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In a bounded domain with a thin periodically punctured interface we study the limit 
behavior of the bottom of spectrum for a Steklov type spectral problem, the Steklov 
boundary condition being imposed on the perforation surface. For a certain range of 
parameters we construct the effective spectral problem and justify the convergence 
of eigenpairs.
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1. Introduction

The paper deals with homogenization of elliptic Steklov type spectral problem in a domain consisting 
of two subdomains separated by a thin periodically punctured interface (sieve), Steklov spectral condition 
being imposed on the surface of thin cylindrical channels that form the interface perforation.

We consider a model spectral problem for the Laplacian that reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δuε = 0 in Ωε,

uε = 0 on ∂Ω ∩ ∂Ωε,
∂uε

∂n = 0 on Γε,
∂uε

∂n = λεuε on γε;

(1)

here Ωε is the union of two subdomains connected by the thin channels, the boundary of these channels is 
denoted by γε, and Γε is the lateral boundary of the perforated interface; ε is a small positive parameter 
characterizing the interface microstructure period. The domain Ωε is obtained by removing a thin perforated 
interface from a fixed domain Ω ⊂ R

N , N ≥ 2. The detailed description of the geometry is given in Section 2.
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Boundary-value problems in domains with perforated interfaces of infinitesimal or vanishing thickness 
were widely studied in the existing literature. The periodic spectral problem has been investigated in [2], 
where the higher order terms of the asymptotics were constructed. The boundary value problems in domains 
with perforation situated along an interior surface were homogenized in [5,9]. Theory of homogenization in 
perforated domains got started in the works [10,20,18].

Neumann sieve problem with the interface of zero thickness was considered in [19] and then in [1,4,6,12,
16]. The work [7] deals with the so called “thick Neumann’s sieve” problem that reads⎧⎪⎨⎪⎩

−Δwε + wε = f in Ωε,

wε = 0 on ∂Ω ∩ ∂Ωε,
∂wε

∂n = 0 on Γε ∪ γε,

where f ∈ L2(Ω). It was shown that wε converges to a function w ∈ H1(Ω \ Γ) that solves the following 
boundary-value problem: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δw + w = f in Ω \ Γ,
w = 0 on ∂Ω,

∂w−

∂n− − 1
2μ[w] = 0 on Γ,

∂w+

∂n+ − 1
2μ[w] = 0 on Γ,

where Γ is the limit infinitesimally thin interface, [w] = w+ − w− is the jump of w on Γ, where w± is the 
restriction of w on Ω±, Ω = Ω+ ∪Γ ∪Ω−, n± are the respective outward unit normals on Γ, and μ is either 
a constant 0 ≤ μ < ∞, or μ = +∞, according to the ratio between the channels and the interface thickness. 
In the case when μ = +∞, the limit problem reads{

−Δw + w = f in Ω,

w = 0 on ∂Ω.

See [7] for the details.
There is a vast literature devoted to homogenization of spectral problems including Steklov-type problems, 

see for instance [20,14,19]. Some results on homogenization of Steklov problems can be found in [3,11,13,17].
In the present paper we suppose that Steklov spectral condition is imposed on the surface of the interface 

channels. The limit behavior of eigenpairs, as ε → 0, depends essentially on the ratio between the channels 
diameter and the period as well as the ratio between the interface thickness and the period. Here we assume 
that the channels diameter and the interface thickness are of the same order. Then for N ≥ 3 three different 
cases are to be studied:

(i) the diameter is greater than Cε
N−1
N−2 (subcritical case),

(ii) the diameter is of order O(ε
N−1
N−2 ) (critical case),

(iii) the diameter is less than Cε
N−1
N−2 (supercritical case).

This paper focuses on the subcritical case. Namely, we assume that the diameter of channels is of order 
εδ with 0 ≤ δ < N−1

N−2 . In dimension 2 we assume that 0 ≤ δ < ∞. Under these conditions we construct 
the limit spectral problem and justify the convergence of eigenpairs. We show that in the subcritical case 
the principal eigenfunction, as well as other eigenfunctions corresponding to the bottom of the spectrum, 
exhibit a regular asymptotic behavior, in particular they have a non-trivial limit in H1(Ω). On the contrary, 
in the supercritical case the principal eigenfunction localizes in the vicinity of the interface. The critical and 
supercritical cases will be considered in a separate paper.
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Observe that the subset of the domain boundary where the Steklov condition is imposed asymptotically 
vanishes. Moreover, in the case δ > 0 the surface volume of this subset also vanishes, as ε → 0. Nevertheless, 
as long as the capacity of this subset remains uniformly positive, the eigenpairs related to the bottom of 
spectrum in (1) show a regular behavior, and the spectral condition of the original problem is inherited by 
the limit interface between two parts of the domain.

The paper is organized as follows. In Section 2 we provide the detailed description of the geometry and 
introduce the studied spectral problem. Section 3 focuses on constructing the limit spectral problem and 
the proof of convergence results.

2. Problem setup

Let Ω be a connected, open bounded set of RN (N ≥ 2), with a piece-wise smooth Lipschitz continuous 
boundary ∂Ω. Points in RN are denoted by x = (x′, xN ) with x′ = (x1, · · · , xN−1) ∈ R

N−1. We assume 
that the hyperplane {x ∈ R

N : xN = 0} divides Ω into two non-empty subdomains Ω− and Ω+ with

Ω− = {x ∈ Ω : xN < 0}, Ω+ = {x ∈ Ω : xN > 0},

and that, moreover, for some m > 0 we have Ω ∩ {x : −m < xN < m} = Σ × (−m, m). Under our 
assumptions Σ is an open set in RN−1 with a Lipschitz boundary. In what follows we identify Σ with 
Ω ∩ {x ∈ R

N : xN = 0}. Then, Ω = Ω− ∪ Σ ∪ Ω+. Denote Γ0 = {x ∈ ∂Ω : −m < xN < m}.

Remark 2.1. The condition that Ω ∩ {x : −m < xN < m} = Σ × (−m, m) for some m > 0 is imposed just 
for presentation simplicity. The results of the paper remain valid for domains of more general structure. In 
particular, the results hold for any bounded Lipschitz domain Ω that satisfies the following two conditions: 
(i) Ω+ and Ω− are non-empty; (ii) ∂Ω is smooth in the vicinity of the hyperplane {xN = 0}, and for any 
x ∈ ∂Ω ∩ {xN = 0} the tangential hyperplane to ∂Ω does not coincide with {xN = 0}.

