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Abstract The paper deals with the asymptotic properties of a symmetric random walk in
a high contrast periodic medium in Z¢, d > 1. From the existing homogenization results
it follows that under diffusive scaling the limit behaviour of this random walk need not be
Markovian. The goal of this work is to show that if in addition to the coordinate of the random
walk in Z¢ we introduce an extra variable that characterizes the position of the random walk
inside the period then the limit dynamics of this two-component process is Markov. We
describe the limit process and observe that the components of the limit process are coupled.
We also prove the convergence in the path space for the said random walk.
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1 Introduction

We study in this work the scaling limit of a symmetric random walk in 74, d > 1, under
the assumptions that the medium is periodic, elliptic and high-contrast. More precisely, we
assume that the transition probabilities of the random walk depend on a small parameter & > 0
and that they are of order one for some links on the period and of order &2 for other links. It
is assumed, moreover, that the graph of links associated with transition probabilities of order
one forms an unbounded connected set in Z¢. Denoting this random walk X(n) we study the
large time behaviour of the process under the diffusive scaling that is the limit behaviour of
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the process )?g(t) = S)A(([t/ez]), as &€ — 0. Our aim is to rearrange the process in such a
way that the limit dynamics remains Markovian. We show that to this end it suffices to add to
the random walk one more component which characterises the position of the random walk
inside the period. We also describe the limit behaviour of this extended process and prove
the convergence in the path space.

The study of random walks in high-contrast media with the properties described above is
motivated by the so-called double porosity models which are of great importance in mechan-
ics. Various phenomena in media with a high-contrast microstructure have been widely
studied by the specialists in applied sciences and then since the *90s high-contrast homog-
enization problems have been attracting the attention of mathematicians. Homogenization
problems for partial differential equations describing high-contrast periodic media have been
widely investigated in the existing mathematical literature. In the pioneer work [2] a parabolic
equation with high-contrast periodic coefficients has been considered. It was shown that the
effective equation contains a non-local in time term which represents the memory effect. In
the literature on porous media these models are usually called double porosity models. Later
on in [1], with the help of two-scale convergence techniques, it was proved that the solutions
of the original parabolic equations two-scale converge to a function which depends both on
slow and fast variables, and, as a function of fast and slow variables, satisfies a system of
local PDEs.

In the case of spectral problems the homogenized spectral problem turns out to be non-
linear with respect to the spectral parameter. The convergence of spectra and the structure of
the limit operator pencils have been considered in [3,9] and other works.

A number of works have been devoted to nonlinear double porosity models, see [4,6] and
references therein. In particular, for the evolution nonlinear models the memory effect was
also observed.

In the discrete setting homogenization problems for high-contrast equations and
Lagrangians were studied in [5]. It was shown in particular that for evolution high-contrast
difference equations the two-scale limit of solutions is a function of continuous “slow” vari-
ables and discrete “fast” variables.

The appearance of a non-local term in the homogenized equation means that the limit in
law of the scaled random walks need not be a Markov process. Our goal is to study the large
time behaviour of the random walk X (n). The presence of transition probabilities of order
&2 leads to essential slowing down the random walk in some parts of the domain that can be
treated as traps. Moreover, the exit time from a trap is of order £ ~2.

It turns out that in order to keep the Markovity of the limit process one can equip the
coordinate process X (n) with an additional variable, k(f(\ (n)), that specifies the position of
the random walk in the period. Although in the original process ()? (n), k()A( (n))) the last
component is a function of X (n), in the limit process the last component is independent
of the other component. The limit process is a two-component continuous time Markov
process X (t) = (f\? (1), k(1)), its first component X (1) lives in the space R?, while the second
component is a jump Markov process k(¢) with a finite number of states k(t) € {0, 1, ..., M}.
The process k(t) does not depend on X (t); the intensities A (k) and transition probabilities
mrj, kK # j, k,j =0,1,..., M, of its jumps are expressed in terms of the transition
probabilities of the original symmetric random walk. When k(¢) = 0, the first component
X (t) evolves along the trajectories of a Brownian motion in R4, but when k(r) # 0, then
the first component remains still until the second component of the process takes again the
value equal to 0. Thus the trajectories of X (1) coincide with the trajectories of a Brownian
motion in R? on those time intervals where k(1) = 0. As long as k(t) # 0, then X (t) does not
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move, and only the second component of the process evolves, that is, figuratively speaking,
the process lives during this period in the “astral” space A = {x1, ..., xp}.

We also study the generalization of this model to the case of several fast components. More
precisely, we assume that the set of links to which transition probabilities of order one are
assigned consists of a finite number of non-intersecting unbounded connected components.
In this case we also equip the random walk with an additional variable, however it indicates
not only whether the random walk is in the “astral” space or not, but also specifies the
“fast” subset to which the random walk belongs. Also we associate to each fast component
the corresponding effective covariance matrix. The limit two-component process is Markov,
its second coordinate is a Markov jump process with a finite number of states. When the
second coordinate indicates the “astral” state, the first one does not move. Otherwise, the
first coordinate is a diffusion in RY, however its covariance matrix depends on the value of
the second coordinate.

