 5) and Lemma 4.3, we get

∫
Ω

K(x) 𝜆𝜖w(S𝜖,T𝜖)∇p𝜖w · ∇𝜑w dx →

∫
Ω

K(x)(𝜆w(S,T)∇P − Λ1(S,T)∇𝛽(S) + 𝜆w(S,T)Bo(S,T)∇T) · ∇𝜑w dx

= ∫
Ω

K(x)𝜆w(S,T)∇pw · ∇𝜑w dx,

where pw is given by 4.55. In the same way, for the second term on the left-hand side of 4.38, we get

∫
Ω

K(x)𝜆𝜖o(S𝜖,T𝜖)∇p𝜖o · ∇𝜑o dx → ∫
Ω

K(x)𝜆o(S,T)∇po · ∇𝜑o dx.

By Lemma 4.3, we can pass to the limit in all other terms in 4.37 to 4.39. Thus, we can conclude that there exists
{ph

w, ph
o ,Th} solution to

∫
Ω

{
Φ(x)ΔhSh 𝜑w +

[
K(x)𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ 𝜂∇

(
ph

w − ph
o
)]

· ∇𝜑w
}

dx = 0; (4.56)

∫
Ω

{
−Φ(x)ΔhSh 𝜑o +

[
K(x)𝜆o(Sh,Th)

(
∇ph

o − 𝜚o g⃗
)
− 𝜂∇

(
ph

w − ph
o
)]

· ∇𝜑o
}

dx = 0; (4.57)

∫
Ω

{
Δh𝚿h𝜑T +

(
K(x) ZT(Th)

[
cw𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ co𝜚o𝜆o(Sh,Th)

(
∇ph

o − 𝜚og⃗
)])

· ∇𝜑T

+
[
(co − cw) 𝜂 ZT(Th) ∇

(
ph

o − ph
w
)
+ kT∇Th] · ∇𝜑T

}
dx = 0 (4.58)

for all 𝜑w, 𝜑o, 𝜑T ∈ H1
Γ1
(Ω).

Let us prove the maximum principle for the saturation. As in Lemma 2.5 from Khalil and Saad,43 one can obtain the
following result.

Lemma 4.4. (Maximum principle for the saturation)
Let 0 ⩽ S⋆ ⩽ 1. Then under the conditions of Theorem 4.1, we have

0 ⩽ Sh ⩽ 1 a.e. in Ω. (4.59)
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Proof of Lemma 4.4. We start the proof by establishing the lower bound in 4.59. To this end, we introduce the function

𝝋0
w(x, t)

def
= min

{
Sh, 0

}
. (4.60)

(Note that because P̂c(Sh) ∈ H1(Ω) then 𝝋0
w ∈ H1

Γ1
(Ω).) We plug the function 𝝋0

w in 4.56. From the extension by zero
of the wetting phase mobility for S ⩽ 0, we obtain that

∫
Ω

{
Φ(x)Z(S

h) − S⋆

h
𝝋0

w − 𝜂P̂′
c(Sh)∇Sh · ∇𝝋0

w

}
dx = 0.

The integral is evaluated only for Sh < 0 so that the extension of the capillary pressure 4.6 gives

∫
Ω

{
−Φ(x)S⋆

h
𝝋0

w + 𝜂|P̂′
c(Sh)|∇𝝋0

w · ∇𝝋0
w

}
dx = 0.

This gives 𝝋0
w = 0, and the lower bound in 4.59 is proved. The upper bound is proved by plugging 𝝋0

w(x, t) =
max

{
Sh − 1, 0

}
in 4.57. This completes the proof of Lemma 4.4.

Finally, we turn to the proof of the maximum principle for the temperature. Namely, we have the following:

Lemma 4.5. (Maximum principle for the temperature)
Let 𝜳⋆ be defined as follows:

𝚿⋆ def
= cw Φ(x) S⋆T⋆ + co Φ(x) (1 − S⋆) T⋆ + cs [1 − Φ(x)

]
T⋆ with 0 ⩽ S⋆ ⩽ 1, Tm ⩽ T⋆ ⩽ TM . (4.61)

Then under the conditions of Theorem 4.1, we have

Tm ⩽ Th ⩽ TM a.e. in Ω. (4.62)

Proof of Lemma 4.5. We start the proof by establishing the upper bound in 4.62. To this end, we introduce the cutoff
function defined by

𝝑h
M(x, t)

def
= max

{
Th − TM , 0

}
. (4.63)

First, we observe thatTh ∈ H1
Γ1
(Ω) implies 𝝑h

M ∈ H1
Γ1
(Ω). Then we plug the function 𝝑h

M in 4.58 and taking into
account 4.61, we get

∫
Ω

{
Φ
h

cw
[
Sh Z(Th) − S⋆ T⋆

]
+ Φ

h
co
[
(1 − Sh) Z(Th) − (1 − S⋆)T⋆

]
+ [1 − Φ]

h
cs
[
Z(Th) − T⋆

]}
𝝑h

Mdx

+ ∫
Ω

K(x) Z(Th)
[

cw𝜆w(Sh,Th)
(
∇ph

w − 𝜚wg⃗
)
+ co𝜆o(Sh,Th)

(
∇ph

o − 𝜚og⃗
)]

· ∇𝝑h
M dx+

(4.64)

+∫
Ω

[
cw 𝜂 Z(Th) ∇

(
ph

w − ph
o
)
+ co 𝜂 Z(Th) ∇

(
ph

o − ph
w
)
+ kT∇Th] · ∇𝝑h

M dx = 0. (4.65)

