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This paper deals with the homogenization problem for convolution type non-local 
operators in random statistically homogeneous ergodic media. Assuming that the 
convolution kernel has a finite second moment and satisfies certain symmetry and 
uniform ellipticity conditions, we prove the almost sure homogenization result and 
show that the limit operator is a second order elliptic differential operator with 
constant deterministic coefficients.
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r é s u m é

Ce papier traite du problème d’homogénéisation pour les opérateurs non locaux 
de type à convolution dans des milieux ergodiques statistiquement homogènes et 
aléatoires. En supposant que le noyau de convolution ait un deuxième moment fini et 
satisfait à certaines conditions de symétrie et d’ellipticité uniformes, nous prouvons 
le résultat d’homogénéisation presque sûr et nous montrons que l’opérateur limite 
est un opérateur elliptique différentiel du second ordre à coefficients déterministes 
constants.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

The paper deals with homogenization problem for integral operators of convolution type in Rd with 
dispersal kernels that have random statistically homogeneous ergodic coefficients. For such operators, under 
natural integrability, moment and uniform ellipticity conditions as well as the symmetry condition we prove 
the homogenization result and study the properties of the limit operator.

The integral operators with a kernel of convolution type are of great interest both from the mathematical 
point of view and due to various important applications in other fields. Among such applications are models 
of population dynamics and ecological models, see [16], [6] and references therein, non-local diffusion prob-
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lems, see [1,4], continuous particle systems, see [7,11], image processing algorithms, see [9]. In the cited works 
only the case of homogeneous environments has been considered. In this case the corresponding dispersal 
kernel depends only on the displacement y − x. However, many applications deal with non-homogeneous 
environments. Such environments are described in terms of integral operator whose dispersal kernels depend 
not only on the displacement x − y but also on the starting and the ending positions x, y.

When studying the large-time behavior of evolution processes in these environments it is natural to make 
the diffusive scaling in the corresponding integral operators and to consider the homogenization problem 
for the obtained family of operators with a small positive parameter. In what follows we call this parameter 
ε.

The case of environments with periodic characteristics has been studied in the recent work [18]. It has 
been shown that under natural moment and symmetry conditions on the kernel the family of rescaled 
operators admits homogenization, and that for the corresponding jump Markov process the Central Limit 
Theorem and the Invariance Principle hold. Interesting homogenization problems for periodic operators 
containing both second order elliptic operator and nonlocal Levy type operator have been considered in 
[2] and [20]. In [8] the limit theorem for periodic jump-diffusion driven by Levy-type noise with drift was 
proved.

In the present paper we consider the more realistic case of environments with random statistically homo-
geneous characteristics. More precisely, we assume that the dispersal kernel of the studied operators has the 
form Λ(x, y)a(x −y), x, y ∈ Rd, where a(z) is a deterministic even function that belongs to L1(Rd) ∩L2

loc(Rd)
and has finite second moments, while Λ(x, y) = Λ(x, y, ω) is a statistically homogeneous symmetric ergodic 
random field that satisfies the uniform ellipticity conditions 0 < Λ− ≤ Λ(x, y) ≤ Λ+.

Making a diffusive scaling we obtain the family of operators

(Lεu)(x) = ε−d−2
∫
Rd

a
(x− y

ε

)
Λ
(x
ε
,
y

ε

)
(u(y) − u(x))dy, (1)

where a positive scaling factor ε is a parameter.
For the presentation simplicity we assume in this paper that Λ(x, y) = μ(x)μ(y) with a statistically 

homogeneous ergodic field μ. However, all our results remain valid for the generic statistically homogeneous 
symmetric random fields Λ(x, y) that satisfy the above ellipticity conditions, as well as for symmetrizable 
operators with Λ(x, y) = λ(x)μ(y). The latter case is considered in Section 7.1.

The main goal of this work is to investigate the limit behavior of Lε as ε → 0. We are going to show 
that the family Lε converges almost surely to a second order elliptic operator with constant deterministic 
coefficient in the so-called G-topology, that is for any m > 0 the family of operators (−Lε + m)−1 almost 
surely converges strongly in L2(Rd) to the operator (−L0 +m)−1 where L0 = Θij ∂2

∂xi∂xj , and Θ is a positive 
definite constant matrix.

There is a vast existing literature devoted to homogenization theory of differential operators, at present 
it is a well-developed area, see for instance monographs [3], [5] and [10]. The first homogenization results for 
divergence form differential operators with random coefficients were obtained in pioneer works [12] and [17]. 
In these works it was shown that the generic divergence form second order elliptic operator with random 
statistically homogeneous coefficients admits homogenization. Moreover, the limit operator has constant 
coefficients, in the ergodic case these coefficients are deterministic.

Later on a number of important homogenization results have been obtained for various elliptic and 
parabolic differential equations and system of equations in random stationary media. The reader can find 
many references in the book [10].

Homogenization of elliptic difference schemes and discrete operators in statistically homogeneous media 
has been performed in [13], [14]. Also, in [14] several limit theorems have been proved for random walks in 
stationary discrete random media that possess different types of symmetry.
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To our best knowledge in the existing literature there are no results on stochastic homogenization of 
convolution type integral operators with a dispersal kernel that has stationary rapidly oscillating coeffi-
cients.

In the one-dimensional case a homogenization problem for the operators that have both local and non-
local parts has been considered in the work [19]. This work deals with scaling limits of the solutions to 
stochastic differential equations in dimension one with stationary coefficients driven by Poisson random 
measures and Brownian motions. The annealed convergence theorem is proved, in which the limit exhibits a 
diffusive or superdiffusive behavior, depending on whether the Poisson random measure has a finite second 
moment or not. It is important in this paper that the diffusion coefficient does not degenerate.

Our approach relies on asymptotic expansion techniques and using the so-called corrector. As often 
happens in the case of random environments we cannot claim the existence of a stationary corrector. 
Instead, we construct a corrector which is a random field in Rd with stationary increments and almost 
surely has a sublinear growth in L2(Rd).

When substituting two leading terms of the expansion for the solution of the original equation, we obtain 
the discrepancies being oscillating functions with zero average. Some of these functions are not stationary. 
In order to show that the contributions of these discrepancies are asymptotically negligible we add to the 
expansion two extra terms. The necessity of constructing these terms is essentially related to the fact that, 
in contrast with the case of elliptic differential equations, the resolvent of the studied operator is not locally 
compact in L2(Rd).

The paper is organized as follows:
In Section 2 we provide the detailed setting of the problem and formulate the main result of this work.
The leading terms of the ansatz for a solution of equation (Lε − m)uε = f with f ∈ C∞

0 (Rd) are 
introduced in Section 3. Also in this section we outline the main steps of the proof of our homogenization 
theorem.

Then in Section 4 we construct the principal corrector in the asymptotic expansion and study the prop-
erties of this corrector.

Section 5 is devoted to constructing two additional terms of the expansion of uε. Then we introduce the 
effective matrix and prove its positive definiteness.

Estimates for the remainder in the asymptotic expansion are obtained in Section 6.
Finally, in Section 7 we complete the proof of the homogenization statements.

2. Problem setup and main result

We consider a homogenization problem for a random convolution type operator of the form

(Lωu)(x) = μ(x, ω)
∫
Rd

a(x− y)μ(y, ω)(u(y) − u(x))dy. (2)

For the function a(z) we assume the following:

a(z) ∈ L1(Rd) ∩ L2
loc(Rd), a(z) ≥ 0; a(−z) = a(z), (3)

and

‖a‖L1(Rd) =
∫
Rd

a(z) dz = a1 < ∞; σ2 =
∫
Rd

|z|2a(z) dz < ∞. (4)

We also assume that



A. Piatnitski, E. Zhizhina / J. Math. Pures Appl. 134 (2020) 36–71 39
there exists a constant c0 > 0 and a cube B ⊂ Rd,

such that a(z) ≥ c0 for all z ∈ B.
(5)

This additional condition on a(z) is naturally satisfied for regular kernels, and we introduced (5) for a 
presentation simplicity. Assumption (5) essentially simplifies derivation of inequality (49), on which the 
proof of the smallness of the first corrector is based, see Proposition 4.4 below. We notice that inequality 
(49) can also be derived without assumption (5), however in this case additional arguments of measure 
theory are required.

Let (Ω, F , P) be a standard probability space. We assume that the random field μ(x, ω) = μ(Txω) is 
stationary and bounded from above and from below:

0 < α1 ≤ μ(x, ω) ≤ α2 < ∞; (6)

here μ(ω) is a random variable, and Tx, x ∈ Rd, is an ergodic group of measurable transformations acting 
in ω-space Ω, Tx : Ω 
→ Ω, and possessing the following properties:

• Tx+y = Tx ◦ Ty for all x, y ∈ Rd, T0 = Id,
• P(A) = P(TxA) for any A ∈ F and any x ∈ Rd,
• Tx is a measurable map from Rd × Ω to Ω, where Rd is equipped with the Borel σ-algebra.

For each realization μ(·, ω) let us consider the following family of operators

(Lε
ωu)(x) = 1

εd+2

∫
Rd

a
(x− y

ε

)
μ
(x
ε
, ω
)
μ
(y
ε
, ω
)(

u(y) − u(x)
)
dy, (7)

with a parameter ε > 0. We are interested in the limit behavior of the operators Lε
ω as ε → 0. We are going 

to show that for a.e. ω the operators Lε
ω converge to a differential operator with constant coefficients in 

the topology of resolvent convergence. Let us fix m > 0, any f ∈ L2(Rd), and define uε as the solution of 
equation:

(Lε
ω −m)uε = f, i.e. uε = (Lε

ω −m)−1f (8)

with f ∈ L2(Rd). Denote by L̂ the following operator in L2(Rd):

L̂u =
d∑

i,j=1
Θij

∂2u

∂xi ∂xj
, D(L̂) = H2(Rd) (9)

with a positive definite matrix Θ = {Θij}, i, j = 1, . . . , d, defined below, see (103). Let u0(x) be the solution 
of equation

d∑
i,j=1

Θij
∂2u0

∂xi ∂xj
−mu0 = f, i.e. u0 = (L̂−m)−1f (10)

with the same right-hand side f as in (8).

Theorem 2.1. Almost surely for any f ∈ L2(Rd) and any m > 0 the convergence holds:

‖(Lε
ω −m)−1f − (L̂−m)−1f‖L2(Rd) → 0 as ε → 0. (11)
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The statement of Theorem 2.1 remains valid in the case of non-symmetric operators Lε of the form

(Lε,ns
ω u)(x) = 1

εd+2

∫
Rd

a
(x− y

ε

)
λ
(x
ε
, ω
)
μ
(y
ε
, ω
)(

u(y) − u(x)
)
dy (12)

with λ(z, ω) = λ(Tzω) such that 0 < α1 ≤ λ(x, ω) ≤ α2 < ∞. In this case the equation (8) reads

(Lε,ns
ω −m)uε = f. (13)

Corollary 2.1. Let λ(z, ω) and μ(z, ω) satisfy condition (6). Then a.s. for any f ∈ L2(Rd) and any m > 0
the limit relation in (11) holds true with L̂nsu =

∑d
i,j=1 Θns

ij
∂2u

∂xi ∂xj
, Θns =

(
E
{

μ
λ

})−1Θ, and Θ defined in 
(103).

3. Asymptotic expansion for uε

We begin this section by introducing a set of functions f ∈ C∞
0 (Rd) such that u0 = (L̂ − m)−1f ∈

C∞
0 (Rd). We denote this set by S0(Rd). Observe that this set is dense in L2(Rd). Indeed, if we take 

ϕ(x) ∈ C∞(R) such that 0 ≤ ϕ ≤ 1, ϕ = 1 for x ≤ 0 and ϕ = 0 for x ≥ 1, then letting fn = (L̂−m)
(
ϕ(|x| −

n)(L̂−m)−1f(x)
)

one can easily check that fn ∈ C∞
0 (Rd) and ‖fn − f‖L2(Rd) → 0, as n → ∞.

We consider first the case when f ∈ S0(Rd) and denote by Q a cube centered at the origin and such that 
supp(u0) ⊂ Q. We want to prove the convergence

‖uε − u0‖L2(Rd) → 0, as ε → 0, (14)

where the functions uε and u0 are defined in (8) and (10), respectively. To this end we approximate the 
function uε(x, ω) by means of the following ansatz

wε(x, ω) = vε(x, ω) + uε
2(x, ω) + uε

3(x, ω),

with vε(x, ω) = u0(x) + εθ
(x
ε
, ω
)
∇u0(x),

(15)

where θ
(
z, ω

)
is a vector function which is often called a corrector. It will be introduced later on as a solution 

of an auxiliary problem that does not depend on ε, see (22). A solution of this auxiliary problem is defined 
up to an additive constant vector, and we construct θ

(
z, ω

)
in such a way that a.s. θ

(
0, ω

)
= 0. We also set

χε(z, ω) = θ(z, ω) + cε(ω), cε(ω) = − 1
|Q|

∫
Q

θ
(x
ε
, ω
)
dx. (16)

Observe that under such a choice of the vector cε the function χε
(
x
ε , ω

)
has zero average in Q. We show in 

Proposition 4.4 that εcε → 0 a.s. It should be emphasized that θ(y, ω) need not be a stationary field, that 
is we do not claim that θ(y, ω) = θ(Tyω) for some random vector θ(ω).

Two other functions, uε
2 and uε

3, that appear in the ansatz in (15) will be introduced in (81), (91), 
respectively.

After substitution vε for u to (7) we get

(Lεvε)(x) =
1

εd+2

∫
a
(x− y

ε

)
μ
(x
ε

)
μ
(y
ε

)(
u0(y) + εθ

(y
ε

)
∇u0(y) − u0(x) − εθ

(x
ε

)
∇u0(x)

)
dy;
Rd
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here and in what follows we drop the argument ω in the random fields μ(y, ω), θ(y, ω), etc., if it does not 
lead to ambiguity. After change of variables x−y

ε = z we get

(Lεvε)(x) = 1
ε2

∫
Rd

a(z)μ
(x
ε

)
μ
(x
ε
− z

)(
u0(x− εz) − u0(x)

)
dz

+ 1
ε

∫
Rd

a(z)μ
(x
ε

)
μ
(x
ε
− z

)(
θ
(x
ε
− z

)
∇u0(x− εz) − θ

(x
ε

)
∇u0(x)

)
dz.

(17)

The Taylor expansion of a function u(y) with a remainder in the integral form reads

u(y) = u(x) +
1∫

0

∇u(x + (y − x)t) · (y − x) dt

= u(x) + ∇u(x) · (y − x) +
1∫

0

∇∇u(x + (y − x)t)(y − x)(y − x)(1 − t) dt

and is valid for any x, y ∈ Rd. Thus we can rewrite (17) as follows

(Lεvε)(x) =
1
ε
μ
(x
ε

)
∇u0(x) ·

∫
Rd

[
− z + θ

(x
ε
− z

)
− θ

(x
ε

)]
a(z)μ

(x
ε
− z

)
dz (18)

+μ
(x
ε

)
∇∇u0(x) ·

∫
Rd

[1
2z⊗z − z⊗ θ

(x
ε
− z

)]
a(z)μ

(x
ε
−z

)
dz + φε(x)

=: 1
ε
Iε−1 + ε0Iε0 + φε

with

φε(x, ω) =

∫
Rd

a(z)μ
(x
ε

)
μ
(x
ε
−z

)( 1∫
0

∇∇u0(x− εzt)·z⊗z (1 − t) dt− 1
2∇∇u0(x)·z⊗z

)
dz

+ 1
ε
μ
(x
ε

) ∫
Rd

a(z)μ
(x
ε
− z

)
θ
(x
ε
−z

)(
∇u0(x− εz) −∇u0(x)

)
dz

+ μ
(x
ε

)
∇∇u0(x)

∫
Rd

a(z)μ
(x
ε
− z

)
z ⊗ θ

(x
ε
−z

)
dz.

(19)

Here and in what follows z ⊗ z stands for the matrix {zizj}di,j=1.
Let us outline the main steps of the proof of relation (14). In order to make the term Iε−1 in (18) equal 

to zero, we should construct a random field θ
(
z, ω

)
that satisfies the following equation

∫ (
− z + θ

(x
ε
− z, ω

)
− θ

(x
ε
, ω
))

a(z)μ
(x
ε
− z, ω

)
dz = 0. (20)
Rd
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The goal of the first step is to construct such a random field θ(z, ω). Next we show that the second term Iε0
can be represented as a sum

Iε0 = L̂u0 + S
(x
ε
, ω
)
∇∇u0 + fε

2 (x, ω),

where S(z, ω) is a stationary matrix-field with zero average, and fε
2 (x, ω) is a non-stationary term; both of 

them are introduced below. We define uε
2 and uε

3 by

(Lε −m)uε
2 = −S

(x
ε
, ω
)
∇∇u0, (Lε −m)uε

3 = −fε
2 (x, ω),

and prove that ‖uε
2‖L2(Rd) → 0, ‖uε

3‖L2(Rd) → 0. Then considering the properties of the corrector θ, see 
Theorem 4.1, we derive the limit relation

‖εθ
(x
ε

)
∇u0(x)‖L2(Rd) → 0, as ε → 0.

This yields ‖wε − u0‖ → 0.
With this choice of θ, uε

2 and uε
3 the expression (Lε −m)wε can be rearranged as follows:

(Lε −m)wε = (Lε −m)vε + (Lε −m)(uε
2 + uε

3) = (L̂−m)u0 + φε −mεθ∇u0

= f + φε −mεθ∇u0 = (Lε −m)uε + φε −mεθ∇u0.

We prove below in Lemma 6.1 that ‖φε‖L2(Rd) is vanishing as ε → 0. This implies the convergence ‖wε −
uε‖L2(Rd) → 0 and, by the triangle inequality, the required relation in (14).

4. First corrector

In this Section we construct a solution of equation (20). Denote

r
(x
ε
, ω
)

=
∫
Rd

z a(z)μ
(x
ε
− z, ω

)
dz, (21)

then r(ξ, ω) = r(Tξω), ξ = x
ε , is a stationary field. Moreover, since Eμ(ξ − z, ω) = Eμ(Tξ−zω) = const for 

all z, then

Er(ξ, ω) =
∫
Rd

z a(z)Eμ(ξ − z, ω) dz = 0.

Equation (20) takes the form

r(ξ, ω) =
∫
Rd

a(z)μ(ξ − z, ω)
(
θ(ξ − z, ω) − θ(ξ, ω)

)
dz. (22)

We are going to show now that equation (22) has a solution that possesses the following properties:

A) the increments ζz(ξ, ω) = θ(z + ξ, ω) − θ(ξ, ω) are stationary for any given z, i.e.

ζz(ξ, ω) = ζz(0, Tξω);
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B) εθ
(
x
ε , ω

)
is a function of sub-linear growth in L2

loc(Rd): for any bounded Lipschitz domain Q ⊂ Rd

∥∥∥ε θ(x
ε
, ω
)∥∥∥

L2(Q)
→ 0 a.s. ω ∈ Ω.

Here and in the sequel for presentation simplicity we write for the L2 norm of a vector-function just 
L2(Q) instead of L2(Q ; Rd).

Theorem 4.1. There exists a unique (up to an additive constant vector) solution θ ∈ L2
loc(Rd) of equation 

(22) that satisfies conditions A) – B).

Proof of Theorem 4.1. We divide the proof into several steps.

Step 1. Consider the following operator acting in L2(Ω):

(Aϕ)(ω) =
∫
Rd

a(z)μ(Tzω)
(
ϕ(Tzω) − ϕ(ω)

)
dz. (23)

Proposition 4.1. The spectrum σ(A) ⊂ (−∞, 0].

Proof. It is straightforward to check that the operator A is bounded and symmetric in the weighted space 
L2(Ω, Pμ) = L2

μ(Ω) with dPμ(ω) = μ(ω)dP(ω). Denoting ω̃ = Tzω, s = −z, using stationarity of μ and 
considering the relation a(−z) = a(z) we get∫

Ω

∫
Rd

a(z)μ(Tzω)μ(ω)ϕ2(Tzω) dz dP(ω) =

∫
Ω

∫
Rd

a(z)μ(ω̃)μ(T−zω̃)ϕ2(ω̃) dz dP(ω̃) (24)

=
∫
Ω

∫
Rd

a(s)μ(ω)μ(Tsω)ϕ2(ω) ds dP(ω).

Thus

(
Aϕ,ϕ

)
L2

μ
=
∫
Ω

∫
Rd

a(z)μ(Tzω)
(
ϕ(Tzω) − ϕ(ω)

)
ϕ(ω)μ(ω)dzdP(ω)

= −1
2

∫
Ω

∫
Rd

a(z)μ(Tzω)μ(ω)
(
ϕ(Tzω) − ϕ(ω)

)2
dzdP(ω) < 0.

(25)

Since the norms in L2(Ω) and L2
μ(Ω) are equivalent, the desired statement follows. �

Let us consider for any δ > 0 the equation

δϕ(ω) −
∫
Rd

a(z)μ(Tzω)(ϕ(Tzω) − ϕ(ω)) dz = r(ω), r(ω) =
∫
Rd

za(z)μ(Tzω) dz. (26)

By Proposition 4.1 the operator (δI − A)−1 is bounded, then there exists a unique solution κδ(ω) =
−(δI −A)−1r(ω) of (26). For any given z ∈ Rd we set

uδ(z, ω) = κ
δ(Tzω) − κ

δ(ω).
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Then

uδ(z1 + z2, ω) = uδ(z2, ω) + uδ(z1, Tz2ω) ∀ z1, z2 ∈ Rd. (27)

For any ξ ∈ Rd as an immediate consequence of (26) we have

δκδ(Tξω) −
∫
Rd

a(z)μ(Tξ+zω)(κδ(Tξ+zω) − κ
δ(Tξω)) dz

=
∫
Rd

za(z)μ(Tξ+zω) dz.

(28)

Next we obtain a priori estimates for ‖κδ(Tzω) − κ
δ(ω)‖L2

M
with dM(z, ω) = a(z)dzdP(ω).

Proposition 4.2. The following estimate holds:

‖uδ(z, ω)‖L2
M

= ‖κδ(Tzω) − κ
δ(ω)‖L2

M
≤ C (29)

with a constant C that does not depend on δ.

Proof. Multiplying equation (26) by ϕ(ω) = μ(ω)κδ(ω) and integrating the resulting relation over Ω yields

δ

∫
Ω

(
κ

δ(ω)
)2
μ(ω) dP(ω)

−
∫
Rd

∫
Ω

a(z)μ(Tzω)
(
κ

δ(Tzω) − κ
δ(ω)

)
κ

δ(ω)μ(ω) dz dP(ω) (30)

=
∫
Rd

∫
Ω

za(z)κδ(ω)μ(Tzω)μ(ω) dz dP(ω).

The same change of variables as in (24) results in the relation

∫
Rd

∫
Ω

za(z)κδ(ω)μ(Tzω)μ(ω) dz dP(ω)

= −
∫
Rd

∫
Ω

za(z)κδ(Tzω)μ(ω)μ(Tzω) dz dP(ω),
(31)

therefore, the right-hand side of (30) takes the form

∫
Rd

∫
Ω

za(z)κδ(ω)μ(Tzω)μ(ω)dzdP(ω)

= −1
2

∫
Rd

∫
Ω

za(z)
(
κ

δ(Tzω) − κ
δ(ω)

)
μ(Tzω)μ(ω)dzdP(ω).

(32)

Equality (25) implies that the second term on the left-hand side of (30) can be rearranged in the following 
way
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−
∫
Rd

∫
Ω

a(z)μ(Tzω)
(
κ

δ(Tzω) − κ
δ(ω)

)
κ

δ(ω)μ(ω) dz dP(ω)

= 1
2

∫
Rd

∫
Ω

a(z)μ(Tzω)μ(ω)
(
κ

δ(Tzω) − κ
δ(ω)

)2
dz dP(ω).

(33)

Let us denote

Jδ =
∫
Rd

∫
Ω

μ(Tzω)μ(ω)
(
κ

δ(Tzω) − κ
δ(ω)

)2
a(z)dz dP(ω)

=
∫
Rd

∫
Ω

μ(Tzω)μ(ω)(uδ(z, ω))2dM(z, ω)

and ∫
Rd

∫
Ω

(
κ

δ(Tzω) − κ
δ(ω)

)2
a(z)dz dP(ω) =

∫
Rd

∫
Ω

(uδ(z, ω))2dM(z, ω) = ‖uδ‖2
L2

M
,

where dM(z, ω) = a(z)dzdP(ω). Then

Jδ =
∫
Rd

∫
Ω

μ(Tzω)μ(ω)(uδ(z, ω))2dM(z, ω) ≥ α2
1‖uδ‖2

L2
M

(34)

and on the other hand, relations (30) - (33) imply the following upper bound on Jδ:

Jδ =
∫
Rd

∫
Ω

μ(Tzω)μ(ω)(uδ(z, ω))2dM(z, ω) ≤ 1
2α

2
2σ‖uδ‖L2

M
. (35)

Bounds (34) - (35) together yield

α2
1‖uδ‖2

L2
M

≤ Jδ ≤ 1
2α

2
2σ‖uδ‖L2

M
.

Consequently we obtain the estimate (29) with C = α2
2

2α2
1
σ, and this estimate is uniform in δ. �

Corollary 4.1. For any δ > 0 the following upper bound holds:

√
δ ‖κδ‖L2

μ
≤ C. (36)

Proof. From (30) we have

δ

∫
Ω

(
κ

δ(ω)
)2
μ(ω) dP(ω)

=
∫
Rd

∫
Ω

a(z)μ(Tzω)
(
κ

δ(Tzω) − κ
δ(ω)

)
κ

δ(ω)μ(ω) dz dP(ω)

+
∫ ∫

za(z)κδ(ω)μ(Tzω)μ(ω) dz dP(ω).

(37)
Rd Ω
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Then using (32), (33), (35) together with the Cauchy-Swartz inequality and bound (29), we obtain that the 
expression on the right-hand side of (37) is uniformly bounded in δ. �

Proposition 4.2 implies that the family {uδ(z, ω)}δ>0 is bounded in L2
M . Consequently there exists a 

subsequence uj(z, ω) = uδj (z, ω), j = 1, 2, . . ., that converges in a weak topology of L2
M as δj → 0. We 

denote this limit by θ(z, ω):

w - lim
j→∞

uj(z, ω) = w - lim
δj→0

(
κ

δj (Tzω) − κ
δj (ω)

)
= θ(z, ω). (38)

Clearly, θ(z, ω) ∈ L2
M , i.e.

∫
Rd

∫
Ω

θ2(z, ω)a(z)dzdP(ω) < ∞, (39)

and by the Fubini theorem θ(z, ω) ∈ L2(Ω) for almost all z from the support of the function a(z). In addition 
θ(0, ω) ≡ 0 and for any z

Eθ(z, ω) = lim
δj→0

(
Eκ

δj (Tzω) − Eκ
δj (ω)

)
= 0. (40)

Step 2. Property A. The function θ(z, ω) introduced in (38) is not originally defined on the set {z ∈ Rd :
a(z) = 0}.

Proposition 4.3. The function θ(z, ω), given by (38), can be extended to Rd × Ω in such a way that θ(z, ω)
satisfies relation (27), i.e. θ(z, ω) has stationary increments:

θ(z + ξ, ω) − θ(ξ, ω) = θ(z, Tξω) = θ(z, Tξω) − θ(0, Tξω). (41)

Proof. Applying Mazur’s theorem [21, Section V.1] we conclude that θ(z, ω) = s - lim
n→∞

wn is the strong limit 
of a sequence wn of convex combinations of elements uj(z, ω) = uδj (z, ω). The strong convergence implies 
that there exists a subsequence of {wn} that converges a.s. to the same limit θ(z, ω):

lim
nk→∞

wnk
(z, ω) = θ(z, ω) for a.e. z and a.e. ω.

Since equality (27) holds for all uj , it also holds for any convex linear combination wn of uj :

wn(z1 + z2, ω) = wn(z2, ω) + wn(z1, Tz2ω) ∀ n. (42)

Thus taking the subsequence {wnk
} in equality (42) and passing to the point-wise limit nk → ∞ in any 

term of this equality we obtain (41) first only for such z1, z2 that z1, z2, z1 + z2 belong to supp(a). Then we 
extend function θ(z, ω) to a.e. z ∈ Rd using relation (41):

θ(z1 + z2, ω) = θ(z2, ω) + θ(z1, Tz2ω). (43)

Observe that this extension is well-defined because relation (41) holds on the support of a.
Let us show that θ(z, ω) is defined for all z ∈ Zd. To this end we observe that, due to the properties 

of the dynamical system Tz, the function θ(z1, Tz2ω) is well-defined measurable function of z1 and ω for 
all z2 ∈ Rd. The function θ(z1 + z2, ω) possesses the same property due to its particular structure. Then 
according to (43) the function θ(z2, ω) is defined for all z2 ∈ Rd. �
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Denote ζz(ξ, ω) = θ(z + ξ, ω) − θ(ξ, ω), then for z ∈ Rd relation (41) yields

ζz(ξ, ω) = ζz(0, Tξω), (44)

i.e. for all z ∈ Rd the field ζz(ξ, ω) is statistically homogeneous in ξ, and

ζz(0, ω) = θ(z, ω). (45)

Thus by (38), (41) – (44) the random function θ(z, ω) is not stationary, but its increments ζz(ξ, ω) =
θ(z + ξ, ω) − θ(ξ, ω) form a stationary field for any given z.

Step 3. At this step we show that θ satisfies equation (22).
Let us prove now that θ(z, ω) defined by (38) is a solution of equation (20) (or (22)). To this end for 

an arbitrary function ψ(ω) ∈ L2(Ω) we multiply equality (28) by a function ψ(ω)μ(ω) and integrate the 
resulting relation over Ω, then we have

δ

∫
Ω

κ
δ(Tξω)ψ(ω)μ(ω) dP(ω)

=
∫
Rd

∫
Ω

a(z)μ(Tξ+zω)
(
κ

δ(Tξ+zω) − κ
δ(Tξω)

)
dzψ(ω)μ(ω)dP(ω)

+
∫
Rd

∫
Ω

za(z)μ(Tξ+zω)dz ψ(ω)μ(ω) dP(ω).

(46)

By estimate (36) and the Cauchy-Swartz inequality for any ψ ∈ L2(Ω) we get

δ

∫
Ω

κ
δ(Tξω)ψ(ω)μ(ω) dP(ω) → 0 as δ → 0. (47)

Passing to the limit δ → 0 in equation (46) and taking into account (38) and (47), we obtain that for a.e. 
ω the function θ(z, Tξω) satisfies the equation

∫
Rd

a(z)μ(Tξ+zω)θ(z, Tξω)) dz = −
∫
Rd

za(z)μ(Tξ+zω) dz.

Using (41) we get after the change of variables z → −z

−
∫
Rd

a(z)μ(Tξ−zω)(θ(ξ − z, ω) − θ(ξ, ω)) dz +
∫
Rd

za(z)μ(Tξ−zω) dz = 0, (48)

and it is the same as (20). Thus we have proved that θ(z, ω) is a solution of (22).

Step 4. Property B.
Assumption (5) and inequality (39) imply that

c0

∫ ∫
θ2(z, ω)dzdP(ω) <

∫ ∫
θ2(z, ω)a(z)dzdP(ω) < ∞,
B Ω Rd Ω
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and by the Fubini theorem we conclude that a.s.
∫
B

θ2(z, ω)dz < ∞. (49)

Thus θ(z, ω) ∈ L2(B) with ‖θ(z, ω)‖L2(B) = K(ω) for a.e. ω, and E(K(ω))2 < ∞.

Proposition 4.4 (Sublinear growing of εθ(xε ) in L2
loc(Rd)). Denote by ϕε(z, ω) = ε θ

(
z
ε , ω

)
. Then a.s.

‖ϕε(·, ω)‖L2(Q) → 0 as ε → 0 (50)

for any bounded Lipschitz domain Q ⊂ Rd.

Proof. The proof relies on inequality (49). In what follows we assume without loss of the generality that 
B = [0, 1]d.

Lemma 4.1. The family of functions ϕε(z, ω) = ε θ
(
z
ε , ω

)
is bounded and compact in L2(Q).

Proof. Introducing new variables zε = y we have

‖ϕε‖2
L2(Q) = ‖ε θ

(z
ε
, ω
)
‖2
L2(Q) =

∫
Q

ε2 θ2(z
ε
, ω
)
dz =

∫
ε−1Q

εd+2 θ2(y, ω)dy

= εd+2
∑

j∈ZQ/ε

∫
Bj

θ2(y, ω)dy = εd+2
∑

j∈ZQ/ε

∫
Bj

(θ(y, ω) − θ(j, ω) + θ(j, ω))2dy

≤ 2εd+2
∑

j∈ZQ/ε

∫
Bj

(θ(y, ω) − θ(j, ω))2dy + 2εd+2
∑

j∈ZQ/ε

θ2(j, ω) |Bj |. (51)

Here j ∈ Zd ∩ 1
εQ = ZQ/ε, Bj = j + [0, 1)d. Then if y ∈ Bj , then y = j + z, z ∈ B = [0, 1)d, and we can 

rewrite the first term on the right-hand side of (51) as follows

2 εd+2
∑

j∈ZQ/ε

∫
B

(θ(j + z, ω) − θ(j, ω))2dz = 2 εd+2
∑

j∈ZQ/ε

∫
B

θ2(z, Tjω)dz.

Using the fact that θB(j, ω) :=
∫
B
θ2(z, Tjω)dz is a stationary field and θ(z, ω) ∈ L2(B), by the Birkhoff 

ergodic theorem we obtain that there exists a random variable J (ω) such that

2 εd
∑

j∈ZQ/ε

∫
B

θ2(z, Tjω)dz → 2|Q|J , EJ (ω) = E
∫
B

θ2(z, ω)dz < ∞.

Consequently, the first term on the right-hand side in (51) is vanishing as ε → 0:

2εd+2
∑

j∈ZQ/ε

∫
B

θ2(z, Tjω)dz → 0. (52)

Let us prove now that a.s. the second term on the right-hand side of (51) is bounded. Denoting

ϕ̂ε(z) = ε θ̂
(z

, ω
)
,

ε
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where θ̂ is a piecewise constant function: θ̂
(
z
ε , ω

)
= θ

(
[ zε ], ω

)
= θ(j, ω) as z ∈ εBj , we rewrite this term as 

follows:

2 εd+2
∑

j∈ZQ/ε

θ2(j, ω) = 2 ‖ε θ̂
(z
ε
, ω
)
‖2
L2(Q) = 2‖ϕ̂ε(z)‖2

L2(Q). (53)

Let us estimate the difference gradient of ϕ̂ε:

‖grad ϕ̂ε‖2
(L2(Q))d = ε2

∫
Q

d∑
k=1

(
θ
(
[ 1ε (z + εek)], ω

)
− θ

(
[ zε ], ω

))2
ε2 dz

=
∫
Q

d∑
k=1

(
θ
([z

ε

]
+ ek, ω

)
− θ

([z
ε

]
, ω
))2

dz = εd
d∑

k=1

∑
j∈ZQ/ε

(
θ(j + ek, ω) − θ(j, ω)

)2
.

Since θ(j + ek, ω) − θ(j, ω) = θ(ek, Tjω) is stationary for each ek, then by the Birkhoff ergodic theorem

‖grad ϕ̂ε‖2
(L2(Q))d = εd

d∑
k=1

∑
j∈ZQ/ε

(
θ(j + ek, ω) − θ(j, ω)

)2 → |Q|
d∑

k=1

Ck(ω), (54)

where ECk = Eθ2(ek, ω).
Next we prove that a.s. the following estimate holds:

θ̄ε(ω) =
∫
Q

ϕ̂ε(z, ω)dz = εd
∑

j∈ZQ/ε

ε θ(j, ω) ≤ C̃(ω). (55)

We apply the induction and start with d = 1. Using stationarity of θ(j + 1, ω) − θ(j, ω) we have by the 
ergodic theorem

ε2
∣∣∣ ∑
j∈ZQ/ε

θ(j, ω)
∣∣∣ ≤ ε2

∑
j∈ZQ/ε

j−1∑
k=0

|θ(k + 1, ω) − θ(k, ω)|

≤ ε2
∑

j∈ZQ/ε

∑
k∈ZQ/ε

|θ(k + 1, ω) − θ(k, ω)|

= ε2 |Q|
ε

∑
k∈ZQ/ε

|θ(e1, Tkω)| → |Q|2E|θ(e1, ω)| = C̄1.

Thus

lim
ε→0

ε2
∣∣∣ ∑
j∈ZQ/ε

θ(j, ω)
∣∣∣ ≤ C̄1,

and this implies that for a.e. ω

sup
ε

∣∣∣ε2
∑

j∈ZQ/ε

θ(j, ω)
∣∣∣ ≤ C̃1(ω), (56)

where the constant C̃1(ω) depends only on ω.
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Let us show how to derive the required upper bound in the dimension d = 2 using (56). In this case 
j ∈ ZQ/ε, j = (j1, j2), and we assume without loss of generality that Q ⊂ [−q, q]2. Then

θ((j1, j2), ω) =
j2−1∑
k=0

(
θ((j1, k + 1), ω) − θ((j1, k), ω)

)
+ θ((j1, 0), ω),

and for any j = (j1, j2) ∈ ZQ/ε we get

|θ((j1, j2), ω)| ≤
q/ε∑

k=−q/ε

∣∣θ((j1, k + 1), ω) − θ((j1, k), ω)
∣∣ + |θ((j1, 0), ω)|.

Using (56) and the ergodic property of the field |θ(e2, Tjω)| we obtain the following upper bound

ε3
∣∣∣ ∑
(j1,j2)∈ZQ/ε

θ((j1, j2), ω)
∣∣∣

≤ ε3
q/ε∑

j1=−q/ε

2q
ε

q/ε∑
k=−q/ε

|θ(e2, T(j1,k)ω)| + ε3
q/ε∑

j1=−q/ε

2q
ε
|θ((j1, 0), ω)|

= 2qε2
∑

(j1,k)∈ZQ/ε

|θ(e2, T(j1,k)ω)| + 2qε2
q/ε∑

j1=−q/ε

|θ((j1, 0), ω)| ≤ C̃2(ω) + 2qC̃1(ω),

where 2q is the 1-d volume of slices of Q that are orthogonal to e1. The case of d > 2 is considered in the 
same way.

Applying the standard discrete Poincaré inequality or the Poincaré inequality for piece-wise linear ap-
proximations of discrete functions we obtain from (54) - (55) that a.s.

‖ϕ̂ε‖2
L2(Q) ≤ g1

(∫
Q

ϕ̂ε(z, ω)dz
)2

+ g2‖grad ϕ̂ε‖2
(L2(Q))d ≤ K(ω), (57)

where the constants g1, g2, and K(ω) do not depend on n.
Thus using the same piece-wise linear approximations and considering the compactness of embedding of 

H1(Q) to L2(Q) we derive from (54) and (57) that the set of functions {ϕ̂ε} is compact in L2(Q). As follows 
from (51) – (52)

ϕε = ϕ̂ε + ϕ̆ε, where ϕ̆ε(x) = ε
(
θ
(x
ε

)
− θ̂

(x
ε

))
, ‖ϕ̆ε‖L2(Q) → 0 (ε → 0).

This together with compactness of {ϕ̂ε} implies the compactness of the family {ϕε}. Lemma is proved. �
Next we show that any limit point of the family {ϕε} as ε → 0 is a constant function.

Lemma 4.2. Let {ϕε} converge for a subsequence to ϕ0 in L2(Q). Then ϕ0 = const.

Proof. According to [15] the set {divφ : φ ∈ (C∞
0 (Q))d} is dense in the subspace of functions from L2(Q)

with zero average. It suffices to show that
∫

divφ(x)ϕε(x) dx −→ 0, as ε → 0, (58)

Q
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for any φ = (φ1, φ2, . . . , φd) ∈ (C∞
0 (Q))d. Clearly,

1
ε
(φj(x + εej) − φj(x)) = ∂xj

φj(x) + ευε,

where ‖υε‖L∞(Q) ≤ C. Then, for sufficiently small ε, we have

∫
Q

divφ(x)ϕε(x) dx =
∫
Q

(φj(x + εej) − φj(x))θ
(x
ε
, ω
)
dx + o(1)

=
∫
Q

φj(x)
(
θ
(x
ε
− ej , ω

)
− θ

(x
ε
, ω
))

dx + o(1),

where o(1) tends to zero as ε → 0 by Lemma 4.1. Since θ(z − ej , ω) − (θ(z, ω) is a stationary function, by 
the Birkhoff ergodic theorem the integral on the right-hand side converges to zero a.s. as ε → 0, and the 
desired statement follows. �

Our next goal is to show that almost surely the limit relation in (50) holds. By Lemma 4.1 the constants 
εcε with cε defined in (16) are a.s. uniformly in ε bounded, that is

|εcε| ≤ K(ω) (59)

for all sufficiently small ε > 0.
Consider a convergent subsequence {ϕεn}∞n=1. By Lemma 4.2 the limit function is a constant, denote this 

constant by ϕ0. Assume that ϕ0 �= 0. Then

ϕεn(z) = ϕ0 + ρεn(z),

where ‖ρεn‖L2(Q) → 0 as εn → 0. Clearly, we have

ϕ2εn(z) = 2εnθ
( z

2εn

)
= 2εnθ

(z/2
εn

)
= 2ϕ0 + 2ρεn

(z
2

)
→ 2ϕ0,

because ‖ρεn(·/2)‖L2(Q) → 0 as εn → 0. Similarly, for any N ∈ Z+ we have

ϕNεn(z) → Nϕ0 in L2(Q).

Choosing N in such a way that N |ϕ0| > K(ω) we arrive at a contradiction with (59). Therefore, ϕ0 = 0
for any convergent subsequence. This yields the desired convergence in (50) and completes the proof of 
Proposition 4.4. �
Step 5. Uniqueness of θ.

Proposition 4.5 (Uniqueness). Problem (22) has a unique up to an additive constant solution θ(z, ω), θ ∈ L2
M , 

with statistically homogeneous increments such that (50) holds true.

Proof. Consider two arbitrary solutions θ1(z, ω) and θ2(z, ω) of problem (22). Then the difference Δ(z, ω) =
θ1(z, ω) − θ2(z, ω) satisfies the equation
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∫
Rd

a(z)μ(ξ + z, ω)
(
Δ(ξ + z, ω) − Δ(ξ, ω)

)
dz = 0 (60)

for a.e. ω and for all ξ ∈ Rd.
Let us remark that the function Δ(z, ω) inherits properties A) and B) of θ1(z, ω) and θ2(z, ω). Consider 

a cut-off function ϕ( |ξ|R ) parameterized by R > 0, where ϕ(r), r ∈ R, is a function defined by

ϕ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1, r ≤ 1,

2 − r, 1 < r < 2,

0, r ≥ 2.

For any R > 0, multiplying equation (60) by μ(ξ, ω)Δ(ξ, ω)ϕ( |ξ|R ) and integrating the resulting relation in 
ξ over Rd, we obtain the following equality

∫
Rd

∫
Rd

a(z)μ(ξ + z, ω)μ(ξ, ω)
(
Δ(ξ + z, ω) − Δ(ξ, ω)

)
Δ(ξ, ω)ϕ

( |ξ|
R

)
dzdξ = 0. (61)

Using the relation a(−z) = a(z), after change of variables z → −z, ξ − z = ξ′, we get

∫
Rd

∫
Rd

a(z)μ(ξ′ + z, ω)μ(ξ′, ω)
(
Δ(ξ′, ω) − Δ(ξ′ + z, ω)

)

× Δ(ξ′ + z, ω)ϕ
( |ξ′ + z|

R

)
dzdξ′ = 0.

(62)

Renaming ξ′ back to ξ in the last equation and taking the sum of (61) and (62) we obtain

∫
Rd

∫
Rd

a(z)μ(ξ + z, ω)μ(ξ, ω)
(
Δ(ξ + z, ω) − Δ(ξ, ω)

)

×
(
Δ(ξ + z, ω)ϕ( |ξ + z|

R
) − Δ(ξ, ω)ϕ( |ξ|

R
)
)
dz dξ

=
∫
Rd

∫
Rd

a(z)μ(ξ + z, ω)μ(ξ, ω)
(
Δ(ξ + z, ω) − Δ(ξ, ω)

)2
ϕ( |ξ|

R
) dz dξ (63)

+
∫
Rd

∫
Rd

a(z) μ(ξ + z, ω)μ(ξ, ω)
(
Δ(ξ + z, ω) − Δ(ξ, ω)

)

× Δ(ξ + z, ω)
(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dz dξ

= JR
1 + JR

2 = 0.

Letting R = ε−1, we first estimate the contribution of JR
2 .

Lemma 4.3. The following limit relation holds a.s.:

1
Rd

|JR
2 | → 0 as R → ∞. (64)
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Proof. Denote Δz(Tξω) = Δ(ξ + z, ω) − Δ(ξ, ω), then Δz(Tξω) is stationary in ξ for any given z.
We consider separately the integration over |ξ| > 3R and |ξ| ≤ 3R in the integral JR

2 :

JR
2 =

∫
Rd

∫
|ξ|>3R

a(z)μ(ξ + z, ω)μ(ξ, ω)Δz(Tξω)Δ(ξ + z, ω)
(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dz dξ

+
∫
Rd

∫
|ξ|≤3R

a(z)μ(ξ + z, ω)μ(ξ, ω)Δz(Tξω)Δ(ξ + z, ω)
(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dz dξ.

If |ξ| > 3R, then ϕ( |ξ|R ) = 0. Also, ϕ( |ξ+z|
R ) = 0 if |ξ| > 3R and |z| > R. Then we obtain the following upper 

bound

1
Rd

∫
Rd

∫
|ξ|>3R

a(z)μ(ξ + z, ω)μ(ξ, ω)|Δz(Tξω)||Δ(ξ + z, ω)|ϕ( |ξ + z|
R

)dξ dz

≤ α2
2

Rd

∫
|η|≤2R

( ∫
|z|>R

|z|a(z)|Δz(Tη−zω)| dz
) 1
R
|Δ(η, ω)|ϕ( |η|

R
)dη (65)

≤ α2
2

Rd

∫
|η|≤2R

φ(Tηω) 1
R
|Δ(η, ω)|ϕ( |η|

R
) dη,

where η = ξ + z,

φ(Tηω) =
∫
Rd

|z|a(z)|Δz(Tη−zω)| dz,

and in the first inequality we have used the fact that 1 < |z|
R if |z| > R. Since Δz(ω) ∈ L2

M , then φ(ω) ∈
L2(Ω). Applying the Cauchy-Swartz inequality to the last integral in (65) and recalling the relation R = ε−1

we have

α2
2

Rd

∫
|η|≤2R

φ(Tηω) |Δ(η, ω)|
R

ϕ( |η|
R

) dη

≤ α2
2

( 1
Rd

∫
|η|≤2R

φ2(Tηω)dη
) 1

2
( 1
Rd

∫
|η|≤2R

( |Δ(η, ω)|
R

)2
dη
) 1

2 → 0, (66)

as R → ∞, because the first integral on the right hand side is bounded due to the stationarity of φ(Tηω), 
and the second integral tends to 0 due to sublinear growth of Δ(η, ω), see (50).

If |ξ| ≤ 3R, then the corresponding part of R−dJR
2 can be rewritten as a sum of two terms

1
Rd

∫
Rd

∫
|ξ|≤3R

a(z)μ(ξ + z, ω)μ(ξ, ω)Δz(Tξω)(Δ(ξ + z, ω) − Δ(ξ, ω))

×
(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dξ dz

+ 1
Rd

∫
Rd

∫
|ξ|≤3R

a(z)μ(ξ + z, ω)μ(ξ, ω)Δz(Tξω)Δ(ξ, ω)
(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dξ dz

= I1 + I2.
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We estimate |I1| and |I2| separately. Using the inequality |ϕ( |x|R ) − ϕ( |y|R )| ≤ |x−y|
R by the same arguments 

as above we get

|I2| ≤
α2

2
Rd

∫
Rd

∫
|ξ|≤3R

a(z)|Δz(Tξω)||Δ(ξ, ω)| |z|
R

dξ dz

≤ α2
2

( 1
Rd

∫
|ξ|≤3R

φ2(Tξω)dξ
) 1

2
( 1
Rd

∫
|ξ|≤3R

( |Δ(ξ, ω)|
R

)2
dξ
) 1

2 → 0.

To estimate I1 we divide the area of integration in z into two parts: |z| <
√
R and |z| ≥

√
R, and first 

consider the integral

I
(<)
1 = 1

Rd

∫
|z|<

√
R

∫
|ξ|≤3R

a(z)μ(ξ + z, ω)μ(ξ, ω)Δ2
z(Tξω)

(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dξ dz

Since |z| ≤
√
R, we have |ϕ( |ξ+z|

R ) − ϕ( |ξ|R )| ≤ 1√
R

. Therefore,

|I(<)
1 | ≤ α2

2
1√
R

1
Rd

∫
|ξ|≤3R

∫
Rd

a(z)Δ2
z(Tξω)dz dξ → 0,

as R → ∞; here we have used the fact that

1
Rd

∫
|ξ|≤3R

∫
Rd

a(z)Δ2
z(Tξω)dz dξ → c0E

( ∫
Rd

a(z)Δ2
z(ω)dz

)

with a constant c0 equal to the volume of a ball of radius 3 in Rd. We turn to the second integral

I
(>)
1 = 1

Rd

∫
|z|≥

√
R

∫
|ξ|≤3R

a(z)μ(ξ + z, ω)μ(ξ, ω)Δ2
z(Tξω)

(
ϕ( |ξ + z|

R
) − ϕ( |ξ|

R
)
)
dξ dz.

Considering the inequality |ϕ( |ξ+z|
R ) − ϕ( |ξ|R )| ≤ 1 we obtain

|I(>)
1 | ≤ α2

2
1
Rd

∫
|ξ|≤3R

∫
|z|≥

√
R

a(z)Δ2
z(Tξω) dz dξ. (67)

Denote by ψR(ω) the stationary function defined by

ψR(ω) =
∫

|z|≥
√
R

a(z)Δ2
z(ω) dz.

Since Δz(ω) ∈ L2
M , then

EψR(ω) → 0 as R → ∞. (68)

Moreover, function ψR(ω) is a.s. decreasing in R. Using the ergodic theorem, (67) and (68), we conclude 
that |I(>)

1 | tends to zero as R → ∞. Thus we have proved that |I1| + |I2| → 0 as R → ∞ a.s. Together with 
(66) this implies (64). �
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We proceed with the term JR
1 in (63):

JR
1 =

∫
Rd

∫
Rd

a(z)μ(ξ + z, ω)μ(ξ, ω)Δ2
z(ξ, ω)ϕ( |ξ|

R
) dz dξ.

Using the ergodic theorem we get as R → ∞

1
Rd

JR
1 = 1

Rd

∫
Rd

∫
Rd

a(z)μ(ξ + z, ω)μ(ξ, ω)Δ2
z(ξ, ω)ϕ( |ξ|

R
) dz dξ

−→ c1E
∫
Rd

a(z)μ(Tzω)μ(ω)Δ2
z(ω)dz,

(69)

where c1 =
∫
Rd ϕ(|ξ|)dξ > 0. Consequently from (63) - (64) it follows that

1
Rd

|JR
1 | → 0 as R → ∞, (70)

and together with (69) this implies that

E
∫
Rd

a(z)μ(Tzω)μ(ω)Δ2
z(ω)dz = 0. (71)

Using condition (5) we conclude from (71) that Δz(ω) ≡ 0 for a.e. z and a.e. ω, and hence θ1(z, ω) = θ2(z, ω). 
Proposition is proved. �

This completes the proof of Theorem 4.1. �
5. Additional terms of the asymptotic expansion

Recall that Iε0 stands for the sum of all terms of order ε0 in (18) and that u0 ∈ C∞
0 (Rd). Our first goal is 

to determine the coefficients of the effective elliptic operator L̂. To this end we consider the following scalar 
product of Iε0 with a function ϕ ∈ L2(Rd):

(Iε0 , ϕ) =
∫
Rd

∫
Rd

(1
2z ⊗ z − z ⊗ θ

(x
ε
− z, ω

))
a(z)μ

(x
ε
, ω
)
μ
(x
ε
− z, ω

)
dz ∇∇u0(x)ϕ(x)dx. (72)

After change of variables x = εη we have

(Iε0 , ϕ) = εd
∫
Rd

∫
Rd

1
2a(z) z ⊗ z μ(η, ω)μ(η − z, ω) dz∇∇u0(εη)ϕ(εη) dη

−εd
∫
Rd

∫
Rd

a(z) z ⊗ θ(η − z, ω)μ(η, ω)μ(η − z, ω) dz∇∇u0(εη)ϕ(εη) dη (73)

= Iε1(ϕ) − Iε2(ϕ).

We consider the integrals Iε1(ϕ) and Iε2(ϕ) separately. Since 
∫
Rd |z|2a(z)ds ≤ ∞, then

∫
z ⊗ z a(z)μ(0, ω)μ(−z, ω) dz ∈ (L∞(Ω))d

2
.

Rd
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Therefore, by the Birkhoff ergodic theorem a.s.

∫
Rd

z ⊗ z a(z)μ(x
ε
, ω)μ(x

ε
− z, ω) dz ⇀ D1 weakly in (L2

loc(Rd))d
2

with

D1 =
∫
Rd

1
2 z ⊗ z a(z)E{μ(0, ω)μ(−z, ω)} dz. (74)

Recalling that u0 ∈ C∞
0 (Rd), we obtain

Iε1(ϕ) →
∫
Rd

D1∇∇u0(x)ϕ(x) dx. (75)

The second integral in (73) contains the non-stationary random field θ(z, ω), and we rewrite I2(ϕ) as 
a sum of two terms, such that the first term contains the stationary field ζz(η, ω) and the contribution of 
the second one is asymptotically negligible. In order to estimate the contribution of the second term we 
construct an additional corrector uε

2, see formula (81) below.
We have

Iε2(ϕ) =
∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)θ(x

ε
− z, ω)∇∇u0(x)ϕ(x) dx dz

= 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)θ(x

ε
− z, ω)∇∇u0(x)ϕ(x) dx dz

− 1
2

∫
Rd

∫
Rd

a(z)z μ(y
ε
, ω)μ(y

ε
− z, ω)θ(y

ε
, ω)∇∇u0(y − εz)ϕ(y − εz) dy dz

= 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)

×
(
θ(x

ε
− z, ω)∇∇u0(x)ϕ(x) − θ(x

ε
, ω)∇∇u0(x− εz)ϕ(x− εz)

)
dxdz

= 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)

(
θ(x

ε
− z, ω) − θ(x

ε
, ω)

)
∇∇u0(x)ϕ(x)dx dz

+ 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)

×
(
∇∇u0(x)ϕ(x) −∇∇u0(x− εz)ϕ(x− εz)

)
dx dz,

(76)

here and in what follows zθ(z)∇∇u0(x) stands for ziθj(z)∂xi
∂xj

u0(x). The field ζ−z(η, ω) = θ(η − z, ω) −
θ(η, ω) is stationary for any given z, and

∫
a(z)z ⊗ ζ−z(0, ω)μ(0, ω)μ(−z, ω) dz ∈ (L2(Ω))d

2
. (77)
Rd
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Indeed, in view of (39) and (45) by the Cauchy-Schwarz inequality we have

∫
Ω

(∫
Rd

|a(z)z ⊗ ζ−z(0, ω)μ(0, ω)μ(−z, ω)| dz
)2

dP(ω) ≤

α2
2

( ∫
Rd

a(z)|z|2dz
)( ∫

Rd

∫
Ω

a(z) |θ(−z, ω)|2dzdP(ω)
)
< ∞.

Consequently applying the ergodic theorem to the stationary field (77) we obtain for the first integral in 
(76) as ε → 0

1
2

∫
Rd

∫
Rd

a(z)zζ−z(
x

ε
, ω)μ(x

ε
, ω)μ(x

ε
− z, ω)∇∇u0(x)ϕ(x)dx dz →

1
2

∫
Rd

∫
Rd

a(z)zE{ζ−z(0, ω)μ(0, ω)μ(−z, ω)}∇∇u0(x)ϕ(x)dx dz (78)

=
∫
Rd

D2 ∇∇u0(x)ϕ(x) dx,

where we have used the notation

D2 = 1
2

∫
Rd

a(z)z ⊗ E{ζ−z(0, ω)μ(0, ω)μ(−z, ω)} dz. (79)

Denote the last integral on the right-hand side in (76) by Jε
2 (ϕ):

Jε
2 (ϕ) = 1

2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)

×
(
∇∇u0(x)ϕ(x) −∇∇u0(x− εz)ϕ(x− εz)

)
dx dz

(80)

and consider this expression as a functional on L2(Rd) acting on function ϕ. In order to show that for 
each ε > 0 the functional Jε

2 is a bounded linear functional on L2(Rd) we represent Jε
2 as a sum Jε

2 =
J1,ε

2 +J2,ε
2 +J3,ε

2 with J1,ε
2 , J2,ε

2 and J3,ε
2 introduced below and estimate each of these functionals separately. 

By Proposition 4.4 a.s. θ(xε , ω) ∈ L2
loc(Rd) for all ε > 0. Therefore,

J1,ε
2 (ϕ) = 1

2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)∇∇u0(x)ϕ(x)dx dz

is a.s. a bounded linear functional on L2(Rd). Similarly,

J2,ε
2 (ϕ) = 1

2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)

× θ(x
ε
− z, ω)∇∇u0(x− εz)ϕ(x− εz)dx dz
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is a.s. a bounded linear functional on L2(Rd). Due to (39) and by the Birkhoff ergodic theorem the linear 
functional

J3,ε
2 (ϕ) = 1

2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)

×
(
θ(x

ε
, ω) − θ(x

ε
− z, ω)

)
∇∇u0(x− εz)ϕ(x− εz)dx dz

= 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε

+ z, ω)μ(x
ε
, ω)

(
θ(x

ε
+ z, ω) − θ(x

ε
, ω)

)
∇∇u0(x)ϕ(x)dx dz

= 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε

+ z, ω)μ(x
ε
, ω) θ(z, T x

ε
ω)∇∇u0(x)ϕ(x)dx dz

is a.s. bounded in L2(Rd). Since Jε
2 (ϕ) = J1,ε

2 (ϕ) +J2,ε
2 (ϕ) +J3,ε

2 (ϕ), the desired boundedness of Jε
2 follows. 

Then by the Riesz theorem for a.e. ω there exists a function fε
2 = fε

2 (u0) ∈ L2(Rd) such that Jε
2 (ϕ) = (fε

2 , ϕ). 
We emphasize that here we do not claim that the norm of Jε

2 admits a uniform in ε estimate.
Next we show that the contribution of fε

2 to wε is vanishing. To this end consider the function (additional 
corrector)

uε
2(x, ω) = (−Lε + m)−1fε

2 (x, ω). (81)

Lemma 5.1. ‖uε
2‖L2(Rd) → 0 as ε → 0 for a.e. ω.

Proof. Taking ϕ = uε
2 we get

((−Lε + m)uε
2, u

ε
2) = (fε

2 , u
ε
2). (82)

Considering (7) the left-hand side of (82) can be rearranged as follows:

− 1
ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

2(x− εz) − uε
2(x))dz uε

2(x)dx

+m

∫
Rd

(uε
2)2(x)dx

= 1
2ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

2(x− εz) − uε
2(x))2dzdx

+m

∫
Rd

(uε
2)2(x)dx.

(83)

We denote

G2
1 = 1

2ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

2(x− εz) − uε
2(x))2dzdx,

G2
2 = m

∫
Rd

(uε
2)2(x)dx.

It follows from (80) that the right-hand side of (82) takes the form
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Jε
2 (uε

2) = 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω)θ(x

ε
, ω)

×
(
∇∇u0(x)uε

2(x) −∇∇u0(x− εz)uε
2(x− εz)

)
dxdz

= 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)∇∇u0(x)

×
(
uε

2(x) − uε
2(x− εz)

)
dx dz

+ 1
2

∫
Rd

∫
Rd

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)

×
(
∇∇u0(x) −∇∇u0(x− εz)

)
uε

2(x− εz)dxdz

= 1
2(I1 + I2).

(84)

It is proved in Proposition 4.4 that a.s. ‖εθ(xε , ω)‖L2(B) → 0 as ε → 0 for any ball B ⊂ Rd. By the 
Cauchy-Schwartz inequality we obtain the following upper bounds for I1:

I1 ≤

⎛
⎝ ∫

Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)

(
uε

2(x) − uε
2(x− εz)

)2
dxdz

⎞
⎠

1
2

⎛
⎝ 1
ε2

∫
Rd

∫
Rd

a(z)|z|2 μ(x
ε
, ω)μ(x

ε
− z, ω) ε2∣∣θ(x

ε
, ω)

∣∣2(∇∇u0(x))2dxdz

⎞
⎠

1
2

≤ o(1)
ε

⎛
⎝1

2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)

(
uε

2(x) − uε
2(x− εz)

)2
dxdz

⎞
⎠

1
2

= G1 · o(1),

(85)

where o(1) → 0 as ε → 0. We turn to the second integral I2. Let B be a ball centered at the origin and such 
that supp(u0) ⊂ B, dist(supp(u0), ∂B) > 1. Then

∣∣∣∣
∫
Rd

∫
B

a(z)z μ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)

×
(
∇∇u0(x) −∇∇u0(x− εz)

)
uε

2(x− εz)dx dz
∣∣∣∣

≤ C

∫
Rd

∫
B

a(z)|z|2
∣∣εθ(x

ε
, ω)

∣∣ |uε
2(x− εz)|dx dz

≤ ‖uε
2‖L2(Rd) · o(1) = G2 · o(1).

(86)

The integral over Bc = Rd \B can be estimated in the following way:

∣∣∣ ∫
Rd

∫
Bc

a(z)zμ(x
ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)

(
∇∇u0(x) −∇∇u0(x− εz)

)
uε

2(x− εz)dxdz
∣∣∣

∣∣∣ ∫ ∫
a(z)z μ(x

ε
, ω)μ(x

ε
− z, ω) θ(x

ε
, ω)∇∇u0(x− εz)uε

2(x− εz)dx dz
∣∣∣
Rd Bc
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≤ C

∫
|z|≥ 1

ε

∫
Bc

a(z)|z|
∣∣θ(x

ε
, ω)

∣∣ |∇∇u0(x− εz)| |uε
2(x− εz)| dx dz (87)

≤ C

∫
|z|≥ 1

ε

∫
Rd

a(z)|z|
∣∣θ(x

ε
+ z, ω)

∣∣ |∇∇u0(x)| |uε
2(x)| dx dz

≤ C

∫
|z|≥ 1

ε

∫
Rd

a(z)|z|
[∣∣θ(x

ε
+ z, ω) − θ(x

ε
, ω)

∣∣+ ∣∣θ(x
ε
, ω)

∣∣] |∇∇u0(x)| |uε
2(x)| dx dz.

We have ∫
|z|≥ 1

ε

∫
Rd

a(z)|z|
∣∣θ(x

ε
, ω)

∣∣ |∇∇u0(x)| |uε
2(x)| dx dz

≤
∫
Rd

∫
Rd

a(z)|z|2
∣∣εθ(x

ε
, ω)

∣∣ |∇∇u0(x)| |uε
2(x)| dx dz ≤ G2 · o(1)

and ∫
|z|≥ 1

ε

∫
Rd

a(z)|z|
[∣∣θ(x

ε
+ z, ω) − θ(x

ε
, ω)

∣∣] |∇∇u0(x)| |uε
2(x)| dx dz

≤
∫

|z|≥ 1
ε

∫
Rd

a(z)|z|
∣∣ζz(T x

ε
ω)
∣∣ |∇∇u0(x)| |uε

2(x)| dx dz

≤

⎛
⎜⎝ ∫

|z|≥ 1
ε

a(z)z2 dz

⎞
⎟⎠

1
2 ∫
Rd

⎛
⎝ ∫

Rd

a(z)
∣∣ζz(T x

ε
ω)
∣∣2 dz

⎞
⎠

1
2

|∇∇u0(x)| |uε
2(x)| dx

≤ o(1)

⎛
⎝ ∫

Rd

|uε
2(x)|2 dx

⎞
⎠

1
2
⎛
⎝ ∫

Rd

⎛
⎝ ∫

Rd

a(z)
∣∣ζz(T x

ε
ω)
∣∣2 dz

⎞
⎠ |∇∇u0(x)|2 dx

⎞
⎠

1
2

= G2 · o(1).

Since ζz(ω) ∈ L2
M , the second integral in the right hand side here converges to a constant by the ergodic 

theorem.
Combining the last two estimates we conclude that the term on the right-hand side in (87) does not 

exceed G2 · o(1). Therefore, considering (86), we obtain I1 ≤ G2 · o(1). This estimate and (85) imply that

G2
1 + G2

2 = I1 + I2 ≤ (G1 + G2) · o(1).

Consequently, G1 → 0 and G2 = m1/2‖uε
2‖L2(Rd) → 0 as ε → 0. Lemma is proved. �

Thus we can rewrite Iε0 (all the terms of the order ε0) as follows

Iε0 = (D1 −D2) · ∇∇u0 + fε
2 + S(x

ε
, ω) · ∇∇u0,

S(x, ω) = Ψ1(
x
, ω) − Ψ2(

x
, ω),

(88)
ε ε ε
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where the matrices D1 and D2 are defined in (74) and (79) respectively, and S(xε , ω), Ψ1(xε , ω), Ψ2(xε , ω) are 
stationary fields with zero mean which are given by

Ψ1(
x

ε
, ω) = 1

2

∫
Rd

a(z)z2
[
μ(x

ε
, ω)μ(x

ε
− z, ω) − E{μ(0, ω)μ(−z, ω)}

]
dz, (89)

Ψ2(
x

ε
, ω) = 1

2

∫
Rd

a(z)z
[
ζ−z(

x

ε
, ω)μ(x

ε
, ω)μ(x

ε
− z, ω)

− E{ζ−z(0, ω)μ(0, ω)μ(−z, ω)}
]
dz.

(90)

Denote

uε
3(x, ω) = (−Lε + m)−1F ε(x, ω), where F ε(x, ω) = S(x

ε
, ω) · ∇∇u0(x). (91)

Since suppu0 ⊂ B is a bounded subset of Rd and

∫
Rd

a(z)|z|
∣∣ζ−z(ω)

∣∣ dz ∈ L2(Ω),

then by the Birkhoff theorem uε
3 ∈ L2(Rd). Our goal is to prove that ‖uε

3‖L2(Rd) → 0 as ε → 0. We first 
show that the family {uε

3} is bounded in L2(Rd).

Lemma 5.2. The family of functions uε
3 defined by (91) is uniformly bounded in L2(Rd) for e.a. ω: 

‖uε
3‖L2(Rd) ≤ C for any 0 < ε < 1.

Proof. Since the operator (−Lε +m)−1 is bounded (‖(−Lε +m)−1‖ ≤ 1
m ), then it is sufficient to prove that 

‖F ε(x, ω)‖L2(Rd) ≤ C uniformly in ε. By the Birkhoff ergodic theorem the functions Ψ1(xε , ω) and Ψ2(xε , ω)
a.s. converge to zero weakly in L2(B), so does S(xε , ω). Then S(xε , ω) · ∇∇u0 a.s. converges to zero weakly 
in L2(Rd). This implies the desired boundedness. �

Lemma 5.3. For any cube B centered at the origin ‖uε
3‖L2(B) → 0 as ε → 0 for e.a. ω.

Proof. The first step of the proof is to show that any sequence {uεj
3 }, εj → 0, is compact in L2(B). Using 

definition (91) we have

((−Lε + m)uε
3, u

ε
3) = (F ε, uε

3).

The left-hand side of this relation can be rewritten as
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∫
Rd

(−Lε + m)uε
3(x)uε

3(x)dx

= m

∫
Rd

(uε
3(x))2dx

− 1
ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

3(x− εz) − uε
3(x))uε

3(x)dzdx

= m

∫
Rd

(uε
3(x))2dx

+ 1
2ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

3(x− εz) − uε
3(x))2dzdx.

(92)

Consequently we obtain the following equality

m

∫
Rd

(uε
3(x))2dx

+ 1
2ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

3(x− εz) − uε
3(x))2dzdx (93)

= (F ε, uε
3).

Considering the uniform boundedness of F ε and uε
3, see Lemma 5.2, we immediately conclude that

1
ε2

∫
Rd

∫
Rd

a(z)μ(x
ε
, ω)μ(x

ε
− z, ω)(uε

3(x− εz) − uε
3(x))2dzdx < K (94)

uniformly in ε and for a.e. ω. Therefore,

m

∫
Rd

(uε
3(x))2dx + 1

ε2

∫
Rd

∫
Rd

a(z)(uε
3(x− εz) − uε

3(x))2dzdx < K (95)

For the sake of definiteness assume that B = [−1, 1]d. The cubes of other size can be considered in exactly 
the same way. Let φ(s) be an even C∞

0 (R) function such that 0 ≤ φ ≤ 1, φ(s) = 1 for |s| ≤ 1, φ(s) = 0 for 
|s| ≥ 2, and |φ′(s)| ≤ 2. Denote ũε

3(x) = φ(|x|)uε
3(x). It is straightforward to check that

m

∫
Rd

(ũε
3(x))2dx + 1

ε2

∫
Rd

∫
Rd

a(z)(ũε
3(x− εz) − ũε

3(x))2dzdx < K (96)

We also choose R in such a way that 
∫
|z|≤R a(z)dz ≥ 1

2 and introduce

ã(z) = 1{|z|≤R} a(z)
( ∫
|z|≤R

a(z)dz
)−1

.

Then

m

∫
(ũε

3(x))2dx + 1
ε2

∫ ∫
ã(z)(ũε

3(x− εz) − ũε
3(x))2dzdx < K. (97)
Rd Rd Rd
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Letting B̃ = [−π, π]d, we denote by ûε
3(x) the B̃ periodic extension of ũε

3(x). For the extended function we 
have

m

∫
B̃

(ûε
3(x))2dx + 1

ε2

∫
B̃

∫
Rd

ã(z)(ûε
3(x− εz) − ûε

3(x))2dzdx < K. (98)

The functions ek(x) = 1
(2π)d/2 e

ikx, k ∈ Zd, form an orthonormal basis in L2(B), and

ûε
3(x) =

∑
k

αε
kek(x), ûε

3(x− εz) =
∑
k

αε
ke

−iεkzek(x);

‖ûε
3(x)‖2 =

∑
k

(αε
k)2, ‖ûε

3(x− εz) − ûε
3(x)‖2 =

∑
k

(αε
k)2|e−iεkz − 1|2.

Then inequality (94) is equivalent to the following bound

1
ε2

∑
k

(αε
k)2

∫
Rd

ã(z)|e−iεkz − 1|2dz < C. (99)

Lemma 5.4. For any k ∈ Zd and any 0 < ε < 1 there exist constants C1, C2 (depending on d) such that
∫
Rd

ã(z)|e−iεkz − 1|2dz ≥ min{C1k
2ε2, C2}. (100)

Proof. For small ε, the lower bound by C1k
2ε2 follows from the expansion of e−iεkz in the neighborhood of 

0. For large enough ε|k| ≥ κ0 > 1 we use the following inequality
∫
Rd

ã(z)|e−iεkz − 1|2dz ≥ c0

∫
[0,1]d

|e−iεkz − 1|2dz ≥ c0
(
2 − 2

κ0

)d
. �

Let us consider a sequence εj → 0. Using inequalities (99)-(100) we will construct now for any δ > 0 a 
finite 2δ-net covering all elements of the sequence uεj

3 . For any δ > 0 we take |k0| and j0 such that

C

δ
< C1|k0|2 <

C2

ε2
j0

, (101)

where C, C1, C2 are the same constants as in (99)-(100). Then it follows from (99)-(101) that

∑
k:|k|≥|k0|

C1|k0|2(αεj
k )2 <

∑
k:|k|≥|k0|

min
{
C1|k|2,

C2

ε2
j

}
(αεj

k )2 < C for any j > j0.

Consequently we obtain the uniform bound on the tails of ûεj
3 for all j > j0:

∑
k:|k|≥|k0|

(αεj
k )2 <

C

C1|k0|2
< δ. (102)

Denote by Hk0 ⊂ L2(B̃) a linear span of basis vectors {ek, |k| < |k0|}. Evidently, it is a finite-dimensional 
subspace. Then we have

ûε
3 = wε

k0
+

∑
αε
kek, where wε

k0
= PHk0

uε
3.
k:|k|≥|k0|
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Since we already know from Lemma 5.2 that the functions ûεj
3 are uniformly bounded in L2(B̃), then the 

functions wεj
k0

are also uniformly bounded. Therefore there exists in Hk0 a finite δ-net covering the functions 
{wεj

k0
, j > j0}. Estimate (102) implies that the same net will be the 2δ-net for the functions {ûεj

3 , j > j0}. 
We need to add to this net j0 elements to cover first j0 functions ûεj

3 , j = 1, . . . , j0.
Thus we constructed the finite 2δ-net for any δ > 0 which proves the compactness of {ûε

3} as ε → 0 in 
L2(B̃).

Since uε
3(x) = ûε

3(x) for x ∈ B, we conclude that the family {uε
3} is compact in L2(B). In the same way 

one can show that this family is compact on any cube B = [−L, L]d. This completes the proof of Lemma. �
Lemma 5.5. The following limit relation holds: ‖uε

3‖L2(Rd) → 0, as ε → 0.

Proof. We go back to formula (93). On the right-hand side of this equality we have the inner product of 
two sequences F ε and uε

3 Since the sequence F ε ⇀ 0 weakly in L2(B), and the sequence uε
3 is compact in 

L2(B), the product (F ε, uε
3) → 0 as ε → 0. Therefore, both integrals on the left-hand side of (93) also tend 

to zero as ε → 0, and we obtain that ‖uε
3‖L2(Rd) → 0, ε → 0. �

Denote by Θ the matrix Θ = D1 −D2, where D1, D2 are defined by (74), (79). Our next goal is to show 
that D1 −D2 is a positive definite matrix.

Proposition 5.1. The matrix Θ = D1 −D2 is positive definite:

Θ = 1
2

∫
Rd

∫
Ω

(
z ⊗ z − z ⊗ ζ−z(0, ω)

)
a(z)μ(0, ω)μ(−z, ω) dz dP(ω) > 0. (103)

Proof. We recall that κδ(ω) stands for a unique solution of equation (26). Letting κδ
η(ω) = η · κδ(ω), 

η ∈ Rd \ {0}, one can easily obtain

δ

∫
Ω

(
κ

δ
η(ω)

)2
μ(ω) dP(ω)

−
∫
Rd

∫
Ω

a(z)μ(Tzω)
(
κ

δ
η(Tzω) − κ

δ
η(ω)

)
κ

δ
η(ω)μ(ω) dz dP(ω) (104)

=
∫
Rd

∫
Ω

(η · z)a(z)κδ
η(ω)μ(Tzω)μ(ω) dz dP(ω).

In the same way as in the proof of Proposition 4.1, we derive the following relation:

δ

∫
Ω

(
κ

δ
η(ω)

)2
μ(ω) dP(ω)

+1
2

∫
Rd

∫
Ω

a(z)μ(Tzω)
(
κ

δ
η(Tzω) − κ

δ
η(ω)

)2
μ(ω) dz dP(ω) (105)

= −1
2

∫
Rd

∫
Ω

(η · z)a(z)
(
κ

δ
η(Tzω) − κ

δ
η(ω)

)
μ(Tzω)μ(ω) dz dP(ω).

According to (38) the sequence η · (κδj
η (Tzω) − κ

δj
η (ω)) converges weakly in L2

M as δj → 0 to η · θ(z, ω). 
Passing to the limit δj → 0 in relation (105) and considering the lower semicontinuity of the L2

M norm with 
respect to the weak topology, we arrive at the following inequality
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1
2

∫
Rd

∫
Ω

a(z)μ(Tzω)
(
η · θ(z, ω)

)2
μ(ω) dz dP(ω)

≤ −1
2

∫
Rd

∫
Ω

(η · z)a(z)
(
η · θ(z, ω)

)
μ(Tzω)μ(ω) dz dP(ω).

(106)

One can easily check that

Θη · η = 1
2 ηiηj

∫
Rd

∫
Ω

(
zizj − ziζj−z(0, ω)

)
a(z)μ(0, ω)μ(−z, ω) dz dP(ω)

= 1
2

∫
Rd

∫
Ω

(
(η · z)2 + (η · z)(η · θ(z, ω))

)
a(z)μ(0, ω)μ(z, ω) dz dP(ω).

Combining the latter relation with (106) we obtain

Θη · η ≥ 1
2

∫
Rd

∫
Ω

(
(η · z) + (η · z)(η · θ(z, ω))

)2
a(z)μ(0, ω)μ(z, ω) dz dP(ω).

Since θ(z, ω) is a.s. a function of sublinear growth in z, we conclude that η · θ(z, ω) �≡ η · z, consequently the 
integral on the right-hand side here is strictly positive. This yields the desired positive definiteness. �
6. Estimation of the remainder φε

In this section we consider the remainder φε(x, ω) given by (19) and prove that ‖φε‖L2(Rd) vanishes a.s. 
as ε → 0.

Lemma 6.1. Let u0 ∈ C∞
0 (Rd). Then a.s.

‖φε(·, ω)‖L2(Rd) → 0 as ε → 0. (107)

Proof. The first term in (19) can be written as

φ(1)
ε (x, ω)

=
∫
Rd

dz a(z)μ
(x
ε
, ω
)
μ
(x
ε
− z, ω

)

×
1∫

0

(
∇∇u0(x− εzt) −∇∇u0(x)

)
z ⊗ z(1 − t) dt.

It doesn’t depend on the random corrector θ and can be considered exactly in the same way as in [18, 
Proposition 5 ]. Thus we have

‖φ(1)
ε ‖L2(Rd) → 0 as ε → 0. (108)

Let us denote by φ(2)
ε the sum of the second and the third terms in (19):
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φ(2)
ε (x, ω)

= μ
(x
ε
, ω
) ∫
Rd

a(z)μ
(x
ε
− z, ω

)
θ
(x
ε
− z, ω

)
(109)

×
(1
ε

(
∇u0(x− εz) −∇u0(x)

)
+ z∇∇u0(x)

)
dz.

We take sufficiently large L > 0 such that supp u0 ⊂ {|x| < 1
2L} and estimate φ(2)

ε (x, ω) separately in the 
sets {|x| < L} and {|x| > L}. If |x| > L, then u0(x) = 0. Since a(z) has a finite second moment in Rd, for 
any c > 0 we have

1
ε2

∫
|z|> c

ε

a(z)dz = 1
ε2

∫
|z|> c

ε

a(z)z
2

z2 dz ≤ 1
c2

∫
|z|> c

ε

a(z)z2dz → 0, as ε → 0. (110)

Therefore,

‖φ(2)
ε χ|x|>L‖2

L2(Rd) =∫
|x|>L

( ∫
|x−εz|<L

2

1
ε
μ
(x
ε
, ω
)
a(z)μ

(x
ε
− z, ω

)
θ
(x
ε
−z, ω

)
∇u0(x− εz)dz

)2
dx (111)

< α4
2

( 1
ε2

∫
|z|> L

2ε

a(z) dz
)2

‖εθ
(y
ε
, ω
)
∇u0(y)‖2

L2(Rd) → 0;

Here we have also used the limit relation ‖εθ
(
y
ε , ω)∇u0(y)‖L2(Rd) → 0 that is ensured by Proposition 4.4. 

Denote χ<L(x) = χ{|x|<L}(x) and represent the function φ(2)
ε (x, ω) χ<L(x) as follows:

φ(2)
ε (x, ω)χ<L(x) = γ<

ε (x, ω) + γ>
ε (x, ω), (112)

where

γ<
ε (x, ω) = μ

(x
ε
, ω
)
χ<L(x)

∫
|εz|<2L

a(z)μ
(x
ε
− z, ω

)
θ
(x
ε
− z, ω

)

×
(1
ε

(
∇u0(x− εz) −∇u0(x)

)
+ z∇∇u0(x)

)
dz;

γ>
ε (x, ω) = μ

(x
ε
, ω
)
χ<L(x)

∫
|εz|>2L

a(z)μ
(x
ε
− z, ω

)
θ
(x
ε
−z, ω

)

×
(1
ε

(
∇u0(x− εz) −∇u0(x)

)
+ z∇∇u0(x)

)
dz.

(113)

Since u0 ∈ C∞
0 (Rd), the Teylor decomposition applies to ∇u0(x − εz), and we get

1(∇u0(x− εz) −∇u0(x)
)

+ z∇∇u0(x) = ε∇∇∇u0(ξ) z ⊗ z

ε 2
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with some ξ ∈ suppu0, here the notation ∇∇∇u0(ξ) z⊗z is used for the vector function (∇∇∇u0(ξ) z⊗z)i =
∂xj∂xk∂xiu0(ξ)zjzk. Then the right-hand side of the first formula in (113) admits the estimate

μ
(x
ε
, ω
)
χ<L(x)

∣∣∣∣
∫

|εz|<2L

a(z)μ
(x
ε
− z, ω

)
θ
(x
ε
− z, ω

)

×
(1
ε

(
∇u0(x− εz) −∇u0(x)

)
+ z∇∇u0(x)

)
dz

∣∣∣∣ (114)

≤ α2
2

2 max |∇∇∇u0|
∫
Rd

ε|θ
(x
ε
−z, ω

)
|χ<3L(x− εz) a(z)z2 dz.

Taking into account the relation

∫
Rd

( ∫
Rd

ε|θ
(x
ε
−z, ω

)
|χ<3L(x− εz) a(z)z2 dz

)2
dx

=
∫
Rd

a(z1)z2
1dz1

∫
Rd

a(z2)z2
2dz2 (115)

×
∫
Rd

ε2|θ
(x
ε
−z1, ω

)
||θ
(x
ε
−z2, ω

)
|χ<3L(x− εz1)χ<3L(x− εz2)dx

and applying the Cauchy-Schwartz inequality to the last integral on its right hand side we conclude with 
the help of Proposition 4.4 that ‖γ<

ε (x, ω)‖L2(Rd) → 0 as ε → 0.
If |x| < L and |εz| > 2L, then |x −εz| > L, and u0(x −εz) = 0. The right-hand side of the second formula 

in (113) can be rearranged as follows:

γ>
ε (x, ω) = μ

(x
ε
, ω
)
χ<L(x)

∫
|z|> 2L

ε

a(z)μ
(x
ε
− z, ω

)
θ
(x
ε
− z, ω

)

×
(
− 1

ε
∇u0(x) + z∇∇u0(x)

)
dz

= μ
(x
ε
, ω
)
χ<L(x)

∫
|z|> 2L

ε

a(z)μ
(x
ε
− z, ω

)(
θ
(x
ε
−z, ω

)
− θ

(x
ε
, ω
))

×
(
− 1

ε
∇u0(x) + z∇∇u0(x)

)
dz

+ μ
(x
ε
, ω
)
χ<L(x)

∫
|z|> 2L

ε

a(z)μ
(x
ε
− z, ω

)
θ
(x
ε
, ω
)

×
(
− 1

ε
∇u0(x) + z∇∇u0(x)

)
dz

(116)

The second term on the right-hand side in (116) is estimated in the same way as the function φ(2)
ε χ|x|>L in 

(111). Thus the L2(Rd) norm of this term tends to 0 as ε → 0.
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The first term on the right-hand side of (116) admits the following upper bound:
∣∣∣∣μ(xε , ω)χ<L(x)

∫
|z|> 2L

ε

a(z)μ
(x
ε
− z, ω

)
ζ−z

(
T x

ε
ω
)

×
(
− 1

ε
∇u0(x) + z∇∇u0(x)

)
dz

∣∣∣∣
≤ α2

2

∫
|z|> 2L

ε

a(z)
∣∣∣ζ−z

(
T x

ε
ω
)∣∣∣ ∣∣∣− 1

ε
∇u0(x) + z∇∇u0(x)

∣∣∣ dz

≤ α2
2C(L)

∫
|z|> 2L

ε

|z|a(z)
∣∣∣ζ−z

(
T x

ε
ω
)∣∣∣dz(∣∣∇u0(x)

∣∣+ ∣∣∇∇u0(x)
∣∣).

≤ α2
2C(L)

( ∫
|z|> 2L

ε

|z|2a(z)dz
) 1

2
( ∫
Rd

a(z)
∣∣ζ−z

(
T x

ε
ω
)∣∣2 dz) 1

2

×
(∣∣∇u0(x)

∣∣+ ∣∣∇∇u0(x)
∣∣).

(117)

Since ζ−z(ω) ∈ L2
M , we have

E
∫
Rd

a(z)|ζ−z(ω)|2 dz < ∞.

Taking into account the convergence ∫
|z|> 2L

ε

|z|2a(z)dz → 0, as ε → 0,

by the Birkhoff ergodic theorem we obtain that the L2(Rd) norm of the first term on the right-hand side of 
(116) tends to zero a.s., as ε → 0. Therefore, ‖γ>

ε (x, ω)‖L2(Rd) → 0 as ε → 0.
From (112) it follows that ‖φ(2)

ε (x, ω)χ<L(x)‖L2(Rd) → 0 as ε → 0, and together with (111) this implies 
that

‖φ(2)
ε (x, ω)‖L2(Rd) → 0 as ε → 0. (118)

Finally, (107) follows from (108) and (118). Lemma is proved. �
7. Proof of the main results

We begin this section by proving relation (14) for f ∈ S0(Rd). For such f we have u0 ∈ C∞
0 (Rd). It 

follows from (15), Proposition 4.4 and Lemmas 5.1, 5.5 that

‖wε − u0‖L2(Rd) → 0, as ε → 0. (119)

By the definition of vε, uε
2 and uε

3,

(Lε −m)wε = (L̂−m)u0 −mεθ
(x
ε

)
· ∇u0 + φε = f −mεθ

(x
ε

)
· ∇u0 + φε

= (Lε −m)uε −mεθ
(x) · ∇u0 + φε.

ε
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Therefore,

(Lε −m)(wε − uε) = −mεθ
(x
ε

)
· ∇u0 + φε.

According to Proposition 4.4 and Lemma 6.1 the L2 norm of the functions on the right-hand side of the 
last formula tends to zero as ε → 0. Consequently,

‖wε − uε‖L2(Rd) → 0, as ε → 0.

Combining this relation with (119) yields the desired relation (14) for f ∈ S0(Rd).
To complete the proof of Theorem 2.1 we should show that the last convergence holds for any f ∈ L2(Rd).
For any f ∈ L2(Rd) there exists fδ ∈ S0 such that ‖f − fδ‖L2(Rd) < δ. Since the operators (Lε −m)−1

and (L̂−m)−1 are bounded uniformly in ε, then

‖uε
δ − uε‖L2(Rd) ≤ C1δ, ‖u0,δ − u0‖L2(Rd) ≤ C1δ, (120)

where

uε = (Lε −m)−1f, u0 = (L̂−m)−1f,

uε
δ = (Lε −m)−1fδ, u0,δ = (L̂−m)−1fδ.

Recalling that fδ ∈ S0, we obtain ‖uε
δ − u0,δ‖L2(Rd) → 0. Therefore, by (120)

lim
ε→0

‖uε − u0‖L2(Rd) ≤ 2C1δ

with an arbitrary δ > 0. This implies the desired convergence in (11) for an arbitrary f ∈ L2(Rd) and 
completes the proof of the main theorem.

7.1. Proof of Corollary 2.1

Here we assume that the operator Lε,ns is defined by (12). Multiplying equation (13) by ρε(x, ω) =
ρ
(
x
ε , ω

)
= μ

(
x
ε , ω

)(
λ
(
x
ε , ω

))−1 we obtain

Lεuε −mρεuε = ρεf, (121)

where the symmetrized operator Lε is given by (7). Letting 〈ρ〉 = Eρ = E
(
μ
λ

)
we consider an auxiliary 

equation

Lεgε −m〈ρ〉gε = 〈ρ〉f. (122)

By Theorem 2.1 the functions gε converge a.s. in L2(Rd), as ε → 0, to a solution of the equation L̂g−m〈ρ〉g =
〈ρ〉f . Our goal is to show that ‖gε − uε‖L2(Rd) → 0 as ε → 0. To this end we subtract equation (121) from 
(122). After simple rearrangements this yields

Lεαε −mρεαε =
(
〈ρ〉 − ρε

)
gε +

(
〈ρ〉 − ρε

)
f, (123)

with αε(x) = gε(x) − uε(x). In a standard way one can derive the following estimate

m

∫
(αε(x))2dx + 1

ε2

∫ ∫
a(z)(αε(x− εz) − αε(x))2dzdx < C. (124)
Rd Rd Rd
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As was shown in the proof of Lemma 5.3, this estimate implies compactness of the family {αε} in L2(B)
for any cube B. Multiplying (123) by αε and integrating the resulting relation over Rd we obtain

‖αε‖2
L2(Rd) ≤ C1

∣∣((〈ρ〉 − ρε)gε, αε

)
L2(Rd)

∣∣+ ∣∣((〈ρ〉 − ρε)f, αε

)
L2(Rd)

∣∣ (125)

By the Birkhoff ergodic theorem (〈ρ〉 −ρε) converges to zero weakly in L2
loc(Rd). Considering the boundedness 

of (〈ρ〉 − ρε) and the properties of αε and gε, and approximating f and gε by functions with a compact 
support, we conclude that both terms on the right-hand side in (125) tend to zero, as ε → 0. So does 
‖αε‖2

L2(Rd). Therefore, uε converges to the solution of equation L̂u −m〈ρ〉u = 〈ρ〉f . Dividing this equation 
by 〈ρ〉, we rewrite the limit equation as follows

(
E
{μ
λ

})−1
Θij

∂2u

∂xi∂xj
−mu = f

with Θ defined in (103). This completes the proof of Corollary.
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