Our approach relies on approximation results from [7]. A crucial step here is constructing
several periodic correctors which are introduced as solutions of auxiliary difference elliptic
equations on the period. The coefficients of the corresponding difference operator on the
discrete torus are defined as the transition probabilities of X (n) with ¢ = 0. Earlier the
corrector techniques in the discrete framework have been developed in [8] for proving the
homogenization results for uniformly elliptic difference schemes.

We prove the convergence, as ¢ — 0, of semigroups generated by ()A( +(1), k()? 1))
and determine the generator of the limit semigroup. This yields the convergence of finite
dlmenswnal distributions of (X £(1), k(X ¢(1))). We then improve this result and show that
(Xg (1), k(Xg (t))) converges in law in the topology of D[0, c0).

It is interesting to observe that, unlike diffusion models, the high-contrast discrete models
are feasible in any dimension including d = 1, at the price of admitting not only nearest
neighbour interactions. The graph of non-vanishing transition probabilities should be large
enough to ensure the existence of unbounded connected component. This is illustrated by an
example in Sect. 3.

2 Problem Setup

We consider a symmetric random walk X (n) on Z4, d > 1, with transition probabilities
p(x,y) =Pr(x — y), (x,y) € Z¢ x 7¢:

pex.y)=p(y.x). .y eZxZ% Y pa.y)=1 VxeZ (1)
yEZ‘l
We assume that the random walk satisfies the following properties:

— Periodicity The functions p(x, x +&) are are periodic in x with a period Y forall £ € 74,
In what follows we identify the period Y with the corresponding d-dimensional discrete
torus T¢.

— Finite range of interactions There exists ¢ > 0 such that

plx,x+&) =0, if |§]>c. (@)
— Irreducibility The random walk is irreducible in Z¢.

We denote the transition matrix of the random walk by P = {p(x, y), x, y € Z¢}.
In this paper we consider a family of transition probabilities P®) = {p®) (x, y)} that satisfy
the properties formulated above and depend on a small parameter ¢ > 0. These transition
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probabilities describe the so-called high-contrast periodic structure of the environment. We
suppose that the transition matrix P(®) is a small perturbation of a fixed transition matrix P°
and can be represented as

P® = P42V, 3)

In the sequel the upper index (¢) is dropped.
In order to characterize the matrices P? and V we divide the periodicity cell into two sets

Y=AUB; A, B#0, ANB =10, “)

and assume that B is a connected set such that its periodic extension denoted B is unbounded
and connected. Here the connectedness is understood in terms of the transition matrix P°
that is two points x’, x” € Z¢ are connected if there exists a path x', ..., x* in Z¢ such that
x! =x',xY =x"and po(x/, x/T1) > Oforall j = 1,..., L — 1. We also denote by A” the
periodic extension of A. Then Z¢ = A® U B*.

We impose the following conditions on P and V:

— P9 satisfies conditions (1)

- po(x,x) =1,if x € A%,

- po(x,y) =0,ifx,y € A%, x # y;

- po(x,y) =0,ifx € B*, y € A%,
—v(x,y)=0,ifx, y € BY x £y,

the elements of matrix V satisfy the relation

D vy =0 VxeZ )

yezd

Notice that, as a consequence of the above conditions, B?*is a maximal connected component
and, consequently, P? is irreducible on B®. From the periodicity of V it also follows that

Umax = max |v(x,y)| < oo.
x,yeZd

Under these conditions, for the transition probabilities defined in (3), if p(x, y) # 0, then

— p(x,y) <1,whenx,y e B* (rapid movement);

— p(x,x) =14 0(?), when x € A%,

— p(x,y) < &2, whenx,y € A%, x # y (slow movement);

- plx,y) < €2, when x € BY, y € Af (rare exchange between A% and BY).

Notice that for x,y € B? we have py(x,y) = Pr(x — y)|e=o = lin})Pr(x —
e—

y| noentry to A%). The above choice of the transition probabilities reflects a significant
slowdown of the random walk inside of high-contrast periodic environments. Out goal is to
study the large time behavior of this random walk, ¢ being used as the corresponding scaling
factor.

Let [° (Z4) be the Banach space of bounded functions on Z¢ vanishing at infinity with
the norm || || = sup,cza | f(X)].

Denote eZ = {z: £ € 7}, then eZ¢ = ¢ A* U B*. In what follows the symbols x and y
are used for the variables on Z7 (fast variables), while the symbols z and w for the variables
on £Z2 (slow variables).

We introduce now the rescaled process. Denote by 7 the transition operator

T.f(@)= Y pez.w)f(w). felg®@EL?), (6)

weeZd
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where pe(z, w) = p(£, %), and p(x,y), x = £, y = 2, is defined above in (1)~(3). Then
the operator

L, = SLZ(TS_I) (7)

is the difference generator of the rescaled random walk XS (1) = eX ([ ]) on £Z4 with

transition operator 7.
The goal of the paper is to describe the limit behavior of the rescaled random walk X, (),
as ¢ — 0, and to construct the limit process.

3 Semigroup Convergence

In this section we equip the random walk X ¢ (t) with an additional component, and, for the
extended process, prove the convergence of the corresponding semigroups. Assume that the
set A defined in (4) contains M € N sites of T: A = {x1,...,xy}. Foreachk=1,...,.M
we denote by {x;}? the periodic extension of the point x; € A, then

78 = eB* UeAl = eB  Ue{x )} U... Uelxy)t. (8)

We assign to each z € eZ¢ the index k(z) € {0, 1, ..., M} depending on the component in
decomposition (8) to which z belongs:

, if z € eBY;

j, if zee{xj}ﬁ, j=1....M. ®

k(z) = {
With this construction in hands we introduce the metric space
E, = [(z,k(z)), z €2, k(z) €10, 1,...,M}], E. CeZ x{0,1,...,M} (10)

with a metric that coincides with the metric in 6Z< for the first component of (z, k(z)) € Eg.
We denote by B(E,) the space of bounded functions on E; and introduce the transition
operator T of the random walk X, () = ()? (1), k()? ¢(1))) on E using the transition operator
(6) of the random walk on ¢Z<:

(Te )z, k(2)) = Z Pe(z, w) f(w, k(w)), [ € B(Ee). (11)
weeZd

Then T, is the contraction on B(E;):

ITe fllBE) = SUP)ITsf(z k(z)| = (SU(P)) [f(z k)], f € B(E).

Remark 1 Since the point (z, k(z)) € E, is uniquely defined by its first coordinate z € £Z¢,
then we can use z € ¢Z? as a coordinate in E, (considering E, as a graph of the mapping
k:eZ9 - {0,1,...,M)).In particular, for the transition probabilities of the random walk
on E, we keep the same notations p,(z, w) as in (6).

We proceed to constructing the limit semigroup. We denote £ = RY x {0,1,..., M}, and
Co(E) stands for the Banach space of continuous functions vanishing at infinity. A function
F = F(z,k) € Co(E) can be represented as a vector function

F(z,k) = {fi(2) € Co(RY), k=0,1,..., M}.
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The norm in Co(E) is given by

I1Fllcoey = (pax I ficll coray-

.....

Consider the operator
LF(z,k) = (0, VV fo()ljg=0} + LaF(z, k), (12)

where 1{x—o) is the indicator function, © is a positive definite matrix defined below in (62),
(@, VVfo) =Tr(®VV fy), and L4 is a generator of a Markov jump process

M
LaF(z, k) = Ak) Zlukj(fj(z) — f(@) (13)
j=0
J#k
with
*0i = |B| Z Z v(x, ), @jo= Zv(xj,x), j=1,....M,
X€B ye xl}ﬁ reB! "
Aj = Z v(xg,y), o k=1,....,M, j #k,
yelx;
k) .
Mk = oy, g = jEk =0 (15)
i— A(k)
J#k
Observe that
M
0<i < mkin)»(k) < m]?xk(k) <A <00, ugj =0, Zﬂkj —1 VL
j=0
J#k
Remark 2 The parameters o, j, k = 0,1,..., M, define intensities of the limit Markov

jump process on the period Y.

In order to clarify the relation between the random walk and the limit process we consider
the following example.

Example Take d = 1, A® = {1, 2}(mod 3) and B* = {0}(mod 3), so that the period
= {0, 1, 2}. Define

po(x,x) =1ifx € A,

po(x, x £3) = po(x, x) = % if x € B,

v(x,x £2) = v(x,x £4) =l and v(x, x) = —4 if x € BF,

vix,x —4) =v(x,x+2) =1and v(x, x) = —2 if x = 1(mod 3),
v(x,x+4)=v(x,x —2) =1land v(x, x) = =2 if x = 2(mod 3).

Then |B| = I, a0; = ajo = 2,j = 1, 2; a;p = ap; = 0, and the generator of the limit
process takes the form (12) with ® = 3, A(0) = 4, A(1) = L(2) = 2, o1 = Ho2 = %,
10 = p20 = 1, and 1o = 0.

The operator L is defined on the core

= {(fo, i s fu)s fo € CEERY), fj € CoRY), j=1,...,M} C Co(E) (16)
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which is a dense set in Co(E). One can check that the operator L on Co(E) satisfies the
positive maximum principle, i.e. if F € Co(E) and maxg F(z, k) = F(zo, ko) = fi,(z0),
then L F(zg, ko) < 0. Indeed, from (12) to (13) we obtain

LF(z0,0) = (O, VV fo(z0)) + L4 F(20,0) <0 in the case (o, ko) = (20, 0).
and
LF(zo, k) = LaF(z0,k) <0 inthe case (zo, ko) = (z0, k), k #0.

Since L 4 is abounded operator in Co(E), the operator A — L is invertible for sufficiently large
A. Then by the Hille-Yosida theorem the closure of L is a generator of a strongly continuous,
positive, contraction semigroup 7 (¢) on Co(E), that is a Feller semigroup.

For every F € Co(E) we define on E, the function 7z, F as follows:

fo(2), if ze€eBt, k(z) =0;

fi@), if zeefx)t, k@) =1;

(me F)(z,k(2)) = a7

fu (@), if z € efxm), kz) = M.

Let lgo(Eg) be a Banach space of functions on E, vanishing as |z| — oo with the norm

I fllgeey = sup [f(z, k(z)| = sup |f(z,k(2))I. (18)

(z:k(z))€E; zeeZ4

Then 7, defines a bounded linear mapping 7, : Co(E) — [5°(E;):

e Flligeey = sup (e F)(z, k()] < [ Fllcgey,  supllmell < 1. (19)
(z,k(z))€E, 3

Theorem 1 Let T (t) be a strongly continuous, positive, contraction semigroup on Co(E)
with generator L defined by (12)—(15), and T be the linear operator on I5°(E¢) defined by
(11).

Then for every F € Co(E)

I3

&2

Tg[ ]HEF — T(@)F forall t >0 (20)

as e — 0.

Proof In view of (18) to prove (20) it suffices to show that

x
£2

”Ts[ ]NsF — 7 T(OF iz,

11

&2

= sup Ts[ ]ﬂeF(Z, k(z)) — e T(t)F(z,k(z))| > 0 ase — 0. (21)

zeeZ4

The proof of (21) relies on the following approximation theorem [7, Theorem 6.5, Ch.1]. O

Theorem [7]. Forn = 1,2, ..., let T,, be a linear contraction on the Banach space £,,,
let &, be a positive number, and put A, = ¢, LT, — I). Assume that lim,,_, o &, = 0. Let
{T (1)} be a strongly continuous contraction semigroup on the Banach space £ with generator
A, and let D be a core for A. Assume that 77, : £ — L,, are bounded linear transformations
with sup,, |77, || < oo. Then the following are equivalent:
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602 A. Piatnitski, E. Zhizhina

z
€n

a) Foreach f € L, Tn[ ]nnf — T(t)f forallt >0ase — 0.
b) Foreach f € D,thereexists f, € L, foreachn > 1suchthat f, — fand A, f, —> Af.

According to this theorem the semigroups convergence stated in item a) is equivalent to
the statement in item b) which is the subject of the next lemma.

Lemma 2 Let the operator L be defined by (12)—(15) and the core D C Co(E) of L be
defined by (16); assume that a bounded linear transformation 7w : Co(E) — I§°(E¢) is
defined by (17), and L, = e%(TS —I). Then for every F € D, there exists Fy € I{°(E¢) such
that

I Fe — e Flljgeg,) — 0 (22)
and
|LeFe — rrgLF||lgo(E€) — 0 as ¢ —» 0. (23)
Proof For any F = (fo, f1, ..., fu) € D we consider the following F; € I§°(E;)
fo@) +e (Vo (%)) +e2 (V9 o). g(£))
+2 105 (2) (o = ), if zeeBt, k(z)=0,
Fe(z, k(z)) =
f1@), if zeefx)), k@ =1,
m (@), if zeelxpy), k(z)=M.
(24)

Here h(y), g(y),q;(y), j = 1,..., M, are periodic bounded functions defined below. From
(17) and (24) it immediately follows that
sup |Fe(z, k(2)) — me F(z, k(2))| = || Fe — e Flljgeg,) — 0

zeeZd

as ¢ — 0. Thus convergence (22) is valid. O

In compliance with decomposition (3) for the transition matrix P we introduce the oper-
ators:
T. = T2 + &%V, (25)

where

1 f k@) = Y po(

z w
e e
weeZd

) . kGw)),

VefGok@) = Y2 (2 Z) fw.kw)).

weeZd

Let us note that due to the structure of the matrix P, the operator TSO has a block structure:
T f(z,k(2)) = f(z, k() forz € e A*,and T?|, ., g+ is defined by the transition probabilities
of the random walk on the perforated lattice ¢ B¥ = ¢Z4 \ ¢ A"

According to (25) the operator L, = 8% (T; — I) can be written as

1
Le = ?(TSO +&2Ve—1)=L2+ V.,

where
1

LY = ;(TEO ) (26)
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is the generator of the random walk on the perforated lattice ¢ Bf = ¢Z7 \ e A",
To prove that

[LeFe — e LF|j0(,) = sup |LeFe(z, k(2)) —meLF(z,k(z))] > 0, ase — 0, (27)

zeeZd
we consider separately the case when z € £B*, and z € A", Since the second component
in E; is a function of the first one, in the remaining part of the proof for brevity write F,(z)

instead of Fy(z, k(2)).
Let z € ¢B¥, then the first component of F; can be written as a sum

Fo@) = F'@+F2@). zeeB, (28)
where z z
Fr@ = @ +e (Vh@n(5)) +e (YW, e(5)). (29)
U Z
Fe@ =) q;(2) (0@ - £ (30)
j=1
Then

LeFe=LY+ Vo) Fe = LYFF + FQ) + Ve F. = LOFP + LOF2 + V.F..  (31)

Proposition 3 There exist bounded periodic functions h(y) = {hi(y)}ji=1 and g(y) =
{gim (y)};jm=1 (correctors) and a positive definite matrix ® > 0, such that

LYFF - (©,VVfy), ie sup |LFF ()= (©,VVfy(2))| = 0 as e -0, (32)

ze€eBf
where FSP is defined in (29).

The proof of this proposition is based on the corrector techniques, it is given in Appendix.

The last Proposition allows us to pass to the limit in the first term on the right-hand side
of (31). We now turn to rearranging the other two terms. Using (26), (30) and (5) we have
for z € ¢B*

(LIFL +VeF) @ = Y (1 = Daj (2)) (@) = £

&

j=1
M M

+>0 ) v@wFw - F@Y Y vz w),
J=lwee{x;}? J=lwee{x;}?

where v.(z, w) = v(%, £). Then it follows from (24), (28)—(30) together with (16) that the
g

e’ e
last two terms can be rewritten as

M M
doD v wFw) —F()) Y vz w)

J=lwee{x;} Ji=lweefx;}¥

M
=Y Y vz w)(fjw) - fo2) + 0.

Jj=lwee{x;}?
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604 A. Piatnitski, E. Zhizhina

Considering the continuity of functions f; and the fact that |w — z| < ce, we have

(LOFL + Ve Fe)(2)

M
=2 (@ = g (3)) o) FO+Y T W@ — )+,

Jj=1 j=lwee{x;})?
(33)
where o(1) tends to 0 as ¢ — 0.

Proposition 4 There exist bounded periodic functions q;(x) on B  and non-negative con-
stants ag; > 0, j =1,..., M, such that

M

sup |(LIFL + VeF)(2) = Y e (fj(2) — fo@)| — 0 as e > 0. (34)
zeeB? =1

The proof of the proposition is given in Appendix.
Combining (32), (33) and (34) yields

sup |LgFe(z) —mcLF(z)] >0 & — 0. (35)

z€eB?

The next step is to prove that

sup |LoFe(z) —m:LF(z)| >0 & — 0. (36)

zeg Al
Let z € e{x;}? C £A*. From (24) and continuity of functions f it follows that
(LeFe)(2) = (LY + Vo) Fe(2) = Ve Fe(2)

M
=Y Y v@w(i@ = @)+ Y vz w)(foR) = fi(2)) +o(l)

J=lweefx;}? weeBE
Jk

M
=2 D v @ — fi@)

J=1yefx;}t

Jj#k

+ Z v(xg, X)(fo(2) — fi(2)) +0o(1) ase — 0, (37
xeB?

where we have used the fact that f(z') = fx(z) + o(1) when |z — 7’| — 0. Here x € Y are
variables on the periodicity cell, and v(xg, x ;) are the elements of the matrix V given by (3).
Thus if forevery j, k =1,..., M, j # k, we set:

Uj
okj = Z v(xk, ), ako:Zv(xk,x), Ak) = Z“k/’ Hkj = 5

A(k)’
yelx;}* xeBt
j#k
then relation (37) implies (36).
Finally, (27) is a consequence of (35) and (36), and Lemma 2 is proved. ]
It remains to recall that (21) is a straightforward consequence of the above approximation
theorem. This completes the proof of Theorem 1. O
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Remark 3 In the next section we show that there exists a Markov process X (¢) corresponding
to the Feller semigroup 7'(¢). From Theorem 1 one can easily derive the convergence of finite
dimensional distributions of the processes X.(¢) (random walks on E, defined by (11)) to
those of X'(¢).

4 Invariance Principle, Convergence of the Processes

For the original process X, (1) = (3(\8 (1), k(f(\ +(1))), which is the random walk on E. (see
(11)), the second component k(X ) ef0,1,....M } is the function of the first compo-
nent Xg(t) € ez (see (6)). Thus Markov processes Xg(t) and X, (¢) are equivalent, i.e.
the trajectories of {Xe (t)} are isomorphic to trajectories of {X.(z)}. However, the second
component of X, (¢) plays the crucial role when passing to the limit ¢ — 0. As has been
shown in Sect. 3 the limit process X (¢) preserves the Markov property only in the presence
of the second component k(¢) € {0, 1, ..., M}, and this is an interesting asymptotic property
of the processes X, (¢). It should be noted that in the process X'(¢) the second component is
not a function of the first one anymore. This can be observed, in particular, from the structure
of the limit generator, see (12)—(13).

In the previous section we justified the convergence of the semigroups, and consequently,
the finite dimensional distributions of X, (¢). The goal of this section is to prove the existence
of the limit process X' (¢) in E with sample paths in Dg[0, oo) and to establish the invariance
principle for the processes X, (¢). Namely, we show that X, (¢) converges in distributions to
X(t) as ¢ — 0 in the Skorokhod topology of Dg[0, c0).

Theorem 5 For any initial distribution v € P(E) there exists a Markov process X (t) cor-
responding to the semigroup T (t) : Co(E) — Co(E) with generator L defined by (12)—(15)
and with sample paths in Dg[0, 00).

If v is the limit law of X(0), then

X.(t) = X(t) in Dg[0,00) as & — 0. (38)

Proof The main idea of the proof is to combine the convergence of the finite dimensional
distributions of X, (¢) (that is a consequence of Theorem 1, see Remark 3) and the tightness
of X¢(¢) in Dg[0, 00).

We apply here Theorem 2.12 from [7], Chapter 4. For the reader convenience we formulate
it here.

Theorem [7]. Let E, E1, E, ... be metric spaces with E locally compact and separable.
Forn =1,2,...1letn, : E, — E be measurable, let i, (x, ') be a transition function on
E, x B(E,), and suppose {Y,(k), k =0, 1,2, ...} is a Markov chain in E,, corresponding
to wy(x, I'). Let €, > 0 satisfy lim,,_, o, €, = 0. Define X,,(t) = n, (Y, ([t/€4])),

T, f(x) = / FOWn(x,dy).  f € BEn),

and 7, : B(E) — B(E,) by m,,f = f on,. Suppose that {T (¢)} is a Feller semigroup on
Co(E) and that for each f € Co(E) andr > 0

lim 77 = T@) f. (39)

n—oQo

If {X,,(0)} has limiting distribution v € P(E), then there is aMarkov process X corresponding
to {7 (¢)} with initial distribution v and sample paths in Dg[0, c0), and X,, = X.
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In our case, E = R? x {0,1,....M},E, =E. CE, ¢6= %,andnn =n.: E. > Eis
the measurable mapping for every ¢, it is embedding of the set E,, isomorphic to the lattice
sZ4, to E. The Markov chain Y,(m),m =0, 1, ...is the same as the random walk X, (m) =
()A(g (m), k()A(S (m))) on E; (see (11)) with the transition function &, ((z, k(2)), (w, k(w))) =
Pe(z, w). The semigroup 7T'(¢) on Co(E) generated by the operator L, see (12)—(15), is the
Feller semigroup by the Hille-Yosida theorem as was mentioned in the beginning of Sect. 3.
Setting €, = n% in (39) we see that the convergence in (20) ensures the convergence in (39).

Thus, all assumptions of Theorem 2.12 from [7] are fulfilled. Consequently, if we set

X (1) = Y, ([ﬁ]) = (Y,, ([;7])) then these processes convergence in law in the
space Dg[0, 0o0). Theorem 5 is completely proved. O

5 Generalization: Several Fast Components

In the final part of the paper we consider some generalizations of the model studied above. We
keep all the assumptions on p(x, y), in particular we assume that these transition probabilities
are periodic, have a finite range of interaction and define an irreducible random walk, and
that (3) holds. We also keep all the assumptions on pg(x, y) except for that on the structure
of the set B. Here we assume that B is the union of N, N > 1, non-intersecting unbounded
periodic sets such that P is invariant and irreducible on each of these sets.

‘We denote these sets B?, R BlﬁV and assume that each B?, j=1,..., N,is connected

with respect to P? and, moreover, is a maximal connected component. Our assumptions on
the matrix P° now take the form

— P9 satisfies conditions (1)

- po(x,x) = 1,if x € A%,

— po(x.y) =0,ifx,y € A%, x # y;

— po(x,y) =0,ifx € A%, y € BF;

polx.y) =0.ifx € Bf, y € BL,i, j=1,....N,i # j.

As in Sect. 3 we introduce the extended process on Y/ (0, 1). For each k =

1, ..., M we denote by {xx}? the periodic extension of the point x; € A, then
eZ¢ = eB* UgA® = st U...u E‘B]:V Uelx)FU... Uelxpy)t (40)
We assign to each z € eZ the index k(z) € {1,..., N + M} depending on the component
in decomposition (40) to which z belongs:
k(z) = Js 1f.z§8Bj,]_1,.:.,N, @1
N+j, if zeelx;}*, j=1,....M.

With this construction in hands we introduce the metric space

E = {@k@), zeez k@ e (... N+ M}, Eocez! x (1. N+ M)
(42)
with a metric that coincides with the metric in £Z¢ for the first component of (z, k(z)) € Es.
As in Sect. 3 we denote by B(E;) the space of bounded functions on E; and introduce the
transition operator 7, of random walk X, (¢) = ()?5 (1), k()? £(t))) on E; as follows:

(T- )@ k@) = Y pelz,w) f(w, kw), f € B(E,). (43)

weeZd
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Then T, is the contraction on B(E;).

To construct the limit semigroup we denote E = R? x {1, ..., N+M},and Co(E) stands
for the Banach space of continuous functions vanishing at infinity. A function F = F(z, k) €
Co(E) can be represented as a vector function

F(z,k) = {fi(z) € Co®R?Y), k=1,...,N + M}.

We introduce the operator

N
LF(z,k) =) (07, VVfi@)lg=)) + LaF(z k), (44)
j=1
where ©!, ..., " are positive definite matrices defined below in formula (49), and L 4 is a

generator of the following Markov jump process

N+M
LaF(z,k) = ak) Y mij(fi(@) — fi(2). (45)

Jj=1
J#k

Here the parameters A (k) and ux; are determined as follows: first we define transition inten-
sities
—sz(x y), if k,j=1,....N, k # j;

XEBk }€Bn

|B|Z Y vy, if k=1,....N, j=N+1,....N+M;
k

X€By yef xXj— L

o D vl ), if k=N+1,...,.N+M, j=1,...,N;
xeB?
> vlnn. ), if k, j=N+1,....,N+M, k +#j.
yefx;_n}?

and then set foreachk, j=1,..., N+ M

N+M

M= o = f’(’z) (46)

The operator L is defined on the core

D={(fi..... fu+m), fj € CPRY) for j
=1,...,N; fj € CoRY), for j=N+1,...,N + M}, (47)

which is a dense set in Co(E). As in Sect. 3 one can check that the operator L on Co(E)
satisfies the positive maximum principle, and the operator A — L is invertible for sufficiently
large A. Then by the Hille-Yosida theorem the closure of L is a generator of a strongly
continuous, positive, contraction semigroup 7 (¢) on Co(E).
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In this framework the mapping 7, : Co(E) > [§°(E,) is defined as follows:
fik), if zeeBl kx) =1;

i #
«F)(z, k _ | fv@. if zeeBy, k(z) =N; 48
(e F)(z, k(2)) fni1(@), if zeeln)f, k(z) =N + 1; (48)

fnam (@), if z € efayl, k@) =N+ M.

It remains to define matrices ®/ that appeared in (44). In fact, foreach j = 1,..., N,
the matrix ©/ coincides with the effective diffusion matrix of the random walk on B? with

transition matrix P°. We denote the restriction of P° on B ;i by P]Q and recall of the definition

of the effective diffusion matrix. To this end we consider, foreach j = 1, ..., N, the equation
> e (E+ WG +H - () =0, yeB,
€Ay

where Ay be a finite set of & € 7% such that PO(y, y 4+ £) # 0. Observe that this equation
coincides with Eq. (58). Therefore, in the same way as in the proof of Proposition 3 in
Appendix one can show that it has a periodic solution A/ (y) which is unique up to an
additive constant. We set

. 1 1 .
o = o > Zpg(y>s®(§s+hf<y+s>>. (49)
71 yeBj e,
By Proposition 7 matrices e/, j=1,..., N are positive definite.

Theorem 6 Let T (t) be a strongly continuous, positive, contraction semigroup on Co(E)
with generator L defined by (44)—~(46), (49), and T, be the linear operator on I3°(E.) defined
by (43).

Then for every F € Co(E)

t

z

Te[ ]ngF — T@)F forall t >0

ase — 0.

For any initial distribution v € P(E) there exists a Markov process X (t) corresponding
to the semigroup T (t) : Co(E) — Co(E) with generator L and sample paths in Dg[0, 00).
Moreover, if the initial distributions v, € P(E:) of the processes X, converge weakly, as
e — 0,t0v € P(E), then

X (t) = X(t) in Dg[0,00) as ¢ — 0.

Proof The proof of this Theorem follows the line of the proof of Theorems 1 and 5. We leave
it to the reader. O

The limit process X () can be described in the following way. Its second component is a
Markov jump process with N 4+ M states whose intensities and transition probabilities are
given in (46). The first component that evolves in R¢ remains still when the second one takes
on values in {N + 1, N 4+ M}, and it shows a diffusive behaviour with the covariance ©/
when the second component is equal to j, j = 1,..., N.

Acknowledgements The authors would like to thank the anonymous Referees for very useful remarks.
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Appendix: Proofs of the Propositions

Proof of Proposition 4 From (33) we obtain the following system of uncoupled equations

for the functions g g , z € ¢B?, and for constants «g i

(@ = Da;(2)) (@ = Fi+ 3 v w) (£ = fol2)

wee{x;}?

=a0j(fj(2) — fox), j=1,....,M.

Then, forevery j =1, ..., M, the function g (g) satisfies the equation
0 Z Z
(T° - I)qj(g) = Y wGw —OleIB(g), zeeB?, (50)
wee{x;}?

which is equivalent to the following equation on B*:
(P'—Dgj(x)= Y wix,y)—aojlp(x), x e B, (51)
yefx;}?

where 1p(x) is the indicator function of B, and ¢ j(x) is Y-periodic. Using the Fredholm
theorem we conclude that Eq. (51) has a unique solution if

> wx.y) —agjlp L Ker (PO = I)*. (52)
yel{x;)*

Due to the irreducibility of PY on BF we have Ker(P°? — I)* = 1. Therefore, the orthogo-
nality condition in (52) implies the following unique choice of constants o;:

1
@) = 5 > vy =0, (53)
xeB yg{xj}ﬁ

where | B| is the cardinality of the set B. Thus «; is defined by (53) forevery j =1, ..., M,
and Eq. (51) has a unique up to an additive constant solution g (x), x € B, thatis a bounded
periodic function on the set B*. Proposition 4 is proved. O

Proof of Proposition 3 We say that y ~ x, x,y € Z4,if po(x, y) # 0. Let A, be a finite
set of & € Z¢ such that x 4+ & ~ x. From now on we use the notation

po(x,x +&) = pe(x) forall x, & € 74, suchthat x ~ x + £.

Then
> o) =1,
ey
and .
@N@ = 3 pe(Z)ftes). zeest. (54)
éEA;

Using (29) we get for all 7 € e B:

LOFP(2) = 812@0 =D (fo)+e (Vo (%)) + @0 = D (V9 fo. 8(2))
(55)
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Then the vector function £ <§) should satisfy the relation

1 z
ST =D (fo@ +¢ (VA@.n(7))) = 0. (56)
Using (54) we rearrange the left-hand side of (56) as follows:

53 pe(3) Goe )~ foten

EEA%
+é > ps(g) ((Vfo(z +8§),h(§ +s)) - (vfo(z), h(g)))
SEAg
= é Z 123 (g) Vfo(2),8) + é Z pg(g) (Vfo(z), h(g +.§) —h (g)) +0(1)
fehz ez
= é V fo(2), EGZA; Ps(z) (5 +h (g +€) - h(é)) + o). (57)

Thus the periodic vector function /(x) should solve the equation
(P"—I)(I(x) +h(x)) =0, xe B, (58)

where /(x) = x is the linear function. The solvability condition for Eq. (58) reads

(P* =Dl Ker (P~ D)) = (P*~ DI, 15) =Y Y pe(0)§ =0.

xXeBEeA,

Since pg(x) = p_g(x + &), this condition holds true, which implies the existence of the
unique, up to an additive constant, periodic solution 4 (x) of Eq. (58).

We follow the similar reasoning to find an equation for the periodic matrix function
g(x), x € B%. Collecting in (55) all terms of the order O (1) and using relation (58) on the
function h(x) we get:

8% > Ps(z> (fo(z + &) — fo(2))

&

éeAg
o X () (a0 40) - ()
+ 2 pe(Z) (Ve +eers(S+6)) - (VWh@.8(5))) + 0@
EEA%
— é(Vfo(z), EEZA; pe (g)[s +h<§ +.§) . h(g)])
+<va0(2)’ S; bg G) BE ®E+E ®h<§ +5) + (g (g + S) - g(g))]) +0(e)

= (Wfo(z>, > re(5) Bs ®E+E@h(: +s)] +(P0 - I)g(f)) +06). (59

ez
&
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Let £ =y € B, and denote by ®(h) the following matrix function
1
(k) =3 D pMERE+ Y pr(NE®My+E), yeB. (60)
EEA)' SEA};

In order to ensure the convergence in (32) we should find a matrix ® and a periodic matrix
function g(y) such that

S (W)im (¥) + (P° = Dgim () = O, (61)

The solvability condition for (61) reads
(= (M)m + O, Ker(P® — 1)*) = (=@ (W)im + Opm, 15) =0,

thus © is uniquely defined as follows:

km

Z D (h) (),

~ 1Bl
yeEB

and g(y) is a solution of Eq. (61). This solution is uniquely defined up to a constant matrix.

Proposition 7 The matrix © defined by

1
Z@(h)(y) with  ®(h)(y) = Zpg(y)§®<§§+h()’+$)> (62)

|B| geA,
is positive definite, i.e. (On,n) > 0Vn # 0.
Proof Step 1. Here we show that
D 9-e(a(deg () = —2(P° = Dg(y), (63)

ey

where 0gg(y) = g(y + &) — g(y) for every &, and a(y) = agg(y) = pe(y) is the diagonal
matrix. Using

a(y)o:g(y) = ps(V)(g(y +8) —g(y)) and ps(y —&) = p—s(y),

we obtain (63):

D deaig) = Y (pe(y — @) — gy — ) — pe Ny + &) — g(»)

Eehy EeAy

= Z (P—e M) —8(y —&) — pe My + &) —g())

EeAy
= —2(P" -~ Dg(y).

Step 2. From (58) and (63) it follows that the vector function / 4 & satisfies the equation

3 9_ea(de + () =0, yeB.
Eel,y

Consequently, for all 7 € RY we get

= ((Z W@ Y d-ga()d: 1+ ). n) = (Z 3" deh(n@a(y)ds (+h) (), n>, (64)

yeB €Ay YEBEEAy
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where we have denoted

(3 Y ah)@amvet+mm] =30 3 demi()a)oel +mn (.

yEBE€EAy yeEBEEAy
Step 3. Let us check that the following quadratic form is positive definite:
(Z D0+ () ® a()de( + h) (), n) >0 Vi #0. (65)
YEBEEAy

To this end, taking into account the fact that a(y) = {ps(y)} is the diagonal matrix, we
rearrange the left-hand side of (65) as follows

d 2
(Z D7 B+ () ® a(y)de(+h) (y)n. n)=Z > Ps(}’)(zas(l-i-h)k(ymk) :

yeBEEA, yeBE€EA, k=1

Since I(x) = x, and & is a periodic function, the expression on the right-hand side is strictly

positive for any n # 0.
Subtracting (64) from (65) and using the relation d:/(y) = & we have

(Z > agl(y)®a<y>ag<z+h><y>n,n> = (Z D PEMERE+h(Y+E) —h(y))n,n) > 0.

yeBEEAy yeBEeAy
(66)
Observe that

=D D pEMERRY) =D D pr(y +E(—E) ®h()

yEBE€EA, yeEBEEA,

=Y > pe)ERh(u+E);

ueB e,

here we have set u = y + & and uses the identity pg (y) = p_¢(u). Finally, the expression in
(66) can be written as

(Z X rewew e+ 20 +orma)

yeEBEEA,
|
=2(Z > s e (58 +h(y+s>)n,n)
YEBE€EA,
= 2( > omOm, n) >0,
yeB
and the positive definiteness of the matrix ® follows. O

This complete the proof of Proposition 3.
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