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Abstract

We study the existence and uniqueness of a solution to a linear stationary convection–diffusion equation 
stated in an infinite cylinder, Neumann boundary condition being imposed on the boundary. We assume that 
the cylinder is a junction of two semi-infinite cylinders with two different periodic regimes. Depending on 
the direction of the effective convection in the two semi-infinite cylinders, we either get a unique solution, 
or one-parameter family of solutions, or even non-existence in the general case. In the latter case we provide 
necessary and sufficient conditions for the existence of a solution.
© 2017 Elsevier Inc. All rights reserved.
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0. Introduction

The paper deals with a stationary linear convection–diffusion equation in an infinite cylinder 
G = (−∞, ∞) × Q with a Lipschitz bounded domain Q ⊂ R

d−1, at the cylinder boundary 
the Neumann condition being imposed. We assume that, except for a compact set in G, the 
coefficients of the convection–diffusion operator are periodic in x1 both in the left and in the 
right half cylinder. These two periodic operators need not coincide. This problem reads
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{ −div (a(x)∇ u(x)) + b(x) · ∇u(x) = f (x), x ∈G,

a(x)∇u(x) · n = g(x), x ∈ �.
(1)

Under uniform ellipticity assumptions we study if this problem has a bounded solution and if 
such a solution is unique. Concerning the functions f and g we assume that they decay fast 
enough as |x1| → ∞. Following [5] one can introduce the so-called effective axial drifts b̄+
and b̄− in the right and left halves of the cylinder, respectively. It turns out that the mentioned 
existence and uniqueness issues depend on the signs of b̄+ and b̄− (both effective drifts can be 
positive, or negative, or zero).

The main result of the paper is summarized below.
If b̄+ < 0 and b̄− > 0, then for any two constants K− and K+ there is a solution of (1) that 

converges to K− as x1 → −∞ and to K+ as x1 → +∞.
If b̄+ ≥ 0 and b̄− > 0 or b̄+ < 0 and b̄− ≤ 0 then a bounded solution exists and is unique up 

to an additive constant.
The case b̄+ ≥ 0 and b̄− ≤ 0 is more interesting. In this case a bounded solution need not 

exist. We will show that in this case the problem adjoint to (1) has a bounded solution p ∈ C(Ḡ), 
which is positive under proper normalization. Then problem (1) has a bounded solution if and 
only if

∫
G

f (x)p(x)dx +
∫
�

g(x)p(x)dσ = 0. (2)

A bounded solution in this case is unique up to an additive constant.
The qualitative behavior of the function p in the two semi-infinite cylinders varies depending 

on whether the effective drift in that cylinder is equal to zero or not. Namely, if b̄+ < 0 and 
b̄− > 0, then p decays exponentially as x1 → ∞. If, however, the effective drift is zero in one of 
the semi-infinite cylinders, p will stabilize to a periodic regime in that part, as x1 → ∞.

In all three cases any bounded solution converges to some constants as |x1| → ∞. Moreover, 
this convergence has exponential rate if f (x) and g(x) decay exponentially as |x1| → ∞.

The question of the behavior at infinity of solutions to elliptic equations in cylindrical and 
conical domains attracted the attention of mathematicians since the middle of 20th century. In 
[8] it was shown that for a divergence form elliptic operator in a semi-infinite cylinder there is a 
unique (up to an additive constant) bounded solution. It stabilizes to a constant at infinity. Similar 
problem for a convection–diffusion operator has been studied in [9], [5]. In these works necessary 
and sufficient conditions for the uniqueness of a bounded solution were provided. The work [7]
deals with a particular class of convection-diffusion equations in an infinite cylinder. In [10], 
[11] and [12] specific classes of semi-linear elliptic equations in a half-cylinder were considered. 
It was shown in particular that a global solution, if it exists, decays at least exponentially with 
large axial distance. The behavior at infinity of solutions to some classes of elliptic systems, in 
particular to linear elasticity was investigated in [13]. In [14] the uniqueness issue was studied 
for solutions of second order elliptic equations in unbounded domains under some dissipation 
type assumptions on the coefficients. The work [15] deals with solutions of elliptic systems 
in a cylinder that have a bounded weighted Dirichlet integral. Paper [16] studies the existence 
of solutions of symmetric elliptic systems in weighted spaces with exponentially growing or 
decaying weights.
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In [1] the authors study a Neumann problem for a linear elliptic operator in divergence form in 
a growing family of finite cylinders. It has been proved that the solution of this problem converges 
to a unique solution of a Neumann problem in the infinite cylinder.

In [17] nonlinear elliptic equations with a dissipative nonlinear zero order terms was studied 
in a half-cylinder. Nonlinear elliptic equations in unbounded domains, solvability and qualitative 
properties of the solutions have been considered in [18], [20], [19]. Fredholm theory of elliptic 
problems in unbounded domains is presented in [21].

To our best knowledge the question of existence and uniqueness of a bounded solution to 
a convection–diffusion equation in an infinite cylinder has not been addressed in the existing 
literature.

One of the important applications of the results of this work is constructing boundary layer 
correctors in homogenization problems. When homogenizing convection diffusion equations 
with rapidly oscillating coefficients that are stated in a network of thin cylindrical domains or in 
a medium with interfaces separating different materials, then, in the vicinity of the correspond-
ing junctions or interfaces, (interior) boundary layer correctors appear naturally. These boundary 
layer correctors allow one to match the homogenized solutions in different parts of the domain. 
Constructing the mentioned boundary layers correctors for convection–diffusion operators relies 
on the results of the present work. In [35] the authors have studied such problem in one particular 
case when in each of the two cylinders (being the constituents of the rod) the effective convection 
is directed from the end of the cylinder towards the junction. Both inner asymptotic expansions 
and the boundary layer correctors have been constructed, and the convergence was proved. Hav-
ing in hand the results of the present paper, one can construct an approximate solution in all other 
cases, for different directions of effective convection.

Similar homogenization problems in thin structures for the elasticity system have been studied 
in [24], [25], [23], [26], [27], [33], [32], [34]. In [28], [29], [31] the authors consider contact 
problems of two heterogeneous bars. Elliptic equations in divergence form have been addressed, 
for example, in [22] and [30].

It should be noted that in the case of operators with coefficients that do not depend on the 
longitudinal variable in each half of the cylinder the studied problem can be reduced to a one-
dimensional problem. In this case the proof of our results is quite elementary. However, in the 
generic case, when the coefficients are periodic functions of the longitudinal variable, this reduc-
tion is not possible any more. Instead, we introduce a number of spectral problems stated in the 
periodicity cell. Our approach then relies essentially on the properties of these spectral problems.

We also use essentially the properties of the adjoint operator defined in the whole infinite 
cylinder. For this operator we determine necessary and sufficient conditions of the existence of a 
positive principal eigenfunction in L2. This result is also of independent interest. It gives the an-
swer to the question of the existence of invariant measure in the infinite cylinder of the diffusion 
process whose generator coincides with the studied elliptic operator. If the coefficients of the 
studied operators do not depend on the longitudinal variable in the complement of a compact set, 
this problem basically admits a reduction to one-dimensional problem. However, in the generic 
case it is getting rather complicated.

The paper is organized as follows. In Section 1 we state the problem and provide all the as-
sumptions. Section 2 deals with the case b̄+ < 0 and b̄− > 0. The main result here is Theorem 2.1
that states that for any two constants K+ and K− there is a solution that stabilizes exponentially 
to K± as x1 → ±∞. In Section 3 we consider the cases b̄− ≤ 0 and b̄+ < 0 and b̄+ ≥ 0 and 
b̄− > 0. The main result here is the existence and uniqueness up to an additive constant of a 
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bounded solution, see Theorem 3.1. It is also shown that this solution stabilizes at infinity to 
some constants at exponential rate.