Let us denote the first term on the left-hand side of Equation 4.65 by Jh
1. Then we can rearrange it in the following

way:

Jh
1 = ∫

Ω

{
Φ(x)

h
cw (Sh − S⋆)Z(Th) − Φ(x)

h
co (Sh − S⋆)Z(Th)

}
𝝑h

M dx

+ ∫
Ω

{
Φ(x)

h
(cw S⋆ + co (1 − S⋆))(Z(Th) − T⋆) + [1 − Φ(x)]

h
cs
[
Z(Th) − T⋆

]}
𝝑h

M dx.
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Because all the integrals in 4.65 are equal to zero for Th < TM, we can set Z(Th) = TM in 4.65, and the above
transformation of the first integral gives

∫
Ω

{
Φ(x)

h
cw (Sh − S⋆)TM − Φ(x)

h
co (Sh − S⋆)TM

}
𝝑h

M dx

+ ∫
Ω

{
Φ(x)

h
(cw S⋆ + co (1 − S⋆))(TM − T⋆) + [1 − Φ(x)]

h
cs
[
TM − T⋆

]}
𝝑h

M dx

+ ∫
Ω

K(x) TM

[
cw𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ co𝜆o(Sh,Th)

(
∇ph

o − 𝜚og⃗
)]

· ∇𝝑h
M dx

+ ∫
Ω

[
cw 𝜂 TM ∇

(
ph

w − ph
o
)
+ co 𝜂 TM ∇

(
ph

o − ph
w
)
+ kT∇Th] · ∇𝝑h

M dx = 0.

(4.66)

We now set the test function 𝝑h
M in 4.56 and 4.57, multiply them by cwTM and coTM, respectively, and subtract them

from 4.66. We obtain

∫
Ω

{
Φ(x)

h
(cw S⋆ + co (1 − S⋆))(TM − T⋆) + [1 − Φ(x)]

h
cs
[
TM − T⋆

]}
𝝑h

M dx + ∫
Ω

kT∇𝝑h
M · ∇𝝑h

M dx = 0.

This equality gives ∇𝝑h
M = 0 and by the boundary condition 𝝑h

M = 0. The upper bound in 4.62 is proved.

The lower bound in 4.62 is proved by similar arguments using the cutoff function 𝝑m(x, t)
def
= min

{
T − Tm, 0

}
. This

completes the proof of Lemma 4.5.
We can now eliminate the function ZS and ZT from 4.56 to 4.58, and Theorem 4.1 is proved.

5 EXISTENCE RESULT FOR THE NONDEGENERATE SYSTEM

In this section, we prove the existence result for the nondegenerate system 3.15 with the boundary conditions 3.16 and
the initial conditions 3.17. The main result of this section is the following theorem.

Theorem 5.1. Let assumptions (A.1) to (A.8) be fulfilled. Then there exists {p𝜂o, p
𝜂
w, S𝜂,T𝜂} such that

(I) The functions p𝜂o, p
𝜂
w, S𝜂,T𝜂 have the following regularity properties:

p𝜂o ∈ L2(0,  ;H1
Γ1
(Ω)), p𝜂w ∈ L2(0,  ;H1

Γ1
(Ω)), and T𝜂 ∈ L2(0,  ;H1

Γ1
(Ω)); (5.1)

1 − S𝜂 ∈ L2(0,  ;H1
Γ1
(Ω)); (5.2)

𝜕

𝜕t
(ΦS𝜂) ∈ L2(0,  ;H−1(Ω)), 𝜕𝚿𝜂

𝜕t
∈ L2(0,  ;H−1(Ω)). (5.3)

(II) The maximum principle for the saturation holds:

0 ⩽ S𝜂 ⩽ 1 a. e. in . (5.4)

(III) The maximum principle for the temperature holds:

Tm ⩽ T𝜂 ⩽ TM a.e. in . (5.5)



AMAZIANE ET AL. 7529

(IV) For any 𝜑w, 𝜑o, 𝜑T ∈ C1([0,  ];H1(Ω)) satisfying 𝜑w = 𝜑o = 𝜑T = 0 on Γ1 × (0,  ) and 𝜑w(x,  ) = 𝜑o(x,  ) = 0,
we have

− ∫

Φ(x)S𝜂 𝜕𝜑w

𝜕t
dx dt − ∫

Ω

Φ(x)S0(x)𝜑w(x, 0) dx

+ ∫


K(x)𝜆w(S𝜂,T𝜂)(∇p𝜂w − 𝜚wg⃗) · ∇𝜑w dx dt + 𝜂 ∫

∇(p𝜂w − p𝜂o) · ∇𝜑w dx dt = 0;

(5.6)

∫

Φ(x)S𝜂 𝜕𝜑o

𝜕t
dx dt + ∫

Ω

Φ(x)S0(x)𝜑o(x, 0) dx

+ ∫


K(x)𝜆o(S𝜂,T𝜂)(∇p𝜂o − 𝜚o g⃗) · ∇𝜑o dx dt + 𝜂 ∫

∇(p𝜂o − p𝜂w) · ∇𝜑o dx dt = 0;

(5.7)

−∫

𝚿𝜂 𝜕𝜑T

𝜕t
dx dt − ∫

Ω

𝚿0𝜑T(x, 0) dx

+∫


{
T𝜂K(x)

[
cw𝜆w(S𝜂,T𝜂)

(
∇p𝜂w − 𝜚wg⃗

)
+ co𝜆o(S𝜂,T𝜂)

(
∇p𝜂o − 𝜚og⃗

)]
+ kT∇T𝜂

}
· ∇𝜑T dx dt

+𝜂 ∫


{
cw T𝜂 ∇

(
p𝜂w − p𝜂o

)
+ co T𝜂 ∇

(
p𝜂o − p𝜂w

)}
· ∇𝜑T dx dt = 0. (5.8)

The outline of the proof is as follows. First, in Section 5.1, we establish the uniform estimates for the solutions to the
system 4.56 to 4.58, and then in Section 5.2, we obtain the corresponding compactness results with respect to the parameter
h. Then we pass to the limit as h → 0 to complete the proof of Theorem 5.1.