Let Y be an open simply connected set in RN−1 with smooth boundary ∂Y ; we assume that Y ⊂
(−1

2 , 
1
2 )N−1. In the two dimensional case Y is a subinterval of (−1

2 , 
1
2 ). For small real numbers ε > 0, rε > 0

and hε > 0 with rε ≤ ε we define

Σε =
{
x ∈ Ω : −hε

2 ≤ xN ≤ hε

2

}
, Tε =

⋃
k′∈Kε

Bk′

ε ×
(
−hε

2 ,
hε

2

)
,

where

Kε =
{
l′ ∈ Z

N−1 : l′ +
[
− 1

2 ,
1
2

]N−1
⊂ ε−1Σ

}
, and Bk′

ε = (εk′ + rεY ).

Then we set (see Fig. 2)

Sε = Σε \Tε, Ωε = Ω \Sε,

Γ±
ε =

{
x = (x′, xN ) ∈ ∂Ωε : xN = ±hε

2

}
, Γε = Γ−

ε ∪ Γ+
ε

γε =
{
x = (x′, xN ) ∈ ∂Ωε : x′ ∈

⋃
k′∈ZN−1

∂Bk′

ε , −hε

2 ≤ xN ≤ hε

2

}
,

where ∂Bk′
ε denotes the (N − 2)-dimensional boundary of Bk′

ε . The set Sε represents a sieve; it is a thin 
perforated layer, Bk′

ε ×
(
−hε

2 , hε

2
)

is a cylindrical hole with a cross-section Bk′
ε (see Fig. 1). The thickness 

of this cylinder is of order ε and its height is hε.
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Fig. 1. The sieve Sε.

Fig. 2. The domain Ωε.

Notice that the (θε)-neighborhood of ∂Ω does not intersect with Tε where θ stands for the distance 
between Y and the boundary of the cube Q = [−1/2, 1/2]N−1.

For a given function v such that v+ := v|Ω+ ∈ H1(Ω+) and v− := v|Ω− ∈ H1(Ω−), we define the jump 
of v on Σ by [v] = v+(x′, 0) − v−(x′, 0). We denote by n− and n+ the exterior unit normals to Ω− and Ω+

on Σ, and, for functions v± ∈ H2(Ω±), ∂v−

∂n− = ∂v−

∂xN
and ∂v+

∂n+ = − ∂v+

∂xN
stand for the corresponding normal 

derivatives. Given a function v defined a.e. in Ωε (see Fig. 2), we denote by ṽ the zero extension of v to Ω, 
i.e.

ṽ = v in Ωε, ṽ = 0 in Sε. (2)

Let us denote Γ1 = ∂Ω \ Γ0 and Γε
0 = ∂Ωε ∩ Γ0 = {x ∈ Γ0 : |xN | > hε}. We consider the following spectral 

problem: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δuε = 0 in Ωε,

uε = 0 on Γ1,
∂uε

∂n = 0 on Γε ∪ Γε
0,

∂uε = λ u on γ ,

(3)
∂n ε ε ε
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where n denotes the outward unit normal to ∂Ωε. We introduce the following Hilbert space:

H1(Ωε,Γ1) = {v ∈ H1(Ωε) : v|Γ1 = 0},

endowed with the scalar product (v, w)H1(Ωε,Γ1) =
∫
Ωε

∇v · ∇w dx and the corresponding norm ‖v‖ =(∫
Ωε

|∇v|2 dx
)1/2

which is equivalent to the standard norm of H1(Ωε). Variational formulation of prob-
lem (3) reads: find real numbers λε such that problem∫

Ωε

∇uε · ∇v dx = λε

∫
γε

uεv ds, ∀v ∈ H1(Ωε,Γ1), (4)

has a nonzero solution uε ∈ H1(Ωε, Γ1). Problem (3) can also be formulated in terms of the Dirichlet–
Neumann map. Consider, for any z ∈ H1/2(γε), the solution vε ∈ H1(Ωε, Γ1) of the boundary-value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δvε = 0 in Ωε,

vε = 0 on Γ1,
∂vε
∂n = 0 on Γε ∪ Γε

0,

vε = z on γε,

(5)

then define the operator Lε from H1/2(γε) into H−1/2(γε) by

Lεz = ∂vε
∂n

∣∣∣∣
γε

.

Problem (3) is equivalent to the following spectral problem: find real numbers λε such that there is a nonzero 
function zε ∈ H1/2(γε) satisfying

Lεzε = λεzε. (6)

The operator Lε is invertible. Furthermore, (Lε)−1 is compact and self-adjoint in L2(γε), and
(z, (Lε)−1z)L2(γε) > 0 for z 
= 0 (see [8]). Therefore, the spectrum of problem (6) consists of an increasing 
sequence of positive eigenvalues

0 < λε,1 ≤ λε,2 ≤ · · · ≤ λεj ≤ · · · , λε,j → +∞ as j → ∞,

and there is an orthonormal sequence of the corresponding eigenvectors (zε,j)j≥1 in the space L2(γε) en-
dowed with the standard (N − 1)-dimensional surface measure. If we substitute (zε,j)j≥1 for z in (5) and 

denote the corresponding solutions by uεj, then the sequence 
(

1√
λε,j

uε,j

)
j≥1

forms an orthonormal basis 

of eigenfunctions of problem (3) in H1(Ωε, Γ1) endowed with the norm 
∫
Ωε

|∇v|2 dx.
Conversely, if (uε,j)j≥1 is an orthonormal sequence of eigenvectors of problem (3) then the family 

(
√
λε,j zε,j)j≥1, with zε,j = uε,j |γε

, is an orthonormal sequence of eigenvectors of (6). Moreover, the following 
variational principle holds. Introduce the Rayleigh quotient defined for v ∈ H1(Ωε, Γ1)\{0}, by

Rε(v) =
∫
Ωε

|∇v|2 dx∫
γε

|v|2 ds . (7)

Then,

λε,1 = min
{
Rε(v) : v ∈ H1(Ωε,Γ1)

}
, (8)
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and for j ≥ 2,

λε,j = min

⎧⎨⎩Rε(v) : v ∈ H1(Ωε,Γ1),
∫
γε

v uε,i ds = 0 for i = 1, · · · , j − 1

⎫⎬⎭ . (9)

Our aim is to investigate the asymptotic behavior of the eigenelements (λε,j , uε,j)j≥1 of problem (3), as 
ε → 0.

