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Abstract We consider randomly distributed mixtures of bonds of ferromagnetic and antifer-
romagnetic type in a two-dimensional square latticewith probability 1−p and p, respectively,
according to an i.i.d. random variable. We study minimizers of the corresponding nearest-
neighbour spin energy on large domains in Z

2. We prove that there exists p0 such that for
p ≤ p0 such minimizers are characterized by a majority phase; i.e., they take identically the
value 1 or − 1 except for small disconnected sets. A deterministic analogue is also proved.

Keywords Ising models · Random spin systems · Ground states · Asymptotic analysis of
periodic media

Mathematics Subject Classification 82B20 · 82D30 · 49K45 · 60D05

1 Introduction

We consider a prototypical system mixing attractive and repulsive interactions on a lattice
through an energy defined on ‘spin functions’; i.e., functions u defined on the nodes of the
lattice only taking the values− 1 and+ 1. In the language of StatisticalMechanics, our energy
is given by a mixtures of nearest-neighbour bonds of ferromagnetic and antiferromagnetic
type. The ferromagnetic bonds favour equal values of u, while antiferromagnetic bonds favour
opposite values. In this sense, they mimic an attractive and repulsive behaviour, respectively.
These bonds are randomly distributed in a two-dimensional square lattice, they form a family
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Fig. 1 Representation of a
portion of spin system for some
ci j = cωi j

of i.i.d. random variables ci j , |i − j | = 1, taking on values + 1 and − 1 with probability
1 − p and p, respectively. For each realization ω of that random variable, we consider, for
each bounded region D, the energy

Fω(u, D) = −
∑

i, j

cω
i j ui u j ,

where the sum runs over nearest-neighbours in the square lattice contained in D, ui ∈
{− 1,+ 1} denote the values of a spin function, and cω

i j ∈ {− 1,+ 1} are interaction coef-
ficients corresponding to the realization. A portion of such a system is pictured in Fig. 1:
ferromagnetic bonds; i.e, when cω

i j = 1, are pictured as straight segments, while antiferro-
magnetic bonds are pictured as wiggly ones (as in the two examples highlighted by the gray
regions, respectively).

In this paper we analyze ground states; i.e., absolute minimizers, for such energies. This
is a fundamental first step in order to define an overall continuum energy: if ground states can
be parameterized by a finite number of parameters, then it is sometimes possible to define the
behaviour of the system beyond absoluteminimization through an effective interfacial energy
via a discrete-to-continuumprocess [10]. The description of ground states is a non trivial issue
since in general they are frustrated; i.e., the energy cannot be separatelyminimized on all pairs
of nearest neighbors. In other words, minimizing arrays {u j } may not satisfy simultaneously
ui = u j for all i, j such that cω

i j = + 1 and ui = −u j for all i, j such that cω
i j = − 1.However,

in [15] it is shown that if the antiferromagnetic links are contained in well-separated compact
regions, then the ground states are characterized by a “majority phase”; i.e., they mostly
take only the value 1 (or − 1) except for nodes close to the “antiferromagnetic islands”.
In the case of random interactions we show that this is true in the dilute case; i.e., when
the probability p of antiferromagnetic interactions is sufficiently small. More precisely, we
show that there exists p0 such that if p is not greater than p0 then almost surely for all
sufficiently large regular bounded domain D ⊂ R

2 the minimizers of the energy F(·, D) are
characterized by a majority phase (Theorem 10). An analogous result is proved to hold also
for configurations whose energy is close enough to the minimal energy (see Theorem 12)
and, at low temperature, for configurations whose probability does not deviate much from
the maximal one (see Theorem 14).

The proof of our result relies on a scaling argument as follows: we remark that proving
the existence of majority phases is equivalent to ruling out the possibility of large interfaces
separating zones where a ground state u equals 1 and − 1, respectively. Such interfaces may
exist only if the percentage of antiferromagnetic bonds on the interface is larger than 1/2.
We then estimate the probability of such an interface with a fixed length and decompose a
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separating interface into portions of at least that length, to prove a contradiction if p is small
enough. This is an argument close to the so-called Peierls argument in Statistical Physics (see,
e.g., [4,25,27]). Though a terminology particular to Percolation Theory could have been used
here, we have preferred to use a self-contained notation in view of possible applications to
other attractive-repulsive systems not defined simply on spin functions, and to an interesting
deterministic counterpart of the result above. Indeed, the probabilistic proof carries over also
to a deterministic periodic setting; i.e., for energies

F(u, D) = −
∑

i, j

ci j ui u j

such that ci j ∈ {− 1,+ 1} and there exists N ∈ N such that ci+k j+k = ci j for all i and
j ∈ Z