5.1 Uniform estimates
The proof is based on a semidiscretization method in the time variable proposed in Alt and Luckhaus44 and then applied
in the study of 2-phase flows in some related literature.35,36,41,45,46 Let T > 0,N ∈ N and h = T∕N, and let us define

p0
w,h = p0

w, p0
o,h = p0

o and T0
h = T0 a.e. in Ω. (5.9)

For all n ∈ [0,N − 1], we consider the triple of functions {pn
w,h, p

n
o,h,T

n
h} ∈

[
L2(Ω)

]3 with

0 ⩽ Sn
h ⩽ 1, Tm ⩽ Tn

h ⩽ TM , 𝚿n
h

def
=
(

cwSn
h + co[1 − Sn

h]
)

Tn
h Φ + cs [1 − Φ

]
Tn

h ,

and then define {pn+1
w,h , p

n+1
o,h ,T

n+1
h } as the weak solution of the following system of equations:

ΦΔn
h Sn+1

h − div
{

K𝜆w(Sn+1
h ,Tn+1

h )
(
∇pn+1

w,h − 𝜚wg⃗
)
+ 𝜂∇

(
pn+1

w,h − pn+1
o,h

)}
= 0; (5.10)

−ΦΔn
h Sn+1

h − div
{

K𝜆o(Sn+1
h ,Tn+1

h )
(
∇pn+1

o,h − 𝜚o g⃗
)
+ 𝜂 ∇

(
pn+1

o,h − pn+1
w,h

)}
= 0; (5.11)

Δn
h𝚿

n+1
h − div

{
K Tn+1

h

[
cw𝜆w(Sn+1

h ,Tn+1
h )

[
∇pn+1

w − 𝜚w g⃗
]
+ co𝜆o(Sn+1

h ,Tn+1
h )

[
∇pn+1

o − 𝜚o g⃗
]]}

−

−div
{

cw 𝜂 Tn+1
h ∇

(
pn+1

w,h − pn+1
o,h

)
+ co 𝜂 Tn+1

h ∇
(

pn+1
o,h − pn+1

w,h

)}
− div(kT∇Tn+1

h ) = 0, (5.12)
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where

Δn
h Sn+1

h
def
=

Sn+1
h − Sn

h

h
, Δn

h 𝚿n+1
h

def
=

𝚿n+1
h −𝚿n

h

h
.

The system 5.10 to 5.12 is completed with the following boundary conditions:{
pn+1

o,h = pn+1
w,h = Tn+1

h = 0 on Γ1;

q⃗ (n+1)
w,h · 𝜈 = q⃗ (n+1)

o,h · 𝜈 = kT∇Tn+1
h · 𝜈 = 0 on Γ2;

(5.13)

where

q⃗ (n+1)
w,h

def
= −K(x) 𝜆w(Sn+1

h ,Tn+1
h )

[
∇pn+1

w,h − g⃗
]
− 𝜂∇

(
pn+1

w,h − pn+1
o,h

)
;

q⃗ (n+1)
o,h

def
= −K(x) 𝜆o(Sn+1

h ,Tn+1
h )

[
∇pn+1

o,h − 𝜚o g⃗
]
− 𝜂 ∇

(
pn+1

o,h − pn+1
w,h

)
.

The sequence {pn+1
w,h , p

n+1
o,h ,T

n+1
h } is well defined for all n ∈ [0,N−1] because of Theorem 4.1. Thus, for given Tm ⩽ Tn

h ⩽

TM and Sn
h ∈ [0, 1], we construct {pn+1

w,h , p
n+1
o,h ,T

n+1
h } ∈

[
H1

Γ1
(Ω)

]3
so that Sn+1

h ∈ [0, 1] and Tm ⩽ Tn+1
h ⩽ TM .

In Lemma 5.1 below, we obtain uniform with respect to h estimates for {pn+1
w,h , p

n+1
o,h ,T

n+1
h }.

Lemma 5.1. The solutions of 5.10 to 5.13 satisfy the bound:

−1
h ∫

Ω

Φ(x)
{

F(Sn+1
h ) − F(Sn

h)
}

dx + 𝜂 ∫
Ω

||||∇(
pn+1

o,h − pn+1
w,h

)||||2 dx+

+∫
Ω

{
𝜆w(Sn+1

h ,Tn+1
h )|||∇pn+1

w,h
|||2 + 𝜆o(Sn+1

h ,Tn+1
h )|||∇pn+1

o,h
|||2} dx ⩽ C; (5.14)

1
2h ∫

Ω

{
𝚿n+1

h Tn+1
h −𝚿n

hTn
h

}
dx + ∫

Ω

kT∇Tn+1
h · ∇Tn+1

h dx ⩽ C, (5.15)

where

F(s)
def
=

s

∫
0

Pc(ς) dς (5.16)

and C is a constant that does not depend on h and 𝜂.

Proof of Lemma 5.1. To derive 5.14, we use a standard energy estimate as in derivation 4.46 in the proof of Lemma
4.2. We only need to estimate the time difference term

−∫Ω
Φ(x)Δn

hSn+1
h Pc(Sn+1

h ) dx = −∫Ω
Φ(x)

Sn+1
h − Sn

h

h
Pc(Sn+1

h ) dx.

But using the monotonicity of the capillary pressure function, we get

(
Sn+1

h − Sn
h

)
Pc
(

Sn+1
h

)
⩽ ∫

Sn+1
h

Sn
h

Pc(s) ds = F
(

Sn+1
h

)
− F

(
Sn

h

)
.

We obtain, therefore,

−∫Ω
Φ(x)Δn

hSn+1
h Pc

(
Sn+1

h

)
dx ⩾ −1

h ∫Ω
Φ(x){F

(
Sn+1

h

)
− F

(
Sn

h

)
} dx,

which completes the proof of 5.14.
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To prove 5.15, we multiply 5.12 by Tn+1
h and subtract 5.10 multiplied by (cw∕2)

(
Tn+1

h

)2 and 5.11 multiplied by
(co∕2)

(
Tn+1

h

)2. After cancelation of terms, we get

∫Ω

{
Δn

h𝚿
n+1
h Tn+1

h − cw

2
ΦΔn

h Sn+1
h

(
Tn+1

h

)2 + co

2
Δn

h Sn+1
h

(
Tn+1

h

)2
}

dx + ∫Ω
kT∇Tn+1

h · ∇Tn+1
h dx = 0.

Note that the terms multiplied by Φcw in the time difference term can be estimated as follows:

Sn+1
h

(
Tn+1

h

)2 − Sn
hTn

h Tn+1
h − 1

2
(

Sn+1
h − Sn

h

) (
Tn+1

h

)2

= 1
2

Sn+1
h

(
Tn+1

h

)2 − Sn
h

(
Tn

h Tn+1
h − 1

2
(

Tn+1
h

)2
)

⩾ 1
2

Sn+1
h

(
Tn+1

h

)2 − 1
2

Sn
h

(
Tn

h

)2
,

where we have used the estimate ab − b2∕2 ⩽ a2∕2. In the same way, for the terms multiplied by Φco, we have

[1 − Sn+1
h ]

(
Tn+1

h

)2 −
[
1 − Sn

h

]
Tn

h Tn+1
h + 1

2
(

Sn+1
h − Sn

h

) (
Tn+1

h

)2 ⩾ 1
2
[
1 − Sn+1

h

] (
Tn+1

h

)2 − 1
2
[
1 − Sn

h

] (
Tn

h

)2
.

Finally, for cs terms, we have(
[1 − Φ]Tn+1

h − [1 − Φ]Tn
h

)
Tn+1

h ⩾ [1 − Φ]
(1

2
(

Tn+1
h

)2 − 1
2
(

Tn
h

)2
)
.

From these estimates, we derive

∫
Ω

{
Δn

h𝚿
n+1
h Tn+1

h − cw

2
ΦΔn

h Sn+1
h

(
Tn+1

h

)2 + co

2
Δn

h Sn+1
h

(
Tn+1

h

)2
}

dx ⩾ 1
2h ∫

Ω

(
𝚿n+1

h Tn+1
h −𝚿n

hTn
h

)
dx.

This proves 5.15, and Lemma 5.1 is proved.
Now, for a given sequence {un

h}n, we define the following functions:

uh(t)
def
=

N−1∑
n=0

un+1
h 1(nh,(n+1)h](t) ∀t ∈ (0,  ) with uh(0) = uh

0 , (5.17)

where 1(nh,(n+1)h](t) denotes the characteristic function of the interval (nh, (n + 1)h]. Next we define the function

ũh(t)
def
=

N−1∑
n=0

[(
1 + n − t

h

)
un

h +
( t

h
− n

)
un+1

h

]
1[nh,(n+1)h](t) ∀t ∈ [0,  ], (5.18)

which satisfies
𝜕ũh

𝜕t
= 1

h

N−1∑
n=0

(
un+1

h − un
h

)
1(nh,(n+1)h)(t) ∀t ∈ [0,  ] ∖ ∪N

n=0 {n h} . (5.19)

The following uniform estimates hold true.

Lemma 5.2. Let ph
w, ph

o , Sh,Th,𝚿h be the functions defined in 5.17 by pn
w,h, p

n
o,h, S

n
h,T

n
h ,𝚿

n
h and S̃h, �̃�h be the functions

defined in 5.18 by Sn
h,𝚿

n
h. Then

{Sh}h>0 is uniformly bounded in L2(0,  ;H1(Ω)); (5.20)

{ph
w}h>0 is uniformly bounded in L2(0,  ;H1

Γ1
(Ω)); (5.21)

{ph
o}h>0 is uniformly bounded in L2(0,  ;H1

Γ1
(Ω)); (5.22)

{Th}h>0 is uniformly bounded in L2(0,  ;H1
Γ1
(Ω)); (5.23)

{Pc(Sh)}h>0 is uniformly bounded in L2(0,  ;H1
Γ1
(Ω)); (5.24)

{𝜕t(ΦS̃h)}h>0 is uniformly bounded in L2(0,  ;H−1(Ω)); (5.25)
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{𝜕t �̃�h}h>0 is uniformly bounded in L2(0,  ;H−1(Ω)). (5.26)

Proof of Lemma 5.2. By summing the inequality 5.14 multiplied by h, we get

∫


{
𝜆w(Sh,Th)||∇ph

w||2 + 𝜆o(Sh,Th)||∇ph
o||2} dx dt + 𝜂 ∫


|∇Pc(Sh)|2 dx dt ⩽ C

+ ∫
Ω

Φ(x) |||F(Sh(0)) − F(Sh( ))||| dx ⩽ C,
(5.27)

where C is a constant that does not depend on h and 𝜂, which proves 5.24. From 5.24 and (A.3), we get the estimate
5.20.

From the inequality 5.15, in the same way, we get

∫

|∇Th|2 dx ⩽ C + 1

2 ∫
Ω

|𝚿h( )Th( ) −𝚿h(0)Th(0)| dx ⩽ C, (5.28)

where C is a constant that does not depend on h and 𝜂, which proves 5.23.
Taking into account the definition of the nonisothermal global pressure 2.12 and 2.14, the bounds 5.27 and 5.28,

the relation 2.24, Lemma 2.1, and the bound 2.21, we find that

∫

|Ph|2 dx dt ⩽ C, ∫


|𝛽(Sh)|2 dx dt ⩽ C, (5.29)

where C is a constant that does not depend on h and 𝜂. Then the bounds 5.21 and 5.22 are the consequence of relations
2.14, 5.27-5.29, and Lemma 2.1.

Finally, the uniform bounds 5.25 and 5.26 follow directly from the weak formulation of the problem and the previous
uniform estimates. Lemma 5.2 is proved.
Remark 6. If the initial conditions S0 and T0 belong to H1(Ω), then the uniform bounds 5.20 and 5.23 imply the same
bounds for the linearly interpolated functions S̃h and T̃h.

Lemma 5.3. The following convergence results hold as h → 0:||Sh − S̃h||2L2() → 0 and ||𝚿h − �̃�h||2L2() → 0. (5.30)

Proof of Lemma 5.3. The proof of the lemma is based on an abstract result stated in Lemma 3.2 from paper.47

5.2 Compactness results
In this section, we obtain compactness and convergence results that will be used in the proof of the main existence
theorem. Notice that the previous results obtained in Galusinski and Saad46 and Khalil and Saad41,43 are not sufficient
for our purposes. In these papers, the method proposed earlier in Chavent and Jaffré2 for the constant porosity function
is generalized to the case of the porosity function belonging to the class W 1,∞. The proof is essentially based on Simon's
embedding theorem for the spaces of functions depending on the space and time variables (see Simon37). However, the
assumption that the porosity function is from the space W 1,∞ is not admissible for the homogenization of 2-phase flow
in porous media made of different types of rock. Below we propose our own approach to this problem. Namely, we have
the following compactness lemma.

Lemma 5.4. (Compactness lemma)
Let Φi = Φi(x) (i = 1, 2, … , I) be functions such that Φi ∈ L∞(Ω). Let {v𝜖i }𝜖>0 ⊂ L2() (i = 1, 2, … I) be given families
of functions satisfying the following properties:

1. for each i, {v𝜖i }𝜖>0 is uniformly bounded in the space L2(0,  ;W𝜎i,pi (Ω)), with 0 < 𝜎i ⩽ 1, pi ⩾ 2.
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2. the family of functions
{∑I

i=1 Φiv𝜖i
}
𝜖>0

satisfy the following uniform estimate:

‖‖‖‖𝜕t

(∑I

i=1
Φiv𝜖i

)‖‖‖‖L2(0, ;H−1(Ω))
⩽ C. (5.31)

Then
{∑I

i=1 Φiv𝜖i
}
𝜖>0

is relatively compact in L2().

Proof of Lemma 5.4. It follows from Theorem 1 in Simon37 that the family {
∑I

i=1 Φiv𝜖i }𝜖>0 is relatively compact in
L2(0,  ;H−1(Ω)).

Let us prove the following statement (see Lemma 8 in Simon37): ∀𝜂 > 0,∃N > 0 such that

∀(v1, … , vI) ∈ W𝜎1,p1 (Ω) × · · · × W𝜎I ,pI (Ω),‖‖‖‖∑I

i=1
Φivi

‖‖‖‖L2(Ω)
⩽ 𝜂

√∑I

i=1
||vi||2W𝜎i ,pi (Ω) + N

‖‖‖‖∑I

i=1
Φivi

‖‖‖‖H−1(Ω)
.

(5.32)

To prove 5.32, let us introduce the set:

Vn
def
=

{
(v1, … , vI) ∈ [L2(Ω)]I ∶ ||∑I

i=1
Φivi||L2(Ω) < 𝜂 + n||∑I

i=1
Φivi||H−1(Ω)

}
(n ∈ N).

The sets Vn are open in [L2(Ω)]I; they increase with n (Vn ⊂ Vn+1) and their union covers whole [L2(Ω)]I. The unit
sphere S in W𝜎1,p1(Ω)× · · ·×W𝜎I ,pI (Ω) is relatively compact in [L2(Ω)]I, and therefore, there exists N such that S ⊂ VN ,
which gives 5.32 for all (v1, … , vI) ∈ W𝜎1,p1 (Ω)×· · ·×W𝜎I ,pI (Ω) with unit norm. The inequality for every (v1, … , vI) ∈
W𝜎1,p1(Ω) × · · · × W𝜎I ,pI (Ω) follows by multiplication by any positive number. This proves 5.32.

Because the family
{∑I

i=1 Φiv𝜖i
}
𝜖>0

is a relatively compact set in L2(0,  ;H−1(Ω)), then for any 𝛿 > 0, we can find a
finite number of parameters {𝜖1, 𝜖2, …} such that for any 𝜖 there exists 𝜖k satisfying the following inequality:‖‖‖‖∑I

i=1
Φiv𝜖i −

∑I

i=1
Φiv

𝜖k
i

‖‖‖‖L2(0, ;H−1(Ω))
⩽ 𝛿.

Then 5.32 implies‖‖‖‖∑I

i=1
Φiv𝜖i −

∑I

i=1
Φiv

𝜖k
i

‖‖‖‖L2(0, ;L2(Ω))
⩽
√

2𝜂
√∑I

i=1
||v𝜖i − v𝜖k

i ||2L2(0, ;W𝜎i ,pi (Ω))

+
√

2N
‖‖‖‖∑I

i=1
Φiv𝜖i −

∑I

i=1
Φiv

𝜖k
i

‖‖‖‖L2(0, ;H−1(Ω))

⩽
√

2(𝜂C + N𝛿),

where C results from uniform boundedness of {v𝜖i }𝜖>0 in the space L2(0,  ;W𝜎i,pi (Ω)). For given 𝛿′, we chose 𝜂 =
𝛿′∕2

√
2C and 𝛿 = 𝛿′∕2

√
2N and obtain‖‖‖‖∑I

i=1
Φiv𝜖i −

∑I

i=1
Φiv

𝜖k
i

‖‖‖‖L2(0, ;L2(Ω))
⩽ 𝛿′,

which proves the relative compactness of {
∑I

i=1 Φiv𝜖i }𝜖>0 in L2().
We apply Lemma 5.4 in this section to obtain the compactness results for the sequences {Sh} and {𝜳 h} and to prove

the strong convergence of the sequence {Th} in L2(). We have

Lemma 5.5. The sequences {Sh} and {𝜳 h}, defined in Lemma 5.2, are relatively compact in L2().
Proof of Lemma 5.5. For the sequence {S̃h}, the compactness follows directly form Lemma 5.4 by taking I = 1 and
the bounds 5.25 and 5.20 (see also Remark 6). Lemma 5.3 gives the relative compactness of the sequence {Sh}.

The function 𝜳 h = Φ(cwShTh + co(1 − Sh)Th) + (1 − Φ)csTh can be considered as a sum of 2 functions with Φ1 =
Φ,Φ2 = 1 − Φ and vh

1 = cwShTh + co(1 − Sh)Th, vh
2 = csTh. Then Lemma 5.4 can be applied directly to the sequence

{�̃�h}; thanks to the estimates 5.26, 5.23, 5.20 and the maximum principle for the saturation and the temperature.
Lemma 5.3 gives relative compactness of the sequence {𝜳 h}.
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Now we turn to the strong convergence result for the sequence {Th}h>0.

Proposition 5.1. (Strong convergence of the temperature)
On a subsequence

Th → T strongly in L2() and a.e. in  with T ∈ L2(0,  ;H1(Ω)). (5.33)

Proof of Proposition 5.1. It follows from Lemma 5.5 that there exists a subsequence such that

Sh → S strongly in L2() and a.e. in ; (5.34)

𝚿h → 𝚿 strongly in L2() and a.e. in , (5.35)
where the limit saturation satisfies 0 ⩽ S ⩽ 1. From Ψh = 𝜓(Sh)Th and 𝜓(Sh) = (cwSh + co[1− Sh])Φ(x) + cs[1−Φ(x)],
we know that

Th = 𝚿h

𝜓(Sh)
→

𝚿
𝜓(S)

def
= T̂ a.e. in .

The pointwise convergence ensures that the limit temperature T̂ satisfies Tm ⩽ T̂ ⩽ TM . It follows from 5.23 that

Th → T weakly in L2(),
for some T ∈ L2(0,T;H1(Ω)), and therefore, we have T̂ = T. We have proved that Ψ = 𝜓(S)T.

From the boundedness of the saturation, we have

0 < cs [1 − 𝜙+] ⩽ 𝜓(Sh), 𝜓(S) ⩽ cw + co + cs. (5.36)

Then

∫

|Th − T|2 dx dt = ∫



1
𝜓2(Sh)

|𝜓(Sh) Th − 𝜓(Sh) T|2 dx dt ⩽

⩽ 2
c2

s [1 − 𝜙+
]2

⎡⎢⎢⎣∫ |𝚿h(Sh,Th) −𝚿(S,T)|2 dx dt + ∫

|T|2 |𝜓(S) − 𝜓(Sh)|2 dx dt

⎤⎥⎥⎦ .
Now the statement of the proposition immediately follows from 5.34, 5.35. Proposition 5.1 is proved.

Our goal is to construct a solution to the evolution problem 3.15 by passing to the limit, as h → 0, in the above elliptic
problem.

Lemma 5.6. (Convergence results with respect to h)
Up to a subsequence, the following convergence results hold as h → 0:

ph
w → p𝜂w weakly in L2(0,  ;H1

Γ1
(Ω)); (5.37)

ph
o → p𝜂o weakly in L2(0,  ;H1

Γ1
(Ω)); (5.38)

Sh → S𝜂 weakly in L2(0,  ;H1(Ω)) and a.e. in ; (5.39)

Th → T𝜂 weakly in L2(0,  ;H1
Γ1
(Ω)) and a.e. in ; (5.40)

𝚿h → 𝚿𝜂 strongly in L2() and a.e. in , (5.41)
where 𝜳 𝜂 = (cwS𝜂 + co[1 − S𝜂])T𝜂Φ(x) + cs[1 − Φ(x)]T𝜂;

𝜕t(Φ S̃h) → 𝜕t(Φ S𝜂) weakly in L2(0,  ;H−1(Ω)); (5.42)

𝜕t�̃�h → 𝜕t𝚿𝜂 weakly in L2(0,  ;H−1(Ω)). (5.43)
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Moreover,
0 ⩽ S𝜂 ⩽ 1, Tm ⩽ T𝜂 ⩽ TM a.e. in ΩT . (5.44)

Proof of Lemma 5.6. The weak convergence in 5.37-5.40, 5.42, and 5.43 follows directly from Lemma 5.2. The strong
and a.e. convergence in 5.39 and 5.41 follows directly from Lemma 5.5, while strong and a.e. convergence in 5.40
follows from Proposition 5.1. The boundedness 5.44 follows from the boundedness of the sequences {Sh} and {Th}
and the pointwise convergence. Lemma 5.6 is proved.