Section 3 focuses on the case b̄+ > 0 and b̄− < 0. We first prove that the homogeneous adjoint 
problem has a localized solution in H 1(G), see Theorem 4.1. Then we prove that problem (1) has 
a bounded solution if and only if the orthogonality condition (2) is fulfilled. This is the subject 
of Theorem 4.2.

In Section 4 we study the remaining cases: b̄− < 0 and b̄+ = 0 (b̄− = 0 and b̄− > 0) and 
b̄+ = 0 and b̄− = 0. We show that a bounded solution to (1) exists if and only if the orthogonality 
condition (2) is satisfied, where p is a function from the kernel of the adjoint operator which 
decays exponentially in the half cylinder if the corresponding effective drift is not equal to zero, 
and stabilises to a periodic regime in the half cylinder where the effective drift is zero.

For the reader convenience, in Section 5 we summarize the results of [5] which we use 
throughout the paper.

1. Problem statement

Given a bounded domain Q ⊂R
d−1 with a Lipschitz boundary ∂Q, we denote by G an infinite 

cylinder R × Q with points x = (x1, x′) and the axis directed along x1. The lateral boundary 
of the cylinder is denoted by � = R × ∂Q. We study the following Neumann boundary value 
problem for a stationary convection–diffusion equation:

{
Au ≡ −div (a(x)∇ u(x)) + b(x) · ∇u(x) = f (x), in G,

B u ≡ a(x)∇u(x) · n = g(x), on �.
(3)

Here v · w = ∑d
i=1 viwi , v, w ∈ R

d , denotes the standard scalar product in Rd ; n is the exterior 
unit normal.

Definition 1.1. We say that a solution u of problem (3) is bounded if

‖u‖
L2(GN+1

N )
≤ C, ∀N.

The goal of the paper is to study the question of existence and uniqueness of a bounded solution 
to problem (3).

Throughout the paper we use the notations

Gβ
α = (α,β) × Q, �β

α = (α,β) × ∂Q, Sα = {α} × Q.

Our main assumptions:

(H1) The coefficients aij , bj ∈ L∞(G) are periodic in x1 outside the finite cylinder G1−1, that is

aij (x) =

⎧⎪⎨
⎪⎩

a+
ij (x), x ∈ G+∞

1 ,

ãij (x), x ∈ G1−1,

a−(x), x ∈ G−1 ;
bj (x) =

⎧⎪⎨
⎪⎩

b+
j (x), x ∈ G+∞

1 ,

b̃j (x), x ∈ G1−1,

b−(x), x ∈ G−1 ,
ij −∞ j −∞
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where a+
ij , b+

j and a−
ij , b−

j are 1-periodic with respect to x1 in G+∞
1 and G−1−∞, respectively.

(H2) The d × d matrix a(x) is symmetric and satisfies the uniform ellipticity condition, that is 
there exists a positive constant � such that, for almost all x ∈G,

a(x) ξ · ξ ≥ � |ξ |2, ∀ξ ∈R
d . (4)

(H3) The functions f (x) ∈ L2(G) and g(x) ∈ L2(�) decay exponentially to zero as |x1| → ∞. 
Namely, there exist positive constants C0, γ0 independent of n such that

‖f ‖
L2(Gn+1

n )
+ ‖g‖

L2(�n+1
n )

≤ C0 e−γ0 |n|, n ∈R.

The presence of two periodic regimes in the two semi-infinite parts of the cylinder, 
G0−∞, G+∞

0 makes the problem nontrivial.
The existence and uniqueness issue depends on the signs of the effective convection (effective 

drift) in the half-cylinders G0−∞ and G+∞
0 . The effective convection in the direction of x1 for 

each periodic regime, a+
ij , b

+
j and a−

ij , b−
j , is defined as follows:

b̄± =
∫
Y

(a±
1j (x)∂jp

±(x) + b±
1 (x)p±(x)) dx, (5)

where Y = T
1 × Q is the periodicity cell, T1 is a one-dimensional torus, and p±(y) belong to 

the kernels of adjoint periodic operators

{ −div (a±∇ p±) − div (b± p±) = 0, y ∈ Y,

a±∇p± · n + (b± · n)p± = 0, y ∈ ∂Y.
(6)

Each of problems (6) has a unique up to a multiplicative constant solution p± ∈ H 1(Y ) ∩ C(Y )

which is positive everywhere in Y (see, for example, [5], Section 2).
The existence and the properties of solutions of problem (3) depend crucially on the signs 

of b̄+ and b̄−. We are going to study problem (3) for all possible combinations of signs of the 
effective drift in the two semi-cylinders:

(1) b̄+ < 0, b̄− > 0 (two-parameter family of solutions to (3));
(2) b̄+ < 0, b̄− ≤ 0 (or b̄+ > 0, b̄− > 0) (one-parameter family of solutions);
(3) b̄+ ≥ 0, b̄− ≤ 0 (non-existence in general case).

2. Case b̄+ < 0, b̄− > 0

Theorem 2.1. Let conditions (H1)–(H3) be fulfilled and suppose that b̄+ < 0 and b̄− > 0. Then, 
for any constants K+ and K−, there exists a unique bounded solution u(x) of problem (3) that 
converges at exponential rate for some γ > 0 to these constants, as x1 → ±∞:

‖u − K−‖L2(G−n−∞) + ‖u − K+‖L2(G+∞
n ) + ‖∇u‖L2(G\Gn−n) ≤ C M1 e−γ n,

‖∇u‖ 2 ≤ C M , n ∈ R .
(7)
L (G) 1 +
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The constant M1 in (7) have the form

M1 = |K+ − K−| + ‖(1 + x2
1) f ‖L2(G) + ‖(1 + x2

1) g‖L2(�),

where C depends on �, d and Q.

Proof. Let us note that any bounded solution in G restricted to the left or right semi-infinite 
cylinder is a bounded solution there. Thus, by Theorem 5.1, we conclude that every bounded 
solution (if it exists) stabilizes to some constants at x1 → ±∞.

Due to the linearity of problem (3), we can consider the homogeneous (f = g = 0) and non-
homogeneous equations separately. At the first step we prove the existence of a solution to the 
homogeneous equation that stabilizes to some nonzero constants as |x1| → ∞. In the second step 
we show that there exists u that solves the nonhomogeneous problem (3) and decays to zero as 
|x1| → ∞.
The case f = g = 0. For two arbitrary constants K+, K− ∈ R and k ∈ R+, we consider the 
following sequence of the auxiliary boundary value problems:

⎧⎪⎨
⎪⎩

Auk = 0, x ∈ Gk−k,

B uk = 0, x ∈ �k−k,

uk(±k, x′) = K±, x′ ∈ Q.

(8)

We assume that K+ �= K−, otherwise the result of the theorem is trivial: u ≡ K+. Without loss of 

generality we assume that K+ > K−. Denote vk = uk − K+ + K−

2
. Then vk solves the problem

⎧⎪⎪⎨
⎪⎪⎩

Avk = 0, x ∈ Gk−k,

B vk = 0, x ∈ �k−k,

vk(±k, x′) = ± 1

2
(K+ − K−), x′ ∈ Q.