3. Convergence results

3.1. Homogenization theorem

As was mentioned above, we focus on the subcritical case, i.e.

rε = ε1+δ, hε = ε1+δh

with 0 ≤ δ < 1
N−2 if N ≥ 3, and δ ∈ [0, +∞) if N = 2.

We recall that the spectrum of problem (3) consists of an increasing sequence of positive eigenvalues

0 < λε,1 ≤ λε,2 ≤ · · · ≤ λεj ≤ · · · , λε,j → +∞ as j → ∞,

and there is an orthonormal basis of the corresponding eigenfunctions in the space H1(Ωε, Γ1).

Here we formulate the main homogenization result.
We should choose a normalization condition for the eigenfunctions of problem (3). It is convenient to assume 
here and in what follows that the eigenfunctions uε,j satisfy the following condition:∫

Ωε

|∇uε,j |2 dx = 1, for any j ≥ 1. (10)

Recall also that ũε,j stands for the extension of uε,j to Ω as defined in (2).
Our goal is to show that the limits Steklov-type spectral problem takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Δu = 0 in Ω− ∪ Ω+,

[u] = 0 on Σ,[
∂u
∂xN

]
= −λjKu on Σ,

∂u
∂n = 0 on Γ0,

u = 0 on Γ1,

(11)

where n denotes the outward unit normal to Γ0, and

K = hmeasN−2(∂Y ) for N ≥ 3, K = 2h for N = 2.

Lemma 3.1. Problem (11) has a real discrete spectrum

0 < λ1 < λ2 ≤ λ3 ≤ . . . λj → +∞ as j → ∞.

There exists an orthonormal basis of eigenfunctions {uj}j≥1 in L2(Σ).
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Proof. Consider two boundary value problems⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Δv± = 0 in Ω±,

v± = 0 on Γ1 ∩ Ω±
,

∂v±

∂n
= 0 on Γ0 ∩ Ω±

,

v± = z on Σ,

and define the Dirichlet–Neumann operators L± that associate to z ∈ H1/2(Σ) the function ∂v±

∂n ∈
H−1/2(Σ). The operators L± are invertible and positive, (L±z, z) > 0 (see [8]). It is straightforward to 
check that the spectrum of L− + L+ coincides with the spectrum of problem (11). Since (L− + L+)−1 is 
compact, self-adjoint and positive in L2(Σ), the desired statement follows. �

We proceed with the main result of this work.

Theorem 3.1. Let (λε,j , uε,j)j≥1 be the sequence of eigenpairs of problem (3).
(i) If δ = 0 then for any j ≥ 1, λε,j converges, as ε → 0, towards λj, where (λj , uj) is the j-th eigenpair 

of problem (11). Furthermore, for a subsequence, ũε,j converges in L2(Ω) towards u ∈ H1(Ω) being a linear 
combination of the eigenfunctions uk related to the eigenvalue λj.

(ii) If 0 < δ < 1
N−2 (δ < +∞ in dimension 2), then the sequence λ̂ε,j := ε(N−1)δλε,j converges, as ε → 0, 

towards the eigenvalue λj of problem (11), and, for a subsequence, ũε,j converges towards u in L2(Ω). The 
function u is a linear combination of the eigenfunctions uk related to the eigenvalue λj. Since δ > 0, for 
any j the eigenvalue λε,j goes to infinity, as ε → 0.

Remark 3.1. In the above theorem the whole sequence λε,j (λ̂ε,j) converges, as ε → 0. We do not need 
to choose a subsequence. However, if the eigenvalue λj of the homogenized problem is not simple, then 
the whole sequence of the corresponding eigenfunctions ũε,j need not converge. We can only state the 
convergence of the eigenspaces related to λj. More precisely, let λj , λj+1, . . . , λj+m−1 be an eigenvalue of 
(11) of multiplicity m. Then the m-dimensional spaces generated by {ũε,k}j+m−1

k=j converge in L2(Ω), as 
ε → 0, to the space generated by {uk}j+m−1

k=j .

Remark 3.2. Instead of the interface with uniform thickness and cylindrical perforation one can consider 
more general family of perforated thin interfaces with non-uniform thickness and periodic microstructure 
like in [15]. We also assume that Steklov boundary condition is imposed on the periodically situated spots on 
the interfaces surface. In this case the statement of Theorem 3.1 remains valid if the following two conditions 
are satisfied: (i) An appropriate capacity type characteristics of the interfaces does not vanish, as ε → 0. 
(ii) The scaled N − 1-dimensional volume of the spots converges.

The first condition ensures that the limit functions do not have a jump on the interface. The second one 
allows us to derive the homogenized problem similar to (11). Of course, this statement is given in rather 
vague form. More accurate formulation would require some technical work.

3.2. Proof of Theorem 3.1 in the case δ = 0

The variational formulation of spectral problem (11) reads

λ1 = min
{
R(v) : v ∈ H1(Ω,Γ1)

}
, R(v) =

∫
Ω |∇v|2 dx∫

2 ′ , (12)

Σ |v| dx
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and for j ≥ 2,

λj = min

⎧⎨⎩R(v) : v ∈ H1(Ω,Γ1),
∫
Σ

v ui ds = 0 for i = 1, · · · , j − 1

⎫⎬⎭ . (13)

We begin by proving a priori estimates for the first eigenpair (λε,1, uε,1). For brevity we denote it by 
(λε, uε). Let us first show that

0 < C1 ≤ λε ≤ C2, (14)

where constants C1 and C2 do not depend on ε. The upper bound relies on the following statement.

Lemma 3.2. For any ε > 0 there is a function wε ∈ H1(Ωε, Γ1) such that Rε(wε) ≤ C with a constant C
that does not depend on ε; the functional Rε being defined in (7).

Proof. Let ϕ = ϕ(x′) be a C∞
0 (Σ) function such that ϕ = 1 on some Σ1 ⊂ Σ with measN−1(Σ1) > 0, and 

denote by χ(xN ) a C∞
0 (−m, m) function such that χ = 1 in the vicinity of 0. It is straightforward to check 

that, for sufficiently small ε > 0,

∫
γε

(ϕ(x′)χ(xn))2ds =
∫
γε

(ϕ(x′))2ds ≥ C measN−1(Σ1)h,

where C does not depend on ε. Since

∫
Ωε

|∇(ϕ(x′)χ(xN ))|2dx ≤
∫
Ω

|∇(ϕ(x′)χ(xN ))|2dx,

this implies the desired inequality. �
By (7) and Lemma 3.2 we obtain the upper bound in (14). In a similar way, using (9), one can prove that

λε,j ≤ C2,j for all j = 1, 2, . . . (15)

The proof of lower bound in (14) relies on the following statement.

Lemma 3.3. There exists a constant C > 0 such that for any v1 ∈ H1(Ωε) and v2 ∈ H1(Ωε) and any κ ≥ h

we have

∣∣∣ ∫
γε

v1v2 ds− hmeasN−2(∂Y )
∫
Σ

v1(x′,κε)v2(x′,κε) dx′
∣∣∣ ≤ Cε1/2‖v1‖H1(Ωε)‖v2‖H1(Ωε).

Proof. It is sufficient to prove the result in the case v1 = v2. Denote Πκ =
(
Y × [−h

2 , 
h
2 ]
)
∪

(
Q × [h2 , κ]

)
with Q = [−1/2, 1/2]N−1, and Πε

κ
= εΠκ. Let 〈v〉γ0 be the mean value of v over γ0 := ∂Y × [−h

2 , 
h
2 ] that is

〈v〉γ0 =
∣∣γ0

∣∣−1
N−1

∫
v ds.
γ0
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The following two inequalities hold.∫
γ0

(
v − 〈v〉γ0

)2
ds ≤ C

∫
Πκ

|∇v|2 dx,
∫
Q

(
v(x′,κ) − 〈v〉γ0

)2
dx′ ≤ C

∫
Πκ

|∇v|2 dx. (16)

We first prove the second inequality. Since both sides of this inequality are invariant with respect to adding 
an additive constant to a function v, we can assume without loss of generality that 

∫
Πκ

v dx = 0. Then, by 
the Poincaré inequality, ‖v‖L2(Πκ) ≤ C‖∇v‖L2(Πκ). Finally, we have∫

Q

(
v(x′,κ) − 〈v〉γ0

)2
dx′ ≤ 2

∫
∂Πκ

v2ds + C(Q)〈v〉2γ0
≤ C(Q, γ0)

∫
∂Πκ

v2ds ≤ C1(Q, γ0)
∫

Πκ

|∇v|2dx;

the last inequality here follows from the trace theorem. The first estimate in (16) can be proved in the same 
way.

In the domain Πε
κ

inequalities (16) take the form∫
εγ0

(
v − 〈v〉εγ0

)2
ds ≤ Cε

∫
Πε

κ

|∇v|2 dx,
∫
εQ

(
v(x′, εκ) − 〈v〉εγ0

)2
dx′ ≤ Cε

∫
Πε

κ

|∇v|2 dx.

Similar inequalities hold for the sets Πε
κ

+ ε(j′, 0), j′ ∈ Kε. Summing up over j′ ∈ Kε, we obtain∫
γε

(
v − 〈̂v〉

ε)2
ds ≤ Cε

∫
Ωε

|∇v|2 dx,
∫
Σ

(
v(x′, εκ) − 〈̂v〉

ε)2
dx′ ≤ Cε

∫
Ωε

|∇v|2 dx,

where 〈̂v〉
ε

denotes the piece-wise constant function equal to the mean value of v over εγ0 + ε(j′, 0) in each 
Πε

κ
+ ε(j′, 0). Letting K = h measN−2(∂Y ), we have

∣∣∣ ∫
γε

v2 ds−K

∫
Σ

v2(x′, εκ) dx′
∣∣∣ =

∣∣∣ ∫
γε

(v − 〈̂v〉
ε
+ 〈̂v〉

ε
)2 ds−K

∫
Σ

(v(x′, εκ) − 〈̂v〉
ε
+ 〈̂v〉

ε
)2 dx′

∣∣∣
=

∣∣∣ ∫
γε

[
(v − 〈̂v〉

ε
)2 + 2(v − 〈̂v〉

ε
)〈̂v〉

ε]
ds−K

∫
Σ

[
(v(x′, εκ) − 〈̂v〉

ε
)2 + 2(v(x′, εκ) − 〈̂v〉

ε
)〈̂v〉

ε]
dx′

∣∣∣
≤ Cε

∫
Ωε

|∇v|2 dx + Cε1/2‖v‖L2(γε)

(∫
Ωε

|∇v|2 dx
) 1

2 ≤ Cε1/2‖v‖2
H1(Ωε).

This completes the proof of lemma. �
According to Lemma 3.3,

| ‖uε‖2
L2(γε) −K‖uε(·, εh)‖2

L2(Σ) | ≤ Cε1/2‖∇uε‖2
L2(Ωε) = Cε1/2.

By the trace theorem, ‖uε(·, εh)‖L2(Σ) ≤ C‖∇uε‖L2(Ωε). Combining the last two estimates yields the lower 
bound in (14).

As an immediate consequence of (10) we obtain∫
|ũε|2 dx ≤ C2. (17)
Ω
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Therefore, for a subsequence,

λε → λ, ũε ⇀ u in L2(Ω) weakly, as ε → 0, (18)

here and in what follows we do not relabel subsequences of ε if it does not lead to an ambiguity.
In fact, ũε converges strongly in L2(Ω). Indeed, if we denote by Iε the characteristic function of Ω \ Σε, 

then it easily follows from (10) that Iεũε is compact in L2(Ω). Combining the trace inequality with the 
Friedrichs inequality yields∫

Ω

((1 − Iε)ũε)2dx =
∫
Tε

(ũε)2dx

≤ Cε

∫
{xN=±hε

2 }∩Ω

(uε(x′,±hε

2 ))2dx′ + Cε2
∫
Tε

|∇uε|2dx ≤ C1(ε + ε2).

This implies the desired strong convergence.
According to (10), u+ := u

∣∣
Ω+ ∈ H1(Ω+), u− := u

∣∣
Ω− ∈ H1(Ω−), and

⎧⎪⎨⎪⎩
Δu± = 0 in Ω±,

u± = 0 on Γ1 ∩ ∂Ω±,
∂u±

∂n = 0 on Γ0 ∩ ∂Ω±.

(19)

From (17) we also have

∇̃u
+
ε ⇀ ∇u+ in (L2(Ω+))N weakly,

∇̃u
−
ε ⇀ ∇u− in (L2(Ω−))N weakly.

(20)

We are going to use these relations as well as (18) in order to pass to the limit in (4).
It remains to derive the transmission conditions satisfied by u on Σ. Let us first show that [u] = 0 on Σ

which implies that u ∈ H1(Ω, Γ1), here H1(Ω, Γ1) stands for the space of H1(Ω) functions vanishing on Γ1.

Lemma 3.4. The jump of u on Σ is equal to zero, that is [u] = 0.

Proof. We argue by contradiction. Assume that the jump set of u on Σ has positive (N − 1)-dimensional 
measure. Then there is α > 0 such that

R := measN−1{x′ ∈ Σ :
∣∣[u]

∣∣ ≥ α} > 0.

Denote

T 0
ε =

⋃
k′∈Kε

Bk′

ε × {0}, (21)

and let 1T 0
ε

be the characteristic function of T 0
ε on Σ. By the definition of T 0

ε we have

1T 0
ε

⇀ measN−1(Y ) weakly in L2(Σ),

as ε → 0. Then, denoting A = {x′ ∈ Σ : |[u]| ≥ α}, we get

1T 01A ⇀ measN−1(Y )1A weakly in L2(Σ).

ε
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In particular,

lim
ε→0

measN−1(A ∩ T 0
ε ) = RmeasN−1(Y ),

and, for all sufficiently small ε,

measN−1(A ∩ T 0
ε ) ≥ 1

2RmeasN−1(Y ) =: R1. (22)

Considering the L2-continuity of trace of a H1 function, we conclude that for sufficiently small ε it holds

∥∥∥u(·,±0) − u(·,±hε

2 )
∥∥∥
L2(Σ)

≤ 1
20

√
R1α. (23)

Since ũ±
ε converges to u in L2(Ω) and ‖uε‖H1(Ω\Σε) ≤ C, for all sufficiently small ε we have

∥∥∥u(·,±hε

2 ) − uε(·,±
hε

2 )
∥∥∥
L2(Σ)

≤ 1
20

√
R1α. (24)

Combining (22)–(24) by means of triangle inequality we get

∥∥∥uε(·,
hε

2 ) − uε(·,−
hε

2 )
∥∥∥2

L2(T 0
ε )

≥ 1
2R1α

2. (25)

Now, writing

uε(x′,
hε

2 ) − uε(x′,−hε

2 ) =

hε
2∫

−hε
2

∂uε

∂xN
(x′, t) dt

and using the Cauchy–Schwarz inequality we have

∣∣∣∣uε(x′,
hε

2 ) − uε(x′,−hε

2 )
∣∣∣∣2 ≤ hε

hε
2∫

−hε
2

∣∣∣ ∂uε

∂xN
(x′, t)

∣∣∣2 dt.
Integrating this relation over T 0

ε yields

∥∥∥∥uε(·,
hε

2 ) − uε(·,−
hε

2 )
∥∥∥∥2

L2(T 0
ε )

≤ εh‖∇uε‖2
L2(Ωε) ≤ Cε.

For sufficiently small ε this contradicts (25). �
Considering (10), (14), (15) and Lemma 3.3, one can justify the following statement:

Lemma 3.5. Under normalization condition (10) there exist constants cj > 0, j = 1, 2, . . . , such that

‖uε,j‖L2(Ωε) ≥ cj .
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Proof. From (10), (14) and (15) we obtain ‖uε,j‖2
L2(γε) ≥ Cj . Then, by Lemma 3.3 below, we have 

‖uε,j(·, εh
2 )‖2

L2(Σ) ≥ 1
2h measN−2(∂Y )Cj . In view of (10) the L2(Σ) norm of function uε,j(·, s) is contin-

uous in s uniformly in ε. This implies the desired lower bound. �
Let us now derive the Steklov type boundary condition satisfied by u on Σ. To this end we pass to the 

limit, as ε → 0, in (4). Let v ∈ H1(Ω, Γ1). It is clear that v|Ωε
∈ H1(Ωε, Γ1), then according to (4) we have∫

Ωε

∇uε · ∇v dx = λε

∫
γε

uεv ds. (26)

Writing ∫
Ωε

∇uε · ∇v dx =
∫
Ω

∇̃uε · ∇v dx =
∫

Ω+

∇̃u
+
ε · ∇v dx +

∫
Ω−

∇̃u
−
ε · ∇v dx,

and using (20), we obtain

lim
ε→0

∫
Ωε

∇uε · ∇v dx =
∫

Ω+

∇u+ · ∇v dx +
∫

Ω−

∇u− · ∇v dx. (27)

By Lemma 3.4, u ∈ H1(Ω, Γ1). Since u+ and u− satisfy (19), employing Green’s formula we deduce from 
(27) that

lim
ε→0

∫
Ωε

∇uε · ∇v dx = −
〈[

∂u

∂xN

]
, v

〉
Σ
. (28)

Denote

MN = measN−2(∂Y )
measN−1(Y ) ;

here and in what follows for N = 2 we set measN−2(∂Y ) = 2. Passage to the limit on the right-hand side 
of (26) relies on the following lemma.

Lemma 3.6. Let v ∈ H1(Ω, Γ1) ∩ C1(Ω). There exists C > 0 such that

∣∣∣ ∫
γε

uεv ds− hMN

∫
Tε∩Σ

uε(x′, 0)v(x′, 0) dx′
∣∣∣ ≤ C

√
ε. (29)

Proof. In the cylinder Y × (0, h/2) consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΥ = 0 in Y × (0, h/2),
∂Υ
∂n

= −hMN on Y × {0},

∂Υ
∂n

= 0 on Y × {h/2},

∂Υ = 2 on ∂Y × (0, h/2).

∂n
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Denoting Υε = εΥ(x/ε), extending Υε periodically in (εk′ + εY ) × (0, εh/2), k′ ∈ Kε, integrating by parts 
and recalling the definition of T 0

ε in (21), we get

0 =
∫

Tε∩{xN>0}

uεvΔΥε dx = −hMN

∫
T 0
ε

uεv dx
′ + 2

∫
γε∩{xN>0}

uεv ds

−
∫

Tε∩{xN>0}

∇(uεv) · ∇Υε dx. (30)

From the definition of Υε it easily follows that

‖∇Υε‖L2(Tε∩{xN>0}) ≤ C
√
ε. (31)

Indeed, by construction, ‖∇Υ‖2
L2(Y×(0,h/2)) < ∞. After dilatation we get ‖∇Υε‖2

L2(εY×(0,εh/2) ≤ CεN . 
Summing up over k′ ∈ Kε yields ‖∇Υε‖2

L2(Tε∩{xn>0} ≤ Cε, and (31) follows.
Combining (30) with (31) we obtain the desired inequality (29). �
In a similar way one can show that∣∣∣measN−2(∂Y )

measN−1(Y )

∫
T 0
ε

uεv dx
′ − measN−2(∂Y )

∫
Σ

uεv dx
′
∣∣∣ ≤ C

√
ε. (32)

Combining this estimates with (29) yields

lim
ε→0

∫
γε

uεv ds = hmeasN−2(∂Y )
∫
Σ

uv dx′ = K

∫
Σ

uv dx′. (33)

From (26), (28) and (33) we deduce the spectral condition on Σ. The limit integral identity reads∫
Ω

∇u∇v dx = λK

∫
Σ

uv dx′ for any v ∈ H1(Ω,Γ1).

By Lemma 3.4, u ∈ H1(Ω, Γ1). From (10) and Lemma 3.5 it follows that u 
= 0. Therefore, (λ, u) is an 
eigenpair of (11).

Let us now show that the multiplicity of λ is at least k if there are k eigenvalues λε,j1 , . . . , λε,jk , ji 
= jm
for i 
= m, converging (probably for a subsequence) to λ.

Assume that (for a subsequence)

λε,ji → λ, i = 1, . . . , k, ji 
= jm if i 
= m.

Choosing a subsequence once again we can assume that

ũε,ji ⇀ ui weakly in L2(Ω), i = 1, . . . , k, as ε → 0. (34)

With the help of (10) and (17) one can easily show that u+ ∈ H1(Ω+), u− ∈ H1(Ω−) and u+, u− satisfy (19), 
and

∇̃u
+
ε ⇀ ∇u+ in (L2(Ω+))N weakly,

∇̃u
−
ε ⇀ ∇u− in (L2(Ω−))N weakly,

ũε → u in L2(Ω) strongly. (35)
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Due to our normalization conditions for uε,j |γε
and by Lemma 3.3 we get(

ũε,ji , ũε,jm

)
L2(Σ) = Kδmi + o(1), as ε → 0. (36)

According to (34) and (35), ‖uε,ji − ui‖L2(γε) → 0. Passing to the limit as ε → 0 in (36) yields(
ui, um

)
L2(Σ) = Kδmi . (37)

Therefore, u1, . . . , uk are linearly independent and thus the multiplicity of λ is greater than or equal to k.
Let us now check that any eigenvalue of the homogenized problem (11) is a limit point of the eigenvalues 

of the original problem (3).

Lemma 3.7. Let (λj , uj) be the j-th eigenpair of problem (11). Then

lim sup
ε→0

Rε(uj) = λj , lim
ε→0

‖uj‖2
L2(γε) = K,

lim
ε→0

(uj , um)L2(γε) = 0 if j 
= m. (38)

Proof. The second and the third relations in (38) are straightforward consequences of Lemma 3.3. The first 
one easily follows from the second one. �

Combining (38) with variational formulae (7), (8), (9) and (12), (13), one concludes that

lim sup
ε→0

λε,j ≤ λj .

Assume that for a subsequence

lim sup
ε→0

λε,j < λj .

As was proved above in this case there exist at least j eigenvalues of problem (11) which are strictly less 
than λj . This contradiction shows that

lim sup
ε→0

λε,j = λj .

The convergence of the corresponding eigenspaces has already been justified.

3.3. Proof of Theorem 3.1 in the case 0 < δ < 1
N−2

Consider the sequence of eigenpairs (λε,j, uε,j) of problem (3) satisfying the normalization condition (10). 
As for the case δ = 0, we denote (λε, uε) the first eigenpair (λε,1, uε,1). It follows from the definition of 
H1(Ωε, Γ1) and Γ1 that there exists a function w ∈ H1(Ωε, Γ1) such that∫

Ωε

|∇w|2 dx ≤ C, (39)

and w ≡ 1 in the vicinity of Sε for all sufficiently small ε; the constant C in (39) does not depend on ε. 
Since measN−1

(
∂Bk′

ε × [−hε

2 , hε

2 ]
)

= Kε(1+δ)(N−1) with K = h measN−2(∂Y ), and the number of channels 
|Kε| admits the estimate |Kε| = ε1−NmeasN−1(Σ)(1 + o(1)), then∫

|w|2 dσ = measN−1(γε) � ε(N−1)δ. (40)

γε
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From (8), (39) and (40) we derive that ε(N−1)δλε ≤ C, i.e. λ̂ε ≤ C. Similarly, using variational formulation 
for higher order eigenpairs, one can show that

λ̂ε,j ≤ Cj . (41)

Using the Poincaré inequality, we deduce that (ũε)ε>0 is bounded in L2(Ω), so we can extract a subse-
quence, not relabeled for convenience, such that

λ̂ε → λ̂,

ũε ⇀ u in L2(Ω) weakly, as ε → 0. (42)

With the help of (10) and (17) one can easily show that u+ ∈ H1(Ω+), u− ∈ H1(Ω−) and u+, u− satisfy (19), 
and

∇̃u
+
ε ⇀ ∇u+ in (L2(Ω+))N weakly,

∇̃u
−
ε ⇀ ∇u− in (L2(Ω−))N weakly,

ũε → u in L2(Ω) strongly. (43)

Clearly, the functions u± satisfy the equation and the boundary conditions in (19). It remains to derive 
the interface conditions satisfied by u on Σ. Let us first show that [u] = 0 on Σ so that u ∈ H1(Ω, Γ1). 
Reasoning as in the case δ = 0, we assume, by contradiction, that u admits a jump through Σ. Then, for 
any κ > 0 there exits a sequence {εk}∞k=1, εk → 0, and a set Xεk ⊂ Σ, and constants c1 > 0, c2 > 0, such 
that

measN−1(Xεk) ≥ c1,∣∣uεk(x′, εkκ
2 ) − uεk(x′,− εkκ

2 )
∣∣ ≥ c2, for a.e. x′ ∈ Xεk . (44)

Without loss of generality we can assume that the origin belongs to Y . Then there is a cube Q� =
[−
/2, 
/2]N−1, 
 > 0, such that Q� ⊂ Y for some 
.

Let q < 
 and introduce the following sets

Φ+
ε =

{
x ∈ R

N−1 ×
[
hε1+δ,

εh

2q
]
, x′ ∈ 2(xN/h)Qq

}
,

Φ−
ε =

{
x ∈ R

N−1 ×
[
− εh

2q ,−hε1+δ
]
, x′ ∈ −2(xN/h)Qq

}
,

Φ0
ε = ε1+δQq ×

[
− ε1+δh, ε1+δh

]
, Φε = Φ+

ε ∪ Φ0
ε ∪ Φ−

ε .

Observe that {x ∈ Φ+
ε : xN = εh/(2q)} = {x′ ∈ Qε, xN = εh/(2q)}. Letting κ = h/q and choosing ε < 
, 

denote

X+
ε,0 =

{
x′ ∈ Qε :

∣∣∣∣uε(x′,
εh

2q ) − uε(εδx′, hε1+δ)
∣∣∣∣ ≥ c2/3

}
X−

ε,0 =
{
x′ ∈ Qε :

∣∣∣∣uε(x′,−εh

2q ) − uε(εδx′,−hε1+δ)
∣∣∣∣ ≥ c2/3

}
X0

ε,0 =
{
x′ ∈ Qε :

∣∣uε(εδx′, hε1+δ) − uε(εδx′,−hε1+δ)
∣∣ ≥ c2/3

}
It is clear that the measure of at least one of these sets X+

ε,0, X
−
ε,0 and X0

ε,0 is greater than or equal to 
measN−1(Xε ∩Qε)/3. Denote c01,ε = measN−1(Xε ∩Qε)/3.
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First we consider the case N ≥ 3. If measN−1(X±
ε,0) ≥ c01,ε, then by capacity arguments we obtain

c01,εc
2
2/9 ≤

∫
Qε

(
uε(x′,±εh/(2q)) − uε(εδx′,±ε(1+δ))

)2
dx′

≤ Cε(1+δ)(2−N)εN−1
∫

Φ±
ε

|∇uε(x)|2dx = Cε1−(N−2)δ
∫

Φ±
ε

|∇uε(x)|2dx. (45)

If measN−1(X0
εk,0) ≥ c01,εk , then

c01,εc
2
2/9 ≤

∫
Qε

(
uε(εδx′, ε(1+δ)) − uε(εδx′,−ε(1+δ))

)2
dx′

≤ Cε(1+δ)ε(1−N)δ
∫
Φ0

ε

|∇uε(x)|2dx = Cε1−(N−2)δ
∫
Φ0

ε

|∇uε(x)|2dx.

In both cases ∫
Φε

|∇uε(x)|2dx ≥ C−1c22measN−1(Xε ∩Qε)εδ(N−2)−1

Similarly, ∫
Φε+ε(j,0)

|∇uε(x)|2dx ≥ C−1c22measN−1(Xε ∩ ε(Q + j))εδ(N−2)−1

for all j ∈ Kε. Summing up the last relations in j we obtain∫
Ωε

|∇uε(x)|2dx ≥ C−1c22measN−1(Xε)εδ(N−2)−1 ≥ C−1c22c1ε
δ(N−2)−1.

If (44) holds then the integral on the left hand side tends to ∞ which contradicts (10). Therefore, [u] = 0
on Σ.

In the case N = 2, if |X±
ε,0| ≥ c01,ε, then

c01,εc
2
2/9 ≤

∫
Qε

(
uε(x′,±εh/(2q)) − uε(εδx′,±ε(1+δ))

)2
dx′ ≤ C

δε

| log ε|

∫
Φ±

ε

|∇uε(x)|2dx. (46)

If |X0
εk,0| ≥ c01,εk , then

c01,εc
2
2/9 ≤

∫
Qε

(
uε(εδx′, ε(1+δ)) − uε(εδx′,−ε(1+δ))

)2
dx′ ≤ Cε

∫
Φ0

ε

|∇uε(x)|2dx.

In both cases ∫
Φε

|∇uε(x)|2dx ≥ C−1c22|Xε ∩Qε|(δε)−1.

The rest of the proof is the same as in the case N ≥ 3.
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Let us now derive the spectral boundary condition satisfied by u on Σ. Let v ∈ C∞(Ω) ∩H1(Ω, Γ1). We 
have ∫

Ωε

∇uε · ∇v dx = ε−(N−1)δ λ̂ε

∫
γε

uεv ds. (47)

As in the case δ = 0, we have

lim
ε→0

∫
Ωε

∇uε · ∇v dx = −
〈[

∂u

∂xN

]
, v

〉
Σ
. (48)

In order to pass to the limit on the right-hand side of (47) we make use of the following inequality: for any 
w ∈ H1(Y × [−h

2 , 
h
2 ]) ∫

Qq

(
w(x′, h/2) − 〈w〉γ

)2
dx′ ≤ C

∫
Y×(−h/2,h/2)

|∇w|2 dx;

here

γ = ∂Y × [−h

2 ,
h

2 ], 〈w〉γ = |γ|N−1

∫
γ

w ds.

This inequality can be easily derived from the Poincaré and the trace inequalities. Its scaled version reads∫
ε1+δQq

(
w(x′, ε1+δh/2) − 〈w〉ε1+δγ

)2
dx′ ≤ Cε1+δ

∫
ε1+δ

(
Y×[−h

2 ,
h
2 ]

) |∇w|2 dx.

In the case N ≥ 3, combining this estimate with the second inequality in (45), we obtain∫
Qε

(
uε(x′, εh/(2q)) − 〈uε〉ε1+δγ

)2
dx′ ≤ Cε1−δ(N−2)

∫
Gε

|∇uε|2 dx

with Gε = ε
(
Q × [εδ h

2 , 
h
2q ]

)
∪ε1+δ

(
Y × [−h

2 , 
h
2 ]
)
∪ε

(
Q × [− h

2q , −εδ h
2 ]
)
. Similar inequalities hold in Gε +ε(j, 0)

for all j ∈ Kε. Summing up these inequalities in j yields∫
Σ

(
uε(x′, εh/(2q)) − 〈̂uε〉ε1+δγ

)2
dx′ ≤ Cε1−δ(N−2)

∫
Ωε

|∇uε|2 dx,

where 〈̂uε〉ε1+δγ is a piece-wise constant function equal to 〈uε〉(ε1+δγ+ε(j,0)) on Gε + ε(j, 0). Under our 
assumptions on δ the right-hand side in the last inequality tends to zero. Therefore,∣∣∣ ∫

Σ

uε(x′, εh/(2q))v(x′, εh/(2q)) dx′ −
∫
Σ

〈̂uε〉ε1+δγv(x′, εh/(2q)) dx′
∣∣∣ −→ 0.

For the first integral we have∫
uε(x′, εh/(2q))v(x′, εh/(2q)) dx′ −→

∫
u(x′, 0)v(x′, 0) dx′.
Σ Σ
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For the second∫
Σ

〈̂uε〉ε1+δγv(x′, εh/(2q)) dx′ = εN−1
∑
j∈Jε

〈̂uε〉ε1+δγ+ε(j,0)v(εj, 0) + o(1)

= εδ(1−N)

h|∂Y |N−1

∫
ε1+δγ+ε(j,0)

uε(x)v(εj, 0) ds + o(1) = εδ(1−N)

h|∂Y |N−1

∫
γε

uε(x)v(x) ds + o(1);

here o(1) tends to zero as ε → 0. Finally, combining the above estimates, we obtain

εδ(1−N)
∫
γε

uε(x)v(x) ds −→ h|∂Y |N−1

∫
Σ

u(x′, 0)v(x′, 0) dx′

for any v ∈ C∞(Ω). Therefore,∫
Ω

∇u∇v dx = λ̂K

∫
Σ

uv dx′ for any v ∈ H1(Ω,Γ1) ∩ C∞(Ω).

By the density arguments this limit relation also holds for any v ∈ H1(Ω, Γ1).
The proof in the case N = 2 is similar.
The fact that u 
= 0 relies on the following statement.

Lemma 3.8. There exists a constant C > 0 such that for any v1 ∈ H1(Ωε) and v2 ∈ H1(Ωε) and any κ ≥ h

we have ∣∣∣ε(1−N)δ
∫
γε

v1v2 ds−K

∫
Σ

v1(x′,κε)v2(x′,κε) dx′
∣∣∣ ≤ Cε

1
2 (1−(N−2)δ)‖v1‖H1(Ωε)‖v2‖H1(Ωε).

Proof. It suffices to prove the statement of the lemma in the case v1 = v2 = v. Using capacity arguments, 
we first estimate∣∣∣ ∫

Qε

v2(x′,
εh

2q )dx′ − ε(1−N)δq1−N

∫
ε1+δQq

v2(x′,
ε1+δh

2
)
dx′

∣∣∣
≤

∫
Qε

(
v2(x′,

εh

2q ) − v2(εδx′,
ε1+δh

2 )
)2
dx′

≤
[ ∫
Qε

(
v(x′,

εh

2q ) − v(εδx′,
ε1+δh

2 )
)2

dx′
] 1

2
[ ∫
Qε

(
v(x′,

εh

2q ) + v(εδx′,
ε1+δh

2 )
)2

dx′
] 1

2

≤
(
Cε1−(N−2)δ

∫
Φ+

ε

|∇v|2 dx
) 1

2
[
2
( ∫
Qε

v2(x′,
εh

2q ) dx′
) 1

2 +
(
Cε1−(N−2)δ

∫
Φ+

ε

|∇v|2 dx
) 1

2
]

≤ Cε
1
2 (1−(N−2)δ)

[ ∫
Φ+

ε

|∇v|2 dx +
∫
Qε

v2(x′,
εh

2q ) dx′
]

(49)

Similar inequality holds in any set Φ+
ε +ε(j, 0), j ∈ Kε. Summing up these inequalities in j ∈ Kε and letting 

Qε =
⋃

(ε1+δQq + εj) yields

j∈Kε
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∣∣∣ ∫
Σ

v2(x′,
εh

2q
)dx′ − ε(1−N)δq1−N

∫
Qε

v2(x′,
ε1+δh

2
)
dx′

∣∣∣
≤ Cε

1
2 (1−(N−2)δ)

[ ∫
Ω

|∇v|2 dx +
∫
Σ

v2(x′,
εh

2q ) dx′
]

(50)

Since ‖v‖L2(Σ) ≤ C‖v‖H1(Ω), we deduce from (50) that

ε(1−N)δ
∫
Qε

v2(x′,
ε1+δh

2
)
dx′ ≤ C‖v‖2

H1(Ωε) (51)

In the same way as in the proof of Lemma 3.3 one can prove that

ε(1−N)δ
∣∣∣ ∫
γε

v2 ds− K

qN−1

∫
Qε

v2(x′, ε1+δ h

2 ) dx′
∣∣∣

≤ Cε(1−(N−2)δ)
[ ∫
Ωε

|∇v|2 dx + ε(1−N)δ
∫
Qε

v2(x′,
ε1+δh

2 ) dx′
]

≤ Cε(1−(N−2)δ)‖v‖2
H1(Ωε)

Combining the last inequality with (49), we obtain

∣∣∣εδ(1−N)
∫
γε

v2 ds−K

∫
Σ

v2(x′,
εh

2q )dx′
∣∣∣ ≤ Cε

1
2 (1−(N−2)δ)‖v‖2

H1(Ωε) (52)

This gives the desired estimate for κ = h/(2q). For other values of κ ≥ h it can be easily derived from (52)
with the help of the trace theorem.

The case N = 2 can be considered in the same way. �
From Lemma 3.8 it follows that, under our normalization conditions, for sufficiently small ε the estimate 

holds ‖uε(·, hε)‖L2(Σ) ≥ C. This implies that u 
= 0.
The remaining part of the proof follows the line of the proof in the case δ = 0. We should just use 

Lemma 3.8 instead of Lemma 3.3. The proof of Theorem 3.1 is completed.
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