Now we are in position to complete the proof of Theorem 5.1. First, we observe that in view of the definitions of
Sh, ph

w, ph
o ,Th, S̃h, Θ̃h, and �̃�h from the system 5.10 to 5.12, we obtain the following system of equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φ(x) 𝜕S̃h

𝜕t
− div

{
K(x)𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ 𝜂 ∇(ph

w − ph
o)
}
= 0;

−Φ(x) 𝜕S̃h

𝜕t
− div

{
K(x)𝜆o(Sh,Th)

(
∇ph

o − 𝜚o g⃗
)
+ 𝜂 ∇(ph

o − ph
w)
}
= 0;

𝜕�̃�h

𝜕t
− div

{
K(x)Th

[
cw𝜆w(Sh,Th)

(
∇ph

w − 𝜚wg⃗
)
+ co𝜆o(Sh,Th)

(
∇ph

o − 𝜚og⃗
)]}

−

−cw 𝜂 div
{

Th∇
(

ph
w − ph

o
) }

− co 𝜂 div
{

Th∇
(

ph
o − ph

w
)}

− div (kT∇Th) = 0;
Pc
(

Sh) = ph
o − ph

w.

(5.45)

Now considering the weak formulation of the system 5.45 and taking into account Lemma 5.6, we pass to the limit
as h → 0 and obtain Equations 5.6 to 5.8, which represent the weak formulation of the system 3.15 to 3.17. This ends
the proof of Theorem 5.1.

6 PROOF OF THE MAIN RESULT: THE DEGENERATE SYSTEM

The goal of this section is to prove the main result of this work, ie, Theorem 3.1. The proof is based on Theorem 5.1
established in the previous section and the compactness results from Propositions 6.1 and 5.1. First, in Section 6.1, we
establish the uniform estimates for the solutions to system 3.15 and obtain the corresponding compactness results with
respect to the parameter 𝜂. Then in Section 6.2, we complete the proof of Theorem 3.1.

6.1 Uniform estimates and compactness results
The a priori estimates for the solutions of problem 3.15 are given by the following lemma.

Lemma 6.1. The sequences {S𝜂}𝜂>0, {p𝜂w}𝜂>0, {p𝜂o}𝜂>0, {T𝜂}𝜂>0, {P𝜂}𝜂>0 are such that

0 ⩽ S𝜂 ⩽ 1, Tm ⩽ T𝜂 ⩽ TM a. e. in ; (6.1)

{P𝜂}𝜂>0 is uniformly bounded in L2(0,  ;H1(Ω)); (6.2)

{T𝜂}𝜂>0 is uniformly bounded in L2(0,  ;H1(Ω)); (6.3)

{
√
𝜂 ∇Pc(S𝜂)}𝜂>0 is uniformly bounded in L2(); (6.4){√

𝜆w(S𝜂,T𝜂) ∇p𝜂w
}
𝜂>0

is uniformly bounded in L2(); (6.5){√
𝜆o(S𝜂,T𝜂) ∇p𝜂o

}
𝜂>0

is uniformly bounded in L2(); (6.6)

{𝛽(S𝜂)}𝜂>0 is uniformly bounded in L2(0,  ;H1(Ω)); (6.7)

{𝜕t(ΦS𝜂)}𝜂>0 is uniformly bounded in L2(0,  ;H−1(Ω)); (6.8)
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{𝜕t𝚿𝜂}𝜂>0 is uniformly bounded in L2(0,  ;H−1(Ω)). (6.9)

Proof of Lemma 6.1. The maximum principle 6.1 is preserved through passing to the limit. Bounds 6.2, 6.3, and 6.7
are consequences of 5.28, 5.29, and the weak lower semicontinuity of the norms.

To prove 6.4, 6.5, and 6.6, we set 𝜑w = pw in Equation 5.6 and 𝜑o = po in Equation 5.7, and after localization in
time, we get for a.e. t ∈ (0,T)

−⟨𝜕t(ΦS𝜂),Pc(S𝜂)⟩ + ∫
Ω

K(x)𝜆w(S𝜂,T𝜂)
[
∇p𝜂w − 𝜚wg⃗

]
· ∇p𝜂w dx

+∫
Ω

K(x)𝜆o(S𝜂,T𝜂)
[
∇p𝜂o − 𝜚o g⃗

]
· ∇p𝜂o dx + ∫

Ω

𝜂|∇Pc(S𝜂)|2 dx = 0,
(6.10)

where ⟨, ⟩ stands for the duality product in (H1
Γ1
(Ω))′ × H1

Γ1
(Ω). Using the integration lemma from Gagneux and

Madaune-Tort,4 pp 31, we get

⟨𝜕t(ΦS𝜂),Pc(S𝜂)⟩ = d
dt ∫

Ω

Φ(x)F(S𝜂) dx with F(s) =

s

∫
0

Pc(ς) dς.

By integrating 6.10 over the interval (0,  ), using condition (A.3), as in the proof of Lemma 4.2, we obtain inequality

∫


{
K(x)𝜆w(S𝜂,T𝜂)|∇p𝜂w|2 + K(x)𝜆o(S𝜂,T𝜂)|∇p𝜂o|2 + 𝜂|∇Pc(S𝜂)|2} dx dt ⩽ C, (6.11)

which gives the estimates 6.4, 6.5, and 6.6.
The proof of the bounds 6.8 and 6.9 can be done in a standard way (see, eg, Amaziane et al48) by using the estimates

6.2 to 6.7. Lemma 6.1 is proved.

Proposition 6.1. (Compactness result)
The families {S𝜂}𝜂>0, {𝚿𝜂}𝜂>0, {T𝜂}𝜂>0 ⊂ L2() are relatively compact in L2().
Proof of Proposition 6.1. From 6.1, 6.7, and (A.7), it is easy to show that the family {S𝜂}𝜂>0 is uniformly bounded in
L2∕𝜃(0,  ;W s𝜃,2∕𝜃(Ω)) for any 0 < s < 1. Then the compactness of the family {S𝜂}𝜂>0 follows from 6.8 and Lemma 5.4.

Because T𝜂 is uniformly bounded in L2(0,  ;H1(Ω)), it is not difficult to show that cwST + co(1 − S)T is uniformly
bounded in L2∕𝜃(0,  ;W s𝜃,2∕𝜃(Ω)). An application of Lemma 5.4 gives the relative compactness of the family {𝚿𝜂}𝜂>0,
and further application of Proposition 5.1 gives the relative compactness of the temperature {T𝜂}𝜂>0. Proposition 6.1
is proved.

Now from Lemma 6.1 and Proposition 6.1, we deduce all the convergence results required for the passage to the limit
as 𝜂 → 0 in 3.15.

Lemma 6.2. The sequences {S𝜂}𝜂>0, {T𝜂}𝜂>0, {P𝜂}𝜂>0 are such that up to a subsequence,

0 ⩽ S ⩽ 1, Tm ⩽ T ⩽ TM a.e. in ; (6.12)

S𝜂 → S strongly in L2() and a.e. in ; (6.13)

T𝜂 → T strongly in L2() and a.e. in ; (6.14)

T𝜂 → T weakly in L2(0,  ;H1(Ω)); (6.15)

P𝜂 → P weakly in L2(0,  ;H1(Ω)); (6.16)

𝛽(S𝜂) → 𝛽(S) weakly in L2(0,  ;H1(Ω)). (6.17)
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𝚿𝜂 → 𝚿 strongly in L2() and a.e. in ; (6.18)

𝜕t(ΦS𝜂) → 𝜕t(ΦS) weakly in L2(0,  ;H−1(Ω)); (6.19)

𝜕t𝚿𝜂 → 𝜕t𝚿 weakly in L2(0,  ;H−1(Ω)). (6.20)

6.2 Convergence of the approximating solutions
We have to pass to the limit, as 𝜂 → 0, in the weak formulation of problem 3.15 to 3.17, which is given by 5.6 to 5.8.

Let us analyze the limit as 𝜂 → 0 in Equation 5.6. The first term in 5.6 converges to the desired limit because of 6.13.
The third term in 5.6 can be rewritten using 2.23 as

∫


K(x)𝜆w(S𝜂,T𝜂)∇p𝜂w·∇𝜑w dx dt = ∫


K(x)
{
𝜆w(S𝜂,T𝜂)∇P𝜂 − Λ1(S𝜂,T𝜂) ∇𝛽(S𝜂) + 𝜆w(S𝜂,T𝜂)Bw(S𝜂,T𝜂) ∇T𝜂

}
·∇𝜑w dx dt.

Taking into account Lemma 6.2, we find

lim
𝜂→0∫


K(x)𝜆w(S𝜂,T𝜂)∇p𝜂w · ∇𝜑w dx dt

= ∫


K(x) {𝜆w(S,T)∇P − Λ1(S,T) ∇𝛽(S) + 𝜆w(S,T)Bw(S,T) ∇T} · ∇𝜑w dx dt

= ∫


K(x)𝜆w(S,T)∇pw · ∇𝜑w dx dt,

where the limit wetting phase pressure pw is defined through the limit global pressure P, the limit temperature T, and the
limit saturation S by 2.14, namely, pw = P + Gw(S,T). In the same way, defining the limit nonwetting phase pressure by
2.12, we get

lim
𝜂→0∫


K(x)𝜆o(S𝜂,T𝜂)∇p𝜂o · ∇𝜑o dx dt = ∫


K(x)𝜆o(S,T)∇po · ∇𝜑o dx dt.

We can now pass to the limit in the gravity term in 5.6, and the last term tends to zero because of 6.4. In that way, we
obtain Equation 3.8. In the same way, we pass to the limit as 𝜂 → 0 in 5.7 and 5.8 and obtain 3.9 and 3.10. Note that the
property 3.1 of the phase pressures follows form the regularity of the global pressure P, function 𝛽(S), temperature T, and
Equation 2.24. This completes the proof of Theorem 3.1.

7 CONCLUDING REMARKS

We have presented a weak formulation and an existence result for a degenerate system modeling nonisothermal immis-
cible incompressible 2-phase flow through heterogeneous porous media. The extension to a porous medium made of
several types of rocks, ie, the porosity, the absolute permeability, the capillary, and relative permeabilities curves are dif-
ferent in each type of porous media, is straightforward by using the approach developed in Amaziane et al.35 The study
still needs to be improved by developing a general approach to incorporating compressibility of both phases. This study
was intended as a first step to the homogenization of nonisothermal immiscible incompressible 2-phase flow through het-
erogeneous reservoirs. These more complicated cases appear in the applications. Further work on these important issues
is in progress.
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