2 and k ∈ NZ
2. In this case ground states of F may sometimes be characterized more

explicitly and exhibit various types of configurations, that are all possible independently
of the percentage of antiferromagnetic bonds: up to boundary effects, there can be a finite
number of periodic textures, or configurations characterized by layers of periodic patterns in
one direction, or we might have arbitrary configurations of minimizers with no periodicity
(see the examples in [10]). We show that “generically” these situations are exceptional in the
dilute case: there exists p0 such that if the percentage p of antiferromagnetic interactions is
not greater than p0 then the proportion of N -periodic systems {ci j } such that the minimizers
of the energy F(·, D) are characterized by a majority phase for all D ⊂ R

2 bounded domain
large enough tends to 1 as N tends to +∞. The probabilistic arguments are substituted by
a combinatorial computation, which also allows a description of the size of the separating
interfaces in terms of N .

This work is part of a general discrete-to-continuum analysis of variational problems
in lattice systems (see [7] for an overview), most results dealing with spin systems focus
on ferromagnetic Ising systems at zero temperature, both on a static framework (see [2,8,
9,19]) and a dynamic framework (see [12,16–18]). In that context, random distributions
of bonds have been considered in [14,15] (see also [13]), and their analysis is linked to
some recent advances in Percolation Theory (see [3,20,21,23,28]). A first paper dealing
with antiferromagnetic interactions is [1], where non-trivial oscillating ground states are
observed and the corresponding surface tensions are computed. A related variational motion
of crystallinemean-curvature type has been recently described in [11], highlighting neweffect
due to surface microstructure. The classification of periodic systems mixing ferromagnetic
and antiferromagnetic interactions that can be described by surface energies is the subject
of [10]. In [15], as mentioned above, the case of well-separated antiferromagnetic island
is studied. We note that in those papers the analysis is performed by a description of a
macroscopic surface tension, which provides the energy density of a continuous surface
energy obtained as a discrete-to-continuum �-limit [6]. This limit is performed by scaling
the energy F on lattices with vanishing lattice space. That description is possible thanks to a
precise knowledge of minimizers. That is not the case of the present paper, and is the reason
why we do not address the formulation in terms of the �-limit but only study ground states.
However, the fact that ground states may be parameterized with the majority phase, suggests
that the discrete-to-continuum limit may still be represented as an interfacial energy.
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Fig. 2 A path γ and the corresponding curve γ̃

2 Random Media

Given a probability space (�,F,P) we consider a Bernoulli bond percolation model in Z2.
This means that to each bond (i, j), i, j ∈ Z

2, |i − j | = 1, in Z
2 we associate a random

variable ci j and assume that these random variables are i.i.d. and that they take on the value
+ 1 with probability 1 − p, and the value − 1 with probability p, where 0 < p < 1. The
detailed description of the Bernoulli bond percolation model can be found for instance in
[26].

We denote by N the set of nearest neighbors

N = {{i, j} : i, j ∈ Z
2, |i − j | = 1}

and, for each {i, j} in N , [i, j] will be the closed segment with endpoints i and j .

Definition 1 (Randomstationary spin system)A (ferromagnetic/antiferromagnetic) spin sys-
tem is a realization of the random function c({i, j}) = ci j (ω) ∈ {± 1} defined onN . In what
follows we do not indicate explicitly the dependence on ω and simply write ci j . The pairs
{i, j} with ci j = + 1 are called ferromagnetic bonds, the pairs {i, j} with ci j = − 1 are
called antiferromagnetic bonds.

2.1 Estimates on Separating Paths

We say that a finite sequence (i0, . . . , ik) is a path in Z
2 if {is, is+1} ∈ N for any s =

0, . . . , k − 1 and {is, is+1} �= {it , it+1} for any s �= t . The path is closed if i0 = ik . The
number k is the length of γ , denoted by l(γ ), and we call Pk the set of the paths with length
k. To each path γ ∈ Pk we associate the corresponding curve γ̃ of length k in R

2 given by

γ̃ =
k−1⋃

s=0

[is, is+1] +
(1
2
,
1

2

)
. (1)

Note that γ̃ is a closed curve if and only if γ is closed. In Fig. 2 we picture a path (the
dotted sites of the left-hand side) and the corresponding curve (on the right-hand side picture).

Note that we may have self-intersecting paths as in Fig. 3.
Given two paths γ = (i0, . . . , ik) and δ = ( j0, . . . , jh), if ik = j0 and the sequence

(i0, . . . , ik, j1, . . . , jh) is a path, the latter is called the concatenation of γ and δ and it is
noted by γ ∗ δ.

We note that for each s the intersection (is + [0, 1]2) ∩ (is+1 + [0, 1]2) is a segment with
endpoints {αs, βs} ∈ N ; then, given a spin system {ci j }, for each path γ = (i0, . . . , ik) we
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Fig. 3 Example of a
self-intersecting path

can define the number of antiferromagnetic bonds of γ as

μ(γ ) = μ(γ, {ci j }) = #{s ∈ {0, . . . , k − 1} : cαsβs = −1}. (2)

If γ̃ is the curve corresponding to γ defined above, then the number μ(γ ) counts the anti-
ferromagnetic interactions “intersecting” γ̃ (see Fig. 2).

Definition 2 (Separating paths) A path γ of length k is a separating path for a spin system
{ci j } if μ(γ ) > k/2.

Definition 3 (α-separating paths) Given α ∈ (0, 1
2 ] we say that a path γ of length k is an

α-separating path for a spin system {ci j } if μ(γ ) > αk.

Remark 4 The terminology separating path evokes the fact that only closed separating paths
may enclose (separate) regions where a minimal {ui } is constant. Indeed, if we have ui = 1
on a finite set A of nodes in Z

2 which is connected (i.e., for every pair i, j of points in A
there is a path of points in A with i as initial point and j as final point) and ui = −1 on
all neighbouring nodes, then the boundary of A (i.e., the set of points i ∈ A with a nearest
neighbour not in A) determines a path. If such a path is not separating then the function ũ
defined as ũi = −ui for i ∈ A and ũi = ui elsewhere has an energy strictly lower than u.

Remark 5 For a path γ of length l(γ ) = k the probability that γ be separating can be
estimated as follows

P{μ(γ ) > k/2} ≤ pk/22k . (3)

Indeed, the probability that ci j is equal to − 1 at k/2 fixed places is equal to pk/2. Since
( k
k/2

)
does not exceed 2k , the desired estimates follows.

The following statement gives un upper bound for the length of separating paths in a
large square [0, n]2, n 	 1. This is a Percolation Theory result, and its proof relies on the
so-called path-counting argument that is widely used in Percolation Theory, see for instance
[26, Section 1.4], [24].

Lemma 6 There exists p0 > 0 such that for any 	 > 0 and for all p < p0 almost surely
for sufficiently large n in a cube Qn = [0, n]2 there is no separating path γ with l(γ ) ≥
(log(n))1+	 .

Proof The number of paths of length k starting at the origin is not greater than 3k . Therefore,
in view of (3) the probability that there exists a separating path of length k that starts at the
origin is not greater than pk/22k3k . Letting p0 = (1/12)2 we have

pk/22k3k ≤ 2−k for all p ≤ p0.
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Fig. 4 Left: construction of si j ; right: representation of the interface 
(u), with D the interior of the ellipse
and q(D) the grey region

Then, if p ≤ p0, the probability that there exists a separating path of length k in a cube Qn

does not exceed n22−k . For k ≥ log(n)1+	 this yields

P{there exists a separating path γ ⊂ Qn of length k}
≤ n22− log(n)1+	 = n2−c1 log(n)	

with c1 = log 2. Finally, summing up in k over the interval [log(n)1+	, n2] we obtain
P{there exists a separating path γ ⊂ Qn such that l(γ ) ≥ log(n)1+	}

≤ n4−c1 log(n)	 .

Since for large n the right-hand side here decays faster than any negative power of n, the
desired statement follows from the Borel-Cantelli lemma. ��
In the same way one can prove the following statement.

Lemma 7 For any α ∈ (0, 1
2 ] there exists p0 = p0(α) > 0 such that for any 	 > 0 and

for all p < p0 almost surely for sufficiently large n in a cube Qn = [0, n]2 there is no
α-separating path γ with l(γ ) ≥ (log(n))1+	 .

2.2 Geometry of Minimizers in the Random Case

Let D be a bounded open subset of R2 and u : D ∩ Z
2 → {± 1}. Then, denoting by N (D)

the set of nearest neighbors in D, F(u, D) is defined by

F(u, D) = −
∑

{i, j}∈N (D)

ci j ui u j . (4)

Note that the energy depends on ω through ci j . We will characterize the almost-sure
(quenched) behaviour of ground states for such energies.

We define the interface S(u) as

S(u) = S(u; D) = {{i, j} ∈ N (D) : uiu j = −1};
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we associate to each pair {i, j} ∈ S(u) the segment of the dual lattice si j = Qi ∩ Q j , where
Qi is the coordinate unit open square centered at i , and consider the set


(u) = 
(u; D) =
⋃

{i, j}∈S(u)

si j . (5)

If we extend the function u in
⋃

i∈D∩Z2 Qi by setting u = ui in Qi , and define

q(D) = int
( ⋃

i∈D∩Z2

Qi

)
, (6)

where int(·) denotes the interior part of a subset of R2, then the set 
(u) ∩ q(D) turns out to
be the jump set (i.e., the set of discontinuity points) of u and we can write


(u) = ∂{u = 1} ∩ ∂{u = −1}.
A pictorial explanation of the objects just introduced is contained in Fig. 4.

In the following remark we recall some definitions and classical results related to the
notion of graph which will be useful to establish properties of the connected components of
∂{u = 1}. For references on this topic, see for instance [5].

Remark 8 (Graphs and two-coloring) We say that a triple G = (V, E, r) is a multigraph
when V (vertices) and E (edges) are finite sets and r (endpoints) is a map from E to V ⊗ V ,
where ⊗ denotes the symmetric product. The order of a vertex v is #{e ∈ E : r(e) =
x ⊗ v for some x ∈ V } + #{e ∈ E : r(e) = v ⊗ v}, so that the loops are counted twice. A
walk in the graph G is a sequence of edges (e1, . . . , en) such that there exists a sequence of
vertices (v0, . . . , vn)with the property r(ei ) = vi−1⊗vi for each i ; if moreover vn = v0, then
the walk is called a circuit. The multigraph G is connected if given v �= v′ in V there exists
a walk connecting them, that is a walk such that v0 = v and vn = v′ in the corresponding
sequence of vertices.

We say that G is Eulerian if there is a circuit containing every element of E exactly once
(Eulerian circuit). A classical theorem of Euler (see [5, Chap. 3] and [22] for the original
formulation) states that G is Eulerian if and only if G is connected and the order of every
vertex is even.

A multigraph G is embedded in R
2 if V ⊂ R

2 and the edges are simple curves in R
2

such that the endpoints belong to V and two edges can only intersects at the endpoints. An
embedded graph is Eulerian if and only if the union of the edges

⋃
e∈E e is connected, and

its complementary in R2 can be two-colored, that is R2 \ ⋃
e∈E e is the union of two disjoint

sets B and W such that ∂B = ∂W = ⋃
e∈E e.

Remark 9 (Eulerian circuits in ∂{u = 1}) LetC be a connected component of ∂{u = 1}. We
can seeC as a connected embedded graphwhose vertices are the points in (Z2+(1/2, 1/2))∩
C and two vertices share an edge if there is a unit segment in C connecting them. By
construction, R2 \ C can be two-colored, hence C is an Eulerian circuit (see Remark 8).
Recalling the definition of path and the definition (1), this corresponds to say that there exists
a closed path η such that η̃ = C .

The asymptotic description of minimizers is given by the following result.

Theorem 10 Let G be a Lipschitz bounded domain in R
2 and let p0 be given by Lemma 6.

Let p < p0, and let uε be a minimizer for F(·, 1
ε
G). Then for any 	 > 0 almost surely for all

sufficiently small ε > 0 either {uε = 1} or {uε = −1} is composed of connected components
Ki such that the length of the boundary of each Ki is not greater than | log(ε)|1+	 .
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The proof of the theorem essentially relies on Proposition 11 below.
We say that a path γ ∈ Pk is in the interface S(u) if the corresponding γ̃ is contained in


(u).

Proposition 11 For any � > 0 a.s. for sufficiently small ε > 0 and for any open bounded
subset D ⊂ (−�/ε,�/ε)2 such that the distance between the connected components of
∂q(D) is greater than | log(ε)|1+	 for a minimizer u of F(·, D) there is no path in the
interface S(u) of length greater than | log(ε)|1+	 .

Proof We use the so called Peierls argument. Let γ ∈ Pk be a path in the interface S(u)

with k ≥ | log(ε)|1+	 . We denote by C the connected component of ∂{u = 1} containing γ̃ .
Remark 9 ensures that C = η̃ where η is a closed path; hence, up to extending γ in η, we can
assume without loss of generality that γ is a path of maximal length in the interface S(u).

We start by considering the case when all the connected components of q(D) are simply
connected. In this case the Peierls argument applies in a straightforward way. First we show
that there exists a closed path σ = σ(γ ) such that γ̃ ⊂ σ̃ ⊂ C and

σ̃ ∩ 
(u) = γ̃ . (7)

Indeed, if γ is closed, then we set σ = γ . Otherwise, γ̃ connects two points in ∂q(D). Since
all the connected components of q(D) are simply connected, these endpoints belong to the
same connected component of ∂q(D). Then we can choose a path δ such that δ̃ lies in ∂q(D)

and has the same endpoints as γ̃ . Recalling the notion of concatenation of paths, we can
define σ as γ ∗ δ. This yields (7).

Since σ is a closed path, then σ̃ is a closed properly self-intersecting curve so that all the
vertices of the corresponding embedded graph have even order. Remark 8 ensures that the
embedded graph corresponding to σ̃ is Eulerian, hence its complementary R

2 \ σ̃ can be
two-colored, that is it is the union of two disjoint sets B and W such that ∂B = ∂W = σ̃ .
Setting ũ as the extension to ∪i∈D∩Z2Qi of the function

ũi =
{
ui in B ∩ D ∩ Z

2

−ui in W ∩ D ∩ Z
2

it follows that F(u, D) − F(ũ, D) = 2(l(γ ) − 2μ(γ )), where μ(γ ) stands for the number
of antiferromagnetic interactions in γ as defined in (2). Since u minimizes F(·, D), we can
conclude thatμ(γ ) ≥ l(γ )/2; that is, γ is a separating path of length greater than | log(ε)|1+	 ,
contradicting Lemma 6 and completing the proof in the special case.

In the general case we show that there exists a closed path σ = σ(γ ) such that γ̃ ⊂ σ̃ ⊂ C
and the following property holds:

there exist r different pathsη1, . . . , ηr such that σ̃ ∩ 
(u) = ⋃r
t=1 η̃t

and l(ηt ) ≥ | log(ε)|1+	/2 for all t.
(8)

If γ is closed or γ̃ connects two points in the same connected componnets of ∂q(D), then
we define σ in the same was as in the special case considered above. In this case r = 1 and
γ = η1.

It remains to construct σ when the endpoints of γ̃ belong to different connected compo-
nents of ∂q(D). We consider the set V of the connected components of ∂q(D) and the set E
of the connected components of η̃ ∩ 
(u) (note that γ̃ ∈ E). By the existence of the path η,
each element of E is a curve connecting two (possibly equal) elements of V , then (V, E) is a
multigraph. Since η̃ is a closed curve containing γ̃ , it realizes in the graph an Eulerian circuit
containing γ̃ . Therefore, there exists a minimal Eulerian circuit (γ̃ = η̃1, η̃2, . . . , η̃r ) and, by
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minimality, the order of each vertex touched by this circuit is 2 (see Remark 8). Denoting by
�t the vertex shared by η̃t and η̃t+1 for t < r , and by �r the vertex shared by η̃r and η̃1, for
each t we can find a path δt such that δ̃t ⊂ �t and such that the path σ = δ1 ∗η1 ∗ · · ·∗δr ∗ηr
is closed and satisfies property (8).

Then there exist disjoint sets B and W such that R2 \ σ̃ = B ∩ W and ∂B = ∂W = σ̃ .
Setting

ũi =
{
ui in B ∩ D ∩ Z

2

−ui in W ∩ D ∩ Z
2 (9)

it follows that F(u, D) − F(ũ, D) = 2
∑r

t=1(l(ηt ) − 2μ(ηt )). Since u minimizes F(·, D),
then, for at least one index t ,μ(ηt ) ≥ l(ηt )/2; that is, ηt is a separating path of length greater
than | log(ε)|1+	 . This contradicts Lemma 6. ��

We turn to the proof of Theorem 10.

Proof of Theorem 10 Letting Gε = q( 1
ε
G), we consider the connected components of the

interface 
(uε). Since each of them corresponds to a path, they are either closed curves,
denoted by Ci

ε for i = 1, . . . , n, or curves with the endpoints in ∂Gε, denoted by D j
ε for

j = 1, . . . ,m. Since for ε small enough the distance between two connected components of
∂Gε is greater than | log(ε)|1+	 , Proposition 11 ensures that in both cases the length of such
curves is less than | log(ε)|1+	 .

The distance between the endpoints of a component D j
ε is less than | log(ε)|1+	 , and, since

G is Lipschitz, for ε small enough we can find a path in ∂Gε with the same endpoints and
length less than C̃ | log(ε)|1+	 . This gives a closed path S j

ε with length less than C̃ | log(ε)|1+	

containing D j
ε .

The setR2 \
(⋃

i C
i
ε ∪ ⋃

j D
j
ε

)
has exactly one unbounded connected component, which

we call Pε. The function uε is constant in Pε ∩ Gε. Assuming that this constant value is 1,

then ∂{uε = −1} is contained in
(⋃

i C
i
ε ∪ ⋃

j D
j
ε

)
and the boundary of every connected

component K i
ε of {uε = −1} has length less than C | log(ε)|1+	 . ��

Consider now an arbitrary configuration uε such that

F
(
uε,

1

ε
G

)
≤ min

u
F

(
u,

1

ε
G

)
+ C | log(ε)| (10)

for some C > 0. The asymptotic structure of this configurations is given by

Theorem 12 Let G be a Lipschitz bounded domain inR2 and let p0(
1
4 ) be given by Lemma 7.

Let p < p0, and let uε satisfy estimate (10) with some constant C > 0. Then for any 	 > 0
almost surely for all sufficiently small ε > 0 either {uε = 1} or {uε = −1} is composed of
connected components Ki such that the length of the boundary of each Ki is not greater than
| log(ε)|1+	 .

The proof of this theorem relies on the statement similar to that of Proposition 11

Proposition 13 For any � > 0 and any C > 0 a.s. for sufficiently small ε > 0, for any
open bounded subset D ⊂ (−�/ε,�/ε)2 such that the distance between the connected
components of ∂q(D) is greater than | log(ε)|1+	 and for any configuration uε that satisfies
the inequality

F(uε, D) ≤ min
u

F(u, D) + C | log(ε)| (11)

there is no path in the interface S(uε) of length greater than | log(ε)|1+	 .
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Proof The proof of this statement is similar to that of Proposition 11.
If we assume that there exists a path γ ∈ Pk in the interface S(uε) with k ≥ | log(ε)|1+	 ,

then there exists a closed path σ = σ(γ ) such that γ̃ ⊂ σ̃ ⊂ C and the following property
holds:

there exist r different pathsη1, . . . , ηr such that σ̃ ∩ 
(uε) = ⋃r
t=1 η̃t

and l(ηt ) ≥ | log(ε)|1+	/2 for all t.
(12)

If we define ũε by (9) then F(uε, D)− F(ũε, D) = 2
∑r

t=1(l(ηt )− 2μ(ηt )). Since μ(ηt ) ≤
1
4 l(ηt ) for all sufficiently small ε, then we have

F(uε, D) − F(ũε, D) ≥
r∑

t=1

l(ηt ) ≥ | log(ε)|1+	 .

This contradicts inequality (11). ��
The proof of Theorem 12 is similar to that of Theorem 10. We leave the details to the

reader.
We now consider the Ising model at low temperature. Define the configuration probability

by

Pβ(u) = (Zβ)−1e−βF(u, 1
ε
G),

where β > 0 is inverse temperature, and Zβ = ∑
v

e−βF(v, 1
ε
G). Denote Pβ,max the maximum

configuration probability max
u

Pβ(u).

As an immediate consequence of Theorem 12 we obtain the following statement.

Theorem 14 Under the assumptions of Theorem 12 if p < p0 and the configuration prob-
ability Pβ(uε) of uε satisfies the estimate

Pβ(uε) ≥ e−Cβ|log(ε)|Pβ,max

with some constant C > 0, then for any 	 > 0 almost surely for all sufficiently small ε > 0
either {uε = 1} or {uε = −1} is composed of connected components Ki such that the length
of the boundary of each Ki is not greater than | log(ε)|1+	 .

3 Periodic Media

We now turn our attention to a deterministic analog of the problem discussed above, where
random coefficients are substituted by periodic coefficients and the probability of having
antiferromagnetic interactions is replaced by their percentage.

3.1 Estimates on the Number of Antiferromagnetic Interactions Along a Path

In order to prove a deterministic analogue of Theorem 10, we need to give an estimate of the
length of separating paths corresponding to the result stated in Lemma 6. We start with the
definition of a periodic spin system in the deterministic case given on the lines of Definition 1.

Definition 15 (Periodic spin system) With fixed N ∈ N, a deterministic (ferromag-
netic/antiferromagnetic) spin system is a function c({i, j}) = ci j ∈ {± 1} defined on N .
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The pairs {i, j} with ci j = +1 are called ferromagnetic bonds, the pairs {i, j} with ci j = −1
are called antiferromagnetic bonds. We say that a spin system is N -periodic if

c({i, j}) = c({i + (N , 0), j + (N , 0)}) = c({i + (0, N ), j + (0, N )}).
In the sequel of this section, when there is no ambiguity we use the same terminology and

notation concerning the random case given in Sect. 2.

Definition 16 (Spin systems with given antiferro proportion) For p ∈ (0, 1) we consider
the set Cp(N ) of N -periodic spin systems {ci j } such that the number of antiferromagnetic
interactions in [0, N ]2 is �2pN 2�, and for any λ ∈ (0, 1) we define

Bλ
p(N ) = {{ci j } ∈ Cp(N ) : ∃ γ ∈ Pk(N ) separating path for {ci j } with k ≥ λN

}
(13)

where Pk(N ) is the set of paths γ = (i0, . . . , ik) ∈ Pk such that is ∈ [0, N ]2 for each s.
Proposition 17 There exists p0 > 0 such that for every p < p0 and λ > 0:

lim
N→+∞

#Bλ
p(N )

#Cp(N )
= 0.

Proof We fix a path γ ∈ Pk(N ) with λN ≤ k ≤ 4pN N 2, where pN = �2pN2�
2N2 . Then, the

number of spin systems {ci j } in Cp(N ) for which γ is a separating path depends only on k
and it is given by

f p(k, N ) =
min{k,2pN N2}∑

j=k/2

(
k
j

)(
2N 2 − k

2pN N 2 − j

)
.

Since

#Bλ
p(N ) ≤

4pN N2∑

k=�λN�
#{Pk(N )} f p(k, N ) ≤

4pN N2∑

k=�λN�
3k N 2 f p(k, N )

#Cp(N ) =
(

2N 2

2pN N 2

)

we get the estimate

#Bλ
p(N )

#Cp(N )
≤

m(N )∑

m=m(λ)

⎛

⎝
2m+1N∑

k=2mN

3k N 2 f p(k, N )

(
2N 2

2pN N 2

)−1
⎞

⎠ ,

where m(λ) = �log2(λ)� − 1 and m(N ) = �log2(4pN N )� − 1. Noting that
(
2pN N 2

j

)(
2(1 − pN )N 2

k − j

)
≤

(
2pN N 2

k/2

) (
2(1 − pN )N 2

k/2

)

for each j = k/2, . . . ,min{k, 2pN N 2}, we get

f p(k, N )

(
2N 2

2pN N 2

)−1

=
min{k,2pN N2}∑

j=k/2

(
k
j

) (
2N 2 − k

2pN N 2 − j

)(
2N 2

2pN N 2

)−1

=
min{k,2pN N2}∑

j=k/2

(
2pN N 2

j

) (
2(1 − pN )N 2

k − j

)(
2N 2

k

)−1

≤
(
min{k, 2pN N 2} − k

2

)
gp(k, N )

, (14)
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where

gp(k, N ) =
(
2pN N 2

k/2

)(
2(1 − pN )N 2

k/2

)(
2N 2

k

)−1

.

Now, we prove an estimate for gp(k, N ), which we formulate as a separate lemma.

Lemma 18 For any k, N ∈ N such that k ≤ 4pN 2 and for any p ∈ (0, 1/2) we have

gp(k, N ) ≤ C(p)N 8(θ(p))k

with θ(p) = 2e
√
p(1 − p).

Proof of Lemma 18 Recalling that nne1−n ≤ n! ≤ nn+1e1−n for any n in N, we get

(
2N 2

k

)−1

= k!(2N 2 − k)!
(2N 2)! ≤ ek(2N 2 − k)

(
k

2N 2 − k

)k (
2N 2 − k

2N 2

)2N2

and for k �= 4pN N 2

(
2pN N 2

k/2

)
= (2pN N 2)!

(k/2)!(2pN N 2 − k/2)!

≤ 2pN N 2

e

(
2pN N

2 − k

2

)k/2 (
k

2

)−k/2 (
2pN N 2

2pN N 2 − k/2

)2pN N2

.

Hence, the following estimate holds

gp(k, N ) ≤ 4pN (1 − pN )

e
N 4(2N 2 − k)k

(
2
(2pN N 2 − k

2 )
1/2(2(1 − pN )N 2 − k

2 )
1/2

2(1 − pN )N 2

)k

(
2N 2 − k

2N 2

)2N2 (
2pN N 2

2pN N 2 − k/2

)2pN N2 (
2(1 − pN )N 2

2(1 − pN )N 2 − k/2

)2(1−pN )N2

.

Recalling the inequalities
(
x − a

x

)a

e−a ≤
(
x − a

x

)x

≤
(
x − a

x

)a

for a, x such that 0 < a < x , we get for any k �= 4pN N 2

(
2N 2 − k

2N 2

)2N2

≤
(
2N 2 − k

2N 2

)k

(
2pN N 2

2pN N 2 − k/2

)2pN N2

≤
(

2pN N 2

2pN N 2 − k/2

)k/2

ek/2

(
2(1 − pN )N 2

2(1 − pN )N 2 − k/2

)2(1−pN )N2

≤
(

2(1 − pN )N 2

2(1 − pN )N 2 − k/2

)k/2

ek/2.

Since pN (1 − pN ) ≤ p(1 − p) for p ∈ (0, 1/2), the previous estimates give

gp(k, N ) ≤ 4p(1 − p)

e
N 4(2N 2 − k)k

(
2e

√
pN (1 − pN )

)k

≤ 32p2(1 − p)

e
N 8

(
2e

√
pN (1 − pN )

)k
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≤ 32p2(1 − p)

e
N 8

(
2e

√
p(1 − p)

)k

concluding the proof for k �= 4pN N 2. Note that θ(p) = 2e
√
p(1 − p) → 0 for p → 0.

It remains to check the case k = 4pN N 2. Noting that for p < 1/2

gp(4pN N
2, N ) = (4pN N 2)!(2(1 − pN )N 2)!

(2pN N 2)!(2N 2)!

≤ 8pN (1 − pN )N 4(1 − pN )2N
2
(

2pN√
pN (1 − pN )

)4pN N2

≤ 8p(1 − p)N 4
(
2e

√
p(1 − p)

)4pN N2

the thesis of Lemma 18 follows. ��
Now, Lemma 18 allows to conclude the proof of the proposition. Indeed, applying the

estimate on gp(k, N ), we get from inequality (14)

2m+1N∑

k=2mN

3k N 2 f p(k, N )

(
2N 2

2pN N 2

)−1

≤ pC(p)N 12
2m+1N∑

k=2mN

(3θ(p))k

= pC(p)N 12
2m+1∑

t=2m
((3θ(p))N )t

= pC(p)N 12((3θ(p))N )2
m 1 − (3θ(p))(2

m+1)N

1 − (3θ(p))N

≤ C(p)N 12(3θ(p))2
mN

for p < 1/2 and for N large enough (independent on m).
By summing over m, we get

#Bλ
p(N )

#Cp(N )
≤ C(p)N 12

m(N )∑

m=m(λ)

(3θ(p))2
mN

≤ C(p)N 12(3θ(p)N )2
m(λ)−1

m(N )∑

m=m(λ)

(3θ(p)N )2
m−2m(λ)+1

≤ C(p)N 12(3θ(p))(2
m(λ)−1)N

+∞∑

t=1

((3θ(p))N )t

≤ C(p)N 12 (3θ(p))2
m(λ)N

1 − (3θ(p))N

≤ 2C(p)N 12((3θ(p))2
m(λ)

)N

(15)

which goes to 0 as N → +∞ if 3θ(p) = 6e
√
p(1 − p) < 1. ��

Remark 19 (Translations) Denoting by B̃λ
p(N ) the set of N -periodic spin systems {ci j } such

that there exists a separating path for {ci j } in z + [0, N ]2 for some z ∈ Z
2, then the estimate

(15) implies

lim
N→+∞

#B̃λ
p(N )

#Cp(N )
= 0.
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Fig. 5 Decomposition of γ

Now, we state the deterministic analogue of Lemma 6.

Proposition 20 If the N-periodic spin system {ci j } belongs to Cp \ B̃1/2
p (N ), then there is

no separating path in Z2 of length greater than N/2.

Proof Let γ = (i0, . . . , ik) be a path in Pk with k ≥ N/2. We decompose γ as a concate-
nation of paths γ1 ∗ · · · ∗ γq−1 ∗ γq with l(γt ) ≥ N/2 and each γt contained in a coordinate
square z + [0, N ]2 for some z ∈ Z

2 (see Fig. 5).
If N is even, setting q = � 2k

N � and st = t N/2 for t = 0, . . . , q , we define

γt = (ist−1 , . . . , ist ) for t = 1, . . . , q − 1 and γq = (isq−1 , . . . , ik). (16)

In this way, setting

zt = ist−1 −
(
N

2
,
N

2

)
for t = 1, . . . , q − 1

zq = isq −
(
N

2
,
N

2

)
,

it follows that for any t = 1, . . . q γt is a path of length l(γt ) greater than N/2 contained in
zt + [0, N ]2. Since {ci j } /∈ B̃1/2

p (N ), the number of antiferromagnetic interactions μ(γt ) is
less than l(γt )/2 for any t . Hence μ(γ ) ≤ k/2.

If N is odd, we pose q = � 2k
N+1� and st = t (N + 1)/2 for t = 0, . . . , q; defining the

adjacent paths γt as in (16), by setting

zt = ist−1 −
(
N − 1

2
,
N − 1

2

)
for t = 1, . . . , q − 1

zq = isq−1 −
(
N − 1

2
,
N − 1

2

)

the result follows as in the previous case. ��
3.2 Geometry of Minimizers

We conclude by stating the results concerning the geometry of the ground states, corre-
sponding to Proposition 11 and Theorem 10 respectively. The main result states that for spin
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systems not in B1/2
p the minimizers of F on large sets are characterized by a majority phase.

Remark 19 then ensures that this is a generic situation for N large.

Theorem 21 Let N ∈ N, and let {ci j }be a N-periodic distribution of ferro/antiferromagnetic

interactions such that {ci j } /∈ B̃1/2
p . Let G be a Lipschitz bounded open set and let uε be a

minimizer for F(·, 1
ε
G). Then there exists a constant C depending only on G such that either

{uε = 1} or {uε = −1} is composed of connected components K i
ε such that the length of the

boundary of each K i
ε is not greater than CN.

As for Theorem 10, the proof relies on the estimate of the length of paths in the interface,
which in this case reads as follows.

Proposition 22 Let N ∈ N, and let {ci j } be a N-periodic distribution of ferro/antiferro-

magnetic interactions such that {ci j } /∈ B̃1/2
p . Let D be an open bounded subset of R2 such

that the distance between the connected components of ∂q(D) is greater than N/2. Let u be
a minimizer for F(·, D). Then there is no path in the interface S(u) of length greater than
N/2.

The steps of the proofs are exactly the same as in the random case, by substituting the
applications of Lemma 6 with the corresponding applications of Proposition 20 (thus the
logarithmic estimates become linear with N ).
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