(9)

By the maximum principle,

|vk| ≤ 1

2
|K+ − K−|, x ∈ Gk−k, k ∈R+. (10)

Indeed, by the maximum principle, a negative minimum cannot be attained in the interior of the 
domain Gk−k . The assumption that a negative minimum is attained on the lateral boundary �k−k

also contradicts the maximum principle. Indeed, one can prove this extending vk by reflection 
across the lateral boundary and using the fact that vk satisfies homogeneous Neumann boundary 
condition on �k−k . This argument is used many times throughout the paper and allows us to apply 
the maximum principle, the Harnack inequality and Nash estimates up to the lateral boundary of 
the cylinder.

It follows directly from (10) that the L2(GN+1
N )-norm of vk is bounded, and by the elliptic 

estimates (see [3], Ch. 8, problem 8.2), the norm of ∇vk is also bounded in each finite cylinder:

‖vk‖ 2 N+1 + ‖∇vk‖ 2 N+1 ≤ C |K+ − K−|, N ∈ R,

L (GN ) L (GN )
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with C independent of N . Here we extend vk by constants ±(K+ − K−)/2 outside Gk−k . Con-
sequently, we obtain

‖uk‖
L2(GN+1

N )
≤ C

(|K+| + |K−|), (11)

‖∇ uk‖
L2(GN+1

N )
= ‖∇ vk‖

L2(GN+1
N )

≤ C |K+ − K−|, N ∈R, (12)

where the constant C depends only on �, d and Q. By the compactness of embedding H 1(G
β
α) �

L2(G
β
α), we conclude that, up to a subsequence, uk converges to a solution u to problem (3) (with 

f = g = 0) strongly in L2
loc(G) and ∇ uk ⇀ ∇ u weakly in (L2

loc(G))d , as k → ∞. This proves 
the existence of a solution u ∈ H 1

loc(G) to (3).
Note that the Hölder norm of uk in each cylinder of fixed length is bounded (see [3], Theorem 

8.24):

‖uk‖
Cα(GN+1

N )
≤ C‖uk‖

L2(GN+2
N−1)

≤ C (|K+| + |K−|), ∀N, (13)

with α > 0 and a constant C depending only on d , Q and �.
Due to (13), uk converges to u uniformly in each finite cylinder GN+1

N , as k → ∞, and

|u| ≤ C (|K+| + |K−|), x ∈G.

We proceed with the exponential stabilization of u, as x1 → ∞.
Let us compare the solution vk of (9) with a solution v̂k to the following problem in the 

semi-infinite cylinder

⎧⎪⎨
⎪⎩

Av̂k = 0, x ∈ Gk
1,

B v̂k = 0, x ∈ �k
1,

v̂k(0, x′) = −|K+ − K−|/2, v̂k(k, x′) = (K+ − K−)/2, x′ ∈ Q.

(14)

By the maximum principle, vk ≥ v̂k and v̂k − K+−K−
2 < 0 in Gk

0. By Theorem 5.1, in the case 
b̄+ < 0, the following estimate is valid:

|uk − K+| = |vk − K+ − K−

2
| ≤ |v̂k − K+ − K−

2
| ≤ C |K+ − K−| e−γ x1 , x ∈ Gk

1.

Since, up to a subsequence, {uk} converges to u uniformly on every compact set K ⊂G, then

|u − K+| ≤ C |K+ − K−| e−γ x1 , x ∈ G+∞
1 .

The last estimate yields

‖u − K+‖
L2(GN+1

N )
≤ C |K+ − K−| e−γN , N = 1, ..., k − 1.

By the elliptic estimates we obtain
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‖∇u‖
L2(GN+1

N )
≤ C‖u − K+‖

L2(GN+2
N−1)

≤ C |K+ − K−| e−γN , N = 1, ..., k − 1.

The convergence of u to K−, as x1 → −∞, is proved in the same way.
The case when at least one of the functions f or g not zero. We prove the existence of a 
solution of the nonhomogeneous problem (3) that decays exponentially at infinity. To this end 
we consider the following problems:

⎧⎪⎨
⎪⎩

Auk = f (x), x ∈ Gk−k,

B uk = g(x), x ∈ �k−k,

uk(−k, x′) = uk(k, x′) = 0, x′ ∈ Q.

(15)

Without loss of generality we assume that f (x) ≥ 0 and g(x) ≥ 0, otherwise we represent 
these functions as two sums of their positive and negative parts. Moreover, we assume that 
suppf, suppg ⊂ G+∞

0 . The case when the supports of f and g are in G0−∞ can be considered 
similarly.

Suppose first that the coefficients aij , bj and the functions f and g are smooth. Thus, by the 
strong maximum principle (see, for example, [3]), uk(x) > 0, x ∈ Gk−k ∪ �k−k .

Due to Lemma 5.2, in the semi-infinite cylinder G−1−∞, where b̄− > 0, uk decays exponentially 
and the following estimate holds:

uk(x1, x
′) ≤ C0 ‖uk‖L∞(S−1) e

γ x1 , x1 < −1, γ > 0,

where C0 depends only on �, d and Q. Since uk > 0, by the Harnack inequality, there exists α
which depends only on d, Q and � such that

uk(x) ≤ α eγ x1 min
G

0
−1

uk(x), x ∈ G−1−∞.

Obviously, there exists ξ > 1 such that

uk(−ξ, x′) <
|Q|
2

min
G

0
−1

uk(x). (16)

Due to the linearity of the problem in Gk−ξ we represent uk as a sum vk + wk , where vk is a 
solution of the homogeneous equation with nonzero Dirichlet boundary conditions

⎧⎪⎨
⎪⎩

Avk = 0, x ∈ Gk−ξ ,

B vk = 0, x ∈ �k−ξ ,

vk(−ξ, x′) = uk(−ξ, x′), vk(k, x′) = 0, x′ ∈ Q;
(17)

and wk is a solution of the problem

⎧⎪⎨
⎪⎩

Awk = f (x), x ∈ Gk−ξ ,

B wk = g(x), x ∈ �k−ξ ,

w (−ξ, x′) = w (k, x′) = 0, x′ ∈ Q.

(18)
k k
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By the maximum principle we have

vk(x) ≤ |Q|
2

min
G

0
−1

uk(x), x ∈ Gk−ξ .

By Lemma 5.3, a solution wk of problem (18) satisfies the following estimate:

‖wk‖L2(GN+1
N )

≤ C ‖(1 + x2
1) f ‖L2(G+∞

0 ) + C ‖(1 + x2
1) g‖L2(�+∞

0 ).

Thus,

|Q|min
G0−1

uk(x) ≤ ‖uk‖L2(G0−1)

≤ ‖vk‖L2(G0−1)
+ ‖wk‖L2(G0−1)

≤ |Q|
2

min
G0−1

uk(x) + ‖wk‖L2(G0−1)
.

It follows from the last inequality that

min
G0−1

uk(x) ≤ C(‖(1 + x2
1) f ‖L2(G+∞

0 ) + ‖(1 + x2
1) g‖L2(�+∞

0 )), (19)

where C = C(�, d, Q). With the help of the Harnack inequality, maximum principle and (19)
we get

|uk(x)| ≤ C(‖(1 + x2
1) f ‖L2(G+∞

0 ) + ‖(1 + x2
1) g‖L2(�+∞

0 )) eγ x1 , x ∈ G−1
−k.

Note that uk is smooth in G−1
−k where it solves a homogeneous problem.

It remains to apply Lemma 5.2 and Lemma 5.3. According to these results, for b̄− > 0 and 
b̄+ < 0, we obtain

‖uk‖L2(GN+1
N )

≤ C M, ∀N > 0;
‖uk‖L2(GN+1

N )
≤ C M e−γN , ∀N < 0;

‖∇uk‖L2(Gk−k)
≤ C M,

where the constant M has the form

M = ‖(1 + x2
1) f ‖L2(G+∞

0 ) + ‖(1 + x2
1) g‖L2(�+∞

0 ).

For the nonsmooth data the desired estimates can be justified by means of a smoothening proce-
dure.

Thus, one can see that, up to a subsequence, {uk} (being extended by zero to the whole cylin-
der G), converges weakly in H 1

loc(G) to a solution u of problem (3). Moreover, by Theorem 5.1, 
u stabilizes exponentially to some constants as x1 → ±∞. One can show that by construction u
actually decays exponentially, as x1 → ±∞, but it is of no importance at this stage.
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As was shown above, for any constants K±, there exists a solution of homogeneous equation, 
stabilizing to these constants at infinity and satisfying estimates (7). Summing up such a solu-
tion with the particular solution u(x) of the non-homogeneous equation, we obtain the desired 
solution of nonhomogeneous problem.

The uniqueness of a solution for fixed constants K± follows from the maximum principle. 
Assume that there exists u solving (3) with f = g = 0 and u → 0 as x1 → ±∞. Let us restrict 
u on Gk−k . Due to the exponential decay, |u(±k, x′)| ≤ Ce−γ k for any k. By the maximum 
principle, |u| ≤ Ce−γ k everywhere in Gk−k for any k, which implies that u = 0.

Theorem 2.1 is proved. �
3. The case b̄− ≤ 0, b̄+ < 0 (b̄− > 0, b̄+ ≥ 0)

Theorem 3.1. Suppose that conditions (H1)–(H3) are fulfilled and b̄− ≤ 0, b̄+ < 0 (b̄− > 0, 
b̄+ ≥ 0). Then there exists a unique, up to an additive constant, bounded solution u(x) of prob-
lem (3). This solution, for some constant K−, satisfies the bounds

‖u − K−‖L2(GN
N−1)

≤ C M eγ N, N < 0,

‖u‖
L2(GN+1

N )
≤ C M e−γ N , N > 0, (20)

‖∇ u‖L2(G) ≤ CM.

Here the constant M is given by

M = ‖(1 + x2
1) f ‖L2(G) + ‖(1 + x2

1) g‖L2(�), (21)

and C only depend on �, d and Q.

Remark 1. Note that in the case b̄− ≤ 0, b̄+ < 0 there exists a unique, up to an additive constant, 
solution to problem (3) with f = g = 0 which is equal to zero (so as K−). Indeed, the solution 
is unique by Theorem 3.1 and u = 0 is a solution.

Proof. We will prove Theorem 3.1 in the case b̄− ≤ 0, b̄+ < 0. The case b̄− > 0, b̄+ ≥ 0 is 
treated in a similar way.

We prove the existence of a solution to (3) by considering the auxiliary problems in finite 
cylinders

⎧⎪⎨
⎪⎩

Auk = f, x ∈ Gk−k,

B uk = g, x ∈ �k−k,

uk(−k, x′) = uk(k, x′) = 0, x′ ∈ Q.

(22)

If both f and g are equal to zero, the problem is trivial: u = const is a solution to (3). We focus 
on the case when at least one of these functions is not zero. Without loss of generality we can 
assume that f, g ≥ 0. Otherwise we represent them as the sums of positive and negative parts and 
repeat the argument. In addition we assume that the coefficients of the equation aij , bj , as well 
as the functions f, g are smooth. The case of nonsmooth data is justified by means of smoothing. 
Then by the maximum principle uk > 0 in Gk up to the lateral boundary.
−k
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We will consider two cases: suppf, supp g ⊂ G+∞
η and suppf, supp g ⊂ G

η
−∞ for some η >

0 which will be chosen later.
Let now supp f, supp g ⊂ G+∞

η . To separate difficulties, as before, we represent the solution 
uk in the cylinder Gk

0 as the sum uk = vk + wk , where vk and wk are solutions of the following 
problems:

⎧⎪⎨
⎪⎩

Avk = f (x), x ∈ Gk
0,

B vk = g(x), x ∈ �k
0,

vk(0, x′) = vk(k, x′) = 0, x′ ∈ Q;⎧⎪⎨
⎪⎩

Awk = 0, x ∈ Gk
0,

B wk = 0, x ∈ �k
0,

wk(0, x′) = uk(0, x′), wk(k, x′) = 0, x′ ∈ Q.

Due to Lemma 5.3, vk satisfies the following estimate:

‖vk‖L2(GN+1
N )

+ ‖∇vk‖L2(GN+1
N )

≤ C M, N > 0, (23)

where C = C(�, d, Q) and M is given by (21).
It is left to show that ‖uk‖L∞(S0) is bounded. Then by the maximum principle it will follow 

immediately that ‖wk‖L∞(Gk
0)

is bounded.

Since b̄+ < 0, wk decays exponentially with x1, and for any δ we can choose η = η(δ) > 0
such that

wk(η, x′) ≤ δ min
Q

uk(0, x′). (24)

On the other hand,

‖uk‖L2(G
η
η−1)

≥ |Q| min
G

η
η−1

uk.

Since uk(−k, x′) = 0 and uk solves a homogeneous problem in Gη
−k , then minx′∈Q uk(x1, x′) is 

an increasing function of x1 on (−k, η).
Indeed, minx′∈Q uk(x1, x′) cannot attain a nonnegative minimum inside Gη

−k , which yields 
that it is either increasing or decreasing starting from some point (minx′∈Q uk(x1, x′) might have 
one local maximum). But in the latter case maxx′∈Q uk(x1, x′) is also decreasing, which is im-

possible since uk(−k, x′) = 0 and uk > 0 in Gk−k .
Thus

‖uk‖L2(G
η
η−1)

≥ |Q|min
Q

uk(0, x′).

Using (24), the Harnack inequality and the maximum principle we obtain
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|Q|min
Q

uk(0, x′) ≤ ‖uk‖L2(G
η
η−1)

≤ ‖vk‖L2(G
η
η−1)

+ ‖wk‖L2(G
η
η−1)

≤ C M + |Q| max
G

η
η−1

wk

≤ C M + α′|Q|wk(η, x′)

≤ C M + α′|Q|δ min
Q

uk(0, x′),

where M is given by (21), α′ > 0 is the constant from the Harnack inequality for wk and δ is 
defined in (24); C depends on �, d, Q. We chose δ such that α′δ < 1/2 and get

min
Q

uk(0, x′) ≤ C M.

Note that δ only depends on �, Q and d . Now we can simply consider uk in two cylinders, G0−k

and Gk
0, separately to obtain

‖uk‖L2(GN+1
N )

+ ‖∇uk‖L2(Gk−k)
≤ C M. (25)

The last estimate imply that, up to a subsequence, uk converges weakly in H 1
loc(G), as k → ∞, 

to a solution u of problem in the infinite cylinder (3). Due to Theorem 5.1, the restrictions of u(x)

to the semi-infinite cylinders G0−∞ and G∞
0 stabilize at the exponential rate to some constants, 

as x1 → ∓∞.
Let now suppf, supp g ⊂ G

η
−∞. Note that we have chosen η, which might be large, but it 

depends only on Q, � and d . As before, we consider auxiliary problem (22), and the first step is 
to derive estimates for uk in Gη+1

η . The function uk solves a homogeneous problem in Gk
η, and 

since b̄+ < 0 then uk decays exponentially with growing x1, and there exists ξ > η such that

|uk(ξ, x′)| ≤ C0 ‖uk‖L∞(Sη) e
−γ ξ ≤ C0 α e−γ ξ min

G
η+1
η

uk(x) <
|Q|
2

min
G

η+1
η

uk(x).

In Gξ
−k the function uk can be represented as a sum uk = vk + wk , where wk solves a homoge-

neous problem with induced boundary conditions

⎧⎪⎨
⎪⎩

Awk = 0, x ∈ G
ξ
−k,

B wk = 0, x ∈ �
ξ
−k,

wk(ξ, x′) = uk(ξ, x′), wk(−k, x′) = 0, x′ ∈ Q;
(26)

and vk is a solution of the nonhomogeneous equation with homogeneous boundary conditions

⎧⎪⎨
⎪⎩

Avk = f (x), x ∈ G
ξ
−k,

B vk = g(x), x ∈ �
ξ
−k,

v (−k, x′) = v (ξ, x′) = 0, x′ ∈ Q.

(27)
k k
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Using the maximum principle for wk and estimates in Lemma 5.3 for vk , we get

‖uk‖L2(GN+1
N )

≤ ‖vk‖L2(GN+1
N )

+ ‖wk‖L2(GN+1
N )

≤ C M + |Q|‖uk‖L∞(Sη), N < ξ,

with the constant M defined by (21).
Thus,

|Q| min
G

η+1
η

uk(x) ≤ ‖uk‖L2(G
η+1
η )

≤ ‖vk‖L2(G
η+1
η )

+ ‖wk‖L2(G
η+1
η )

<
|Q|
2

min
G

η+1
η

uk(x) + C M,

and, consequently

uk(ξ, x′) ≤ |Q|
2

min
G

η+1
η

uk(x) ≤ C M. (28)

Since b̄+ < 0, by Lemma 5.2 and (28) we have

|uk(x)| ≤ C0 ‖uk‖L∞(Sξ ) e
−γ x1 ≤ C M e−γ x1 , C0, γ > 0, x ∈ Gk

ξ .

In the cylinder Gξ
−k we have

‖uk‖L2(GN+1
N )

≤ CM, N < ξ.

The elliptic estimates give a local estimate for the gradient of uk:

‖∇uk‖L2(GN+1
N )

≤ C‖uk‖L2(GN+2
N−1)

≤ C M.

Thus, uk , up to a subsequence, converges weakly in H 1
loc(G) to a solution u of problem (3). This 

solution, restricted to the semi-infinite cylinders G0−∞ and G+∞
0 stabilizes exponentially to some 

constants K∓, as x1 → ∓∞.
It is left to prove that a solution is unique up to an additive constant. Suppose that there are 

two solutions u1 and u2 to problem (3) such that

ul → K+, x1 → +∞, l = 1,2;
ul → K−

l , x1 → −∞, l = 1,2.

Then w = u1 − u2 solves the homogeneous problem

{
Aw = 0, x ∈G,

B w = 0, x ∈ �,

and
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w → K− = K−
1 − K−

2 �= 0, x1 → −∞; w → 0, x1 → +∞.

Let us consider the restriction of w on the half-cylinder Gk−∞, k � 1. Since w → 0 at exponential 
rate, as x1 → +∞, then

w(k, x′) ≤ C e−γ k, C, γ > 0.

Taking into account that b̄+ ≤ 0, we see that w converges to a uniquely defined constant Cw, as 
x1 → −∞

|Cw| ≤ ‖w‖L∞(Sk) ≤ C e−γ k.

Obviously, whatever K− is, one can chose k0 such that for any k > k0

K− > C e−γ k.

We arrive at contradiction. Note that, by the maximum principle, a solution to a homogeneous 
problem that decays to zero when x1 → ±∞, is necessarily zero.

Notice that estimates (20), as well as the exponential stabilization of a solution to constants, 
remain valid for generic functions f ∈ L2(G) and g ∈ L2(�) satisfying condition (H3). Theo-
rem 3.1 is proved. �
4. The case b̄+ ≥ 0, b̄− ≤ 0

In the case b̄+ ≥ 0, b̄− ≤ 0 a bounded solution of problem (3) might fail to exist. Like in the 
Fredholm theorem, the existence of a bounded solution is granted by an orthogonality condition. 
Namely, problem (3) has a bounded solution if and only if the right-hand side in (3) is orthogonal 
to p(x) ∈ H 1

loc(G) ∩ C(G), a unique, up to a multiplicative constant, bounded solution of the 
adjoint problem

{
A∗p(x) = −div(a∇p) − div(b p) = 0, x ∈ G,

B∗p(x) = a∇p · n + (b · n)p = 0, x ∈ �.
(29)

The next statement asserts the existence and describe the qualitative properties of the ground 
state of the adjoint operator in the infinite cylinder G. Note that p decays exponentially in a 
semi-cylinder if the corresponding effective drift is nonzero and stabilises to a periodic regime 
in the semi-cylinder where the effective drift is zero.

Theorem 4.1.

(i) Let b̄+ > 0, b̄− < 0. There exists a unique, up to a multiplicative constant, positive function 
p(x) ∈ H 1(G) ∩ C(G) solving problem (29). Moreover, under the normalization condition 
max
G

p(x) dx = 1 the estimate holds

p(x) ≤ Ce−δ|x1|, x ∈ G, (30)

with the constants δ > 0 and C depending only on �, d, Q and b̄±.
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(ii) Let b̄− < 0, b̄+ = 0. There exists a unique, up to a multiplicative constant, positive func-
tion p(x) ∈ H 1

loc(G) ∩ C(G) solving problem (29). Under the normalization condition 
max
G

p(x) dx = 1 the function p decays exponentially as x1 → −∞ and stabilises to a 

periodic function p+ solving (6) when x1 → +∞:

p(x) ≤ Ceδx1, x ∈ G0−∞, (31)

|p − p+| → 0, x1 → +∞, (32)

with the constants δ > 0 and C depending only on �, d, Q and b̄±.
(iii) Let b̄− = b̄+ = 0. There exists a unique, up to a multiplicative constant, positive func-

tion p(x) ∈ H 1
loc(G) ∩ C(G) solving problem (29). Under the normalization condition 

max
G

p(x) dx = 1 the function p stabilises to periodic functions p+ and p− solving (6)

when x1 → ±∞ respectively:

|p − p±| → 0, x1 → ±∞. (33)

The proof is presented in Section 4.1.
The main result of this section is the following theorem.

Theorem 4.2. Let conditions (H1)–(H3) be fulfilled, and suppose that b̄+ ≥ 0 and b̄− ≤ 0. Then 
problem (3) has a bounded solution if and only if

∫
G

f (x)p(x)dx +
∫
�

g(x)p(x)dσ = 0, (34)

where p(x) is defined by Theorem 4.1.
Moreover, a solution u(x) to problem (3) is unique, up to an additive constant, it stabilizes to 

some constants at infinity:

‖u − K−‖L2(G−n−∞) + ‖u − K+‖L2(G+∞
n ) ≤ C (|K+| + |K−|) e−γ n, γ > 0,

and satisfies the estimates

‖u‖
L2(Gn+1

n )
≤ C (M + |K+| + |K−|), ‖∇ u‖L2(G) ≤ C M, (35)

M = ‖(1 + x2
1) f ‖L2(G) + ‖(1 + x2

1) g‖L2(�).

The proof is presented in Section 4.2.

4.1. Proof of Theorem 4.1

In order to prove the existence of a solution to problem (29), we consider the following aux-
iliary problems defined in growing cylinders:
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{
A∗ pk = 0, x ∈ Gk−k,

B∗ pk = 0, x ∈ ∂Gk−k,
(36)

where B∗pk = a∇pk · n + b · npk . Examples 1 and 2 presented in the end of Section 4 give 
a motivation for the choice of the adjoint Neumann boundary conditions for pk on the bases 
S±k = {±k} × Q. By the Krein–Rutman theorem (see, for example, [4]), problems (36) are 
solvable, and pk(x) are positive continuous functions in Gk−k . The solution pk is unique up to a 
multiplicative constant. We normalize pk in such a way that

max
Gk−k

pk = 1. (37)

Due to (37) and the elliptic estimates, pk is uniformly in k bounded in H 1(GN+1
N ) for any N

and, thus, the sequence {pk} converges weakly in H 1
loc(G) to a solution p of (29). Our goal is to 

show that p is positive, that it tends exponentially to zero at infinity in the half-cylinder where the 
corresponding effective drift is nonzero, and stabilises to a periodic function in the half-cylinder 
where the effective drift is equal to zero.

(i) Let b̄+ > 0 and b̄− < 0. We will derive upper and local lower bounds for pk(x) in the right 
part of the cylinder, Gk

1: The left part G−1
−k for b̄− < 0 is considered in the same way.

First we show that pk(1, x′) is bounded from below by a positive constant. To this end we 
factorize pk with p+, a solution to the periodic problem (6), in Gk

1:

pk(x) = p+(x) qk(x),

then qk solves the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div(a+(p+)2∇qk) + b+(p+)2 · ∇qk = 0, x ∈ Gk
1,

a+(p+)2∇qk · n = 0, x ∈ �k
1,

qk = pk

p+ , x ∈ S1 ∪ Sk.

(38)

Note that, since p+ > 0, the function qk is well defined and positive everywhere in Gk
1. For (38)

the maximum principle is valid, and qk attains its maximum on the bases S1 ∪ Sk .
Since minp+ ≤ p+ ≤ maxp+, we have

max
S1∪Sk

qk = max
G

k
1

qk ≥ 1

maxp+ > 0 ⇒ max
S1∪Sk

pk ≥ minp+

maxp+ > 0.

Let us show that pk = o(1), k → ∞, on Sk , or equivalently let us show that we cannot have 
qk ≥ δ > 0 on Sk for large k.

Assume that, for a subsequence, qk ≥ δ > 0 on Sk . For notation simplicity we do not relabel 
this subsequence. Since (p+)−1 belongs to the kernel of the periodic adjoint operator associated 
with (38), the effective drift for (38) is
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∫
Y

(a+
1j (p

+)2∂j (p
+)−1 + b+

1 (p+)2(p+)−1)dx = −b̄+ < 0.

Since 0 < δ ≤ qk ≤ 1/ minȲ p+ on Sk , by Lemma 5.2 and the comparison principle, qk is expo-
nentially close to some constant C∞

k in the interior part of Gk
1:

|qk − C∞
k | ≤ C

(
e−γ x1 + e−γ (k−x1)

)
, x ∈ Gk

1,

and

‖∇qk‖
L2(GN+1

N )
≤ C

(
e−γN + e−γ (k−N)

)
, N > 1,

where 0 < δ ≤ C∞
k ≤ 1/ minȲ p+, and γ > 0 does not depend on k. Consequently, pk is expo-

nentially close to C∞
k p+:

|pk − C∞
k p+| ≤ C

(
e−γ x1 + e−γ (k−x1)

)
, γ > 0, x ∈ Gk

1,

‖∇pk − C∞
k ∇p+‖

L2(GN+1
N )

≤ C
(
e−γN + e−γ (k−N)

)
, N > 1. (39)

Integrating (36) over Gk
ξ , ξ ≥ 1, we get

∫
Sξ

(a1j ∂jp
k + b1 pk)dx′ =

∫
Sk

(a1j ∂jp
k + b1 pk)dx′ = 0.

Thus ∫
G

ξ+1
ξ

(a1j ∂jp
k + b1 pk)dx = 0

for any ξ ∈ [1, k − 1]. Using (39) and passing to the limit in the last equality, we obtain b̄+ = 0, 
which contradicts our assumption. Consequently, qk ≥ C1 > 0 on S1 and qk tends to zero on Sk , 
as k → +∞, with C1 independent of k. In view of the bounds for p+, the same holds for pk:

pk ≥ C1 > 0 on S1; pk = o(1) on Sk, k → +∞. (40)

Therefore,

pk ≤ C
(
e−γ x1 + o(1)

)
, k → ∞, x ∈ Gk

1. (41)

Since pk is bounded uniformly in Cα(Gk
1), one can pass to the limit in (40)–(41), as k → ∞, on 

any compact set in G∞
1 and obtain the following estimate for p solving (29):

0 ≤ p ≤ C e−γ x1 , x ∈ G+∞
1 ; p ≥ C1 > 0 on S0. (42)

By the elliptic estimates,
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‖p‖
L2(GN+1

N )
+ ‖∇p‖

L2(GN+1
N )

≤ C e−γN , N ≥ 1.

Summing up in N , we obtain a global H 1(G+∞
1 ) bound for p.

If b̄− < 0 then in the same way we get a uniform H 1(G−1−∞) bound for p and

p ≤ C eγx1 , x ∈ G−1−∞.

By the normalization condition (37), the estimate in (30) holds.
The lower bound in (42) on S0 and the Harnack inequality implies that p is positive every-

where in G.
The uniqueness of p, up to a multiplicative constant, follows from Theorem 4.2. Indeed, 

assume there exist two localized functions p, p1 solving (29). Both functions satisfy estimate 
(30). We can find a pair (f, g) such that the compatibility condition (34) is satisfied with p and 
(3) is solvable. But (34) is also necessary, so (f, g) should be orthogonal to both functions, which 
implies that p and p1 are linearly dependent.

(ii) Now we assume that b̄− < 0 and b̄+ = 0. The exponential decay of p in G0−∞ follows 
from (i). The proof of the stabilization to a periodic regime in the right half-cylinder follows the 
lines of the proof of Lemma 11 in [6]. The idea of the proof is as follows.

At the first step, as before, we factorize a solution pk of (36) by p+ and show that for the 
solution qk = pk/p+ of (38) the following estimates hold (see Lemma 12 in [6]):

max
S1

qk ≥ min
Sk

qk, min
S1

qk ≤ max
Sk

qk.

At the second step by the Harnack inequality we get

0 < C0 ≤ min
Gk

1

qk ≤ max
Gk

1

qk ≤ C−1
0 .

Then it follows from Lemma 5.2 that qk is close to a linear function in Gk
1, qk converges as 

k → ∞ to q �= 0, a solution to the corresponding problem in the semi-infinite cylinder which 
stabilizes exponentially to a constant when x1 → ∞. In terms of pk this means that pk satisfies 
the estimate

|pk − p+| ≤ Ce−γ x1 ,

for some γ and C. passing to the limit as k → ∞ yields the desired estimate for p.

(iii) The proof follows the lines of that of Lemma 11 in [6].
Theorem 4.1 is proved.

Remark 2. We can improve the estimate (40), in the case when the corresponding effective drift 
is non-trivial, and show that pk ≤ e−γ1k on S±k for some γ1 > 0.
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Decomposing pk into a sum rk + sk , where

⎧⎨
⎩

A∗rk = 0 in Gk
1,

B∗rk = 0 on �k
1,

rk
∣∣
S1

= pk
∣∣
S1

> δ > 0, rk
∣∣
Sk

= 0;

⎧⎨
⎩

A∗sk = 0 in Gk
1,

B∗sk = 0 on ∂Gk
1,

sk
∣∣
S1

= 0, sk
∣∣
Sk

= pk
∣∣
Sk

.

Factorizing rk and sk by p+ and repeating the argument in the proof above, we show that for 
some γ > 0 and a constant K∞

k

|rk| ≤ C eγx1 , |sk − K∞
k p+| ≤ C e−γ k.

We compute the flux through Sk/2:

0 =
∫

Sk/2

(a1j ∂jp
k + b1 pk)dx′

=
∫

Sk/2

(a1j ∂j r
k + b1 rk)dx′ +

∫
Sk/2

(a1j ∂j s
k + b1 sk)dx′ (43)

= O(e−γ k) + K∞
k

∫
Sk/2

(a1j ∂jp
+ + b1 p+)dx′.

Since 
∫

Sk/2

(a1j ∂jp
+ + b1 p+)dx′ = b̄+/|Q| > 0, we have K∞

k = O(e−γ1k), k → ∞. Thus, pk

on Sk is exponentially small. Similar argument gives that pk is exponentially small on S−k . 
Consequently, there exist γ0 > 0 such that

0 < pk ≤ C e−γ0|x1|, x ∈ Gk−k. (44)

4.2. Proof of Theorem 4.2

We turn to the original problem (3).
To prove the existence of a solution we will consider a sequence of auxiliary problems in 

a growing family of finite cylinders and pass to the limit, as the length of the cylinder goes 
to infinity. It should be noted that a sequence of auxiliary problems with Dirichlet boundary 
conditions will not give us any reasonable approximation. This is illustrated in the two examples 
below.

Example 1. Consider a family of problems

{
vk

′′ + b(x) v′
k = f (x), x ∈ (−k, k),

vk(−k) = vk(k) = 0,
(45)

where b(x) = −sign(x), x ∈ [−k, k], and the function f (x) = χ[−1,1] is a characteristic function 
of the interval [−1, 1]. This equation admits an explicit solution:
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vk(x) =

⎧⎪⎨
⎪⎩

(e − 1) (ek − ex)/e, x ∈ (1, k),

2(1 − e) − x + (e − 1)ek−1 + e|x|, x ∈ (−1,1),

(e − 1) (ek − e−x)/e, x ∈ (−k,−1).

Although (45) has a unique solution without any conditions on the right-hand side, this solution 
can approximate, as k → ∞, no bounded function on R1 because vk → ∞ at the exponential 
rate, as k → ∞.

Example 2. Let us examine a one-dimensional problem with Neumann boundary conditions

{
vk

′′ + b(x) vk
′ = f (x), x ∈ (−k, k),

v′
k(−k) = v′

k(k) = 0,
(46)

where b(x) = −sign(x), x ∈ (−k, k). We are going to choose the function f (x) in such a way 
that the compatibility condition for (46) is satisfied. The kernel of the formally adjoint operator 
is one-dimensional and consists of functions {λ qk(x)}, λ ∈ R, where qk solves

{
q ′′
k − (b(x) qk)

′ = 0, x ∈ (−k, k),

(q ′
k − b qk)(±k) = 0.

(47)

We normalize qk by 
∫
Gk−k

qk(x) dx = 1. Integrating (47) we get

qk(x) = 1

2
(1 − e−k)−1 e−|x|.

The sequence {qk(x)} converges uniformly to q(x) = e−|x|/2, as k → ∞, x ∈ R.
To satisfy the compatibility condition 

∫ k

−k
qk f dx = 0 we take f (x) such that f (x) = sign(x)

if x ∈ (−1, 1) and f (x) = 0 otherwise. Using the continuity conditions for the solution and the 
flux density at the points x = 0 and x = ±1, and taking into account that the solution is defined 
up to an additive constant, we obtain

vk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−1, x ∈ (−k,−1),

−x + e−1(2 − e−x), x ∈ (−1,0),

−x + e−1 ex, x ∈ (0,1),

0, x ∈ (1, k).

Obviously, vk(x) converges uniformly to v(x), as k → ∞, where

v(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−1, x ∈ (−∞,−1),

−x + e−1(2 − e−x), x ∈ (−1,0),

−x + e−1 ex, x ∈ (0,1),

0, x ∈ (1,∞),

is a solution of the following equation in R:
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v′′ + b(x)v′ = f (x), x ∈ R.

These two examples suggest an idea of using Neumann boundary conditions instead of Dirich-
let on the bases S−k, Sk in the auxiliary problems.

We proceed with the proof of Theorem 4.2.
The fact that condition (34) is necessary for solvability of (3) is evident. Indeed, assume that 

a solution u(x) to problem (3) exists. Multiplying equation (3) by p(x) defined in Theorem 4.1
and integrating by parts yields (34).

Let us now prove that (34) is sufficient. We consider the following problems in the growing 
cylinders Gk−k :

⎧⎪⎨
⎪⎩

Auk = f + rk, x ∈ Gk−k,

B uk = g, x ∈ �k−k,

B uk = 0, x ∈ S−k ∪ Sk.

(48)

The function rk is introduced to ensure that the compatibility condition is satisfied. It is defined 
as follows:

rk = −
∫
G

f (x)χ(Gk−k)p
k(x) dx+∫

� g(x)χ(Gk−k)p
k(x) dσ∫

G1−1
pk(x) dx

χ(G1−1)

= −
∫
G

f (x)
(
χ(Gk−k)p

k(x)−p(x)
)
dx+∫

� g(x)
(
χ(Gk−k)p

k(x)−p(x)
)
dσ∫

G1−1
pk(x) dx

χ(G1−1),

(49)

where χ(G1−1) is the characteristic function of G1−1. One can see that rk → 0, as k → ∞, and

∫
Gk−k

(f + rk)pk dx +
∫
�

g(x)pk dσ = 0.

In order to obtain a priori estimates for uk , we proceed as follows:

• Estimate ‖uk‖H 1(G1−1)
.

• Reduce the problem in Gk−k to a problem in Gk
0 with a Dirichlet boundary condition on S0

and homogeneous Neumann boundary condition on Sk.
• Obtain a priori estimates for a solution of the last problem in Gk

0 (Lemmata 4.3 and 4.4).

We will present a detailed proof only for the case when b̄− < 0, b̄+ > 0 which is more techni-
cal compared with the case when the effective drift is zero in one (or both) of the half-cylinders. 
Namely, in the latter case, if b̄+ = 0, one can estimate the L2(Gk

0) norm of ∇uk directly, without 
using 

√
pk as a weight, and as a consequence, we do not need Proposition 1.

Let us normalize a solution to (48) by

∫
G1

uk(x) dx = 0. (50)
0
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We multiply the equation in (48) by pk uk and integrate by parts over Gk−k

∫
Gk−k

pk (a ∇uk,∇uk) dx =
∫

Gk−k

(f + rk)pk uk dx +
∫

�k−k

g pk uk dσ. (51)

Since pk decay exponentially to zero when b̄− < 0, b̄+ > 0, we cannot get an estimate for ∇uk

in the whole Gk−k at once. We can, however, obtain a bound for ∇uk is a finite cylinder, where 
pk is bounded from below. That is why we keep pk on the left-hand side of (51) and estimate the 
norm of 

√
pk∇uk .

Using the mean value theorem and the Schwartz inequality, we obtain

( ∫
Gk−k

f pk uk dx
)2 ≤

( k−1∑
n=−k

∫
Gn+1

n

∣∣f pk uk
∣∣dx

)2

=
( k−1∑

n=−k

pk(x̃n)

∫
Gn+1

n

∣∣f uk
∣∣dx

)2 ≤
( k−1∑

n=−k

pk(x̃n)‖f ‖
L2(Gn+1

n )
‖uk‖

L2(Gn+1
n )

)2
,

where x̃n ∈ Gn+1
n .

Denote by xn the points in Gn+1
n such that

1 =
k∑

n=−k

|Q|pk(xn) =
∫

Gk−k

pk(x) dx.

Then, by the Harnack inequality,

pk(x̃n) ≤ α pk(xn),

with the constant α depending only on �, d and Q. Due to the convexity property of the quadratic 
function, we have

( ∫
Gk−k

f pk uk dx
)2 ≤ α

k−1∑
n=−k

pk(xn)‖f ‖2
L2(Gn+1

n )
‖uk‖2

L2(Gn+1
n )

.

By the Poincaré inequality, recalling (50), we get

‖uk‖L2(G1
0)

≤ C ‖∇uk‖L2(G1
0)

.

Using the last bound, one can see that

‖uk‖2
2 n+1 ≤ C (1 + |n|)‖∇uk‖2

2 n+1 , ∀n > 0,

L (Gn ) L (G0 )
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with the constant C independent of n. Thus,

( ∫
Gk−k

f pk uk dx
)2 ≤ C

k−1∑
n=−k

pk(xn)‖(1 + √|x1|)f ‖2
L2(Gn+1

n )
‖∇uk‖2

L2(Gn+1
0 )

= C

{
k−1∑
n=0

+
−1∑

n=−k

}
pk(xn)‖(1 + √|x1|)f ‖2

L2(Gn+1
n )

‖∇uk‖2
L2(Gn+1

0 )
≡ J k

1 + J k
2 .

Let us estimate J k
1 : J k

2 is considered in the same way. Obviously,

J k
1 = C

k−1∑
l=0

k−1∑
n=l

pk(xn)‖(1 + √|x1|)f ‖2
L2(Gn+1

n )
‖∇uk‖2

L2(Gl+1
l )

.

We would like to move pk(xn) under the norm ‖∇uk‖, and to do this we need to know that the 
values of pk do not differ too much. The following statement gives a kind of monotonicity of pk.

Proposition 1. For all y, z ∈ Gk
0 such that |z1| > |y1|, a solution pk of problem (48) satisfies the 

estimate

pk(z1, z
′) ≤ β pk(y1, y

′), (52)

with the constant β > 0 depending only on �, d and Q.

Proof. Representing pk(x) in Gk
0 as a product P k = p+(x) ζ k(x), where p+ is a solution of (6), 

we obtain the following equation for ζ k:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div(a(p+)2∇ζ k) + b(p+)2 · ∇ζ k = 0, x ∈ Gk
0,

a(p+)2∇ζ k · n = 0, x ∈ �k
0,

ζ k(0, x′) = (p+(0, x′))−1 pk(0, x′), x′ ∈ Q,

ζ k(k, x′) = (p+(k, x′))−1 pk(k, x′), x′ ∈ Q.

Note that, in view of the exponential decay of pk

ζ k(0, x′) ≥ δ0
(

max
Q

p+(0, x′)
)−1

, ζ k(k, x′) ≤ Ce−γ0k
(

min
Q

p+(k, x′)
)−1

.

Denote

Mk(x1) ≡ max
x′∈Q

ζk(x1, x
′), mk(x1) ≡ min

x′∈Q
ζk(x1, x

′).

By the maximum principle,

mk(k) ≤ mk(x1) ≤ Mk(x1) ≤ Mk(0), x1 ∈ (0, k),
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and Mk(x1) decreases on the interval [0, x̂1] with x̂1 = min{x : Mk(x) ≤ Mk(k)}. On the interval 
[x̂1, k] (which might consist of only one point) we have Mk(x1) ≤ Mk(k). Take z and y such that 
z1 ≥ y1. Suppose Mk(y1) > Mk(k). Then, using the Harnack inequality, we obtain

α−1 mk(y1) ≥ Mk(y1) ≥ max{Mk(z1),M
k(k)} ≥ Mk(z1),

where α depends only on �, d and Q. If Mk(y1) ≤ Mk(k), then Mk(z1) ≤ Mk(k) for any z1 ≥ y1
and

mk(y1) ≥ mk(k) ≥ α Mk(k) ≥ α Mk(z1).

Thus,

ζ k(z1, z
′) ≤ α−1 ζ k(y1, y

′), z1 ≥ y1, y′, z′ ∈ Q.

Similar inequality takes place in G0−k .
To complete the proof it remains to note that, due to the Harnack inequality,

maxQ p+

minQ p+ ≤ c0. �

Let us turn back to the estimation of J k
1 . By Proposition 1,

J k
1 ≤ C

k−1∑
l=0

pk(xl)‖(1 + √|x1|)f ‖2
L2(Gk

l )
‖∇uk‖2

L2(Gl+1
l )

,

and applying again the Harnack inequality yields

J k
1 ≤ C

k−1∑
l=0

‖(1 + √|x1|)f ‖2
L2(Gk

l )
‖√pk ∇uk‖2

L2(Gl+1
l )

≤ C ‖(1 + √|x1|)f ‖2
L2(Gk

0)
‖√pk ∇uk‖2

L2(Gk
0)

.

Similarly,

J k
2 ≤ C ‖(1 + √|x1|)f ‖2

L2(G0−k)
‖
√

pk ∇uk‖2
L2(G0−k)

,

and, thus,

∣∣∣ ∫
Gk

0

f pk uk dx

∣∣∣ ≤ C ‖(1 + √|x1|)f ‖2
L2(Gk−k)

‖
√

pk ∇uk‖2
L2(Gk−k)

.

In the same way one can show that
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∣∣∣ ∫
Gk

0

rk pk uk dx

∣∣∣ ≤ C |rk| ‖
√

pk ∇uk‖2
L2(Gk−k)

,

∣∣∣ ∫
�k

0

g pk uk dσ

∣∣∣ ≤ C ‖(1 + √|x1|)g‖2
L2(�k−k)

‖
√

pk ∇uk‖2
L2(Gk−k)

.

Note that the factor (1 + |x1|) is not present in the estimate involving rk: The function rk is 
supported on G1−1.

In view of (51),

‖
√

pk ∇uk‖L2(Gk−k)
≤ C

(|rk| + ‖(1 + √|x1|)f ‖L2(G) + ‖(1 + √|x1|)g‖L2(�)

)
,

and thus

‖∇uk‖L2(G1−1)
≤ C

(|rk| + ‖(1 + √|x1|)f ‖L2(G) + ‖(1 + √|x1|)g‖L2(�)

)
.

Friedrichs’ inequality yields

‖uk‖H 1(G1−1)
≤ C

(|rk| + ‖(1 + √|x1|)f ‖L2(G) + ‖(1 + √|x1|)g‖L2(�)

)
≤ C

(‖(1 + √|x1|)f ‖L2(G) + ‖(1 + √|x1|)g‖L2(�)

)
.

(53)

In this way

‖uk‖H 1/2(S0)
≤ C

(‖(1 + √|x1|)f ‖L2(G) + ‖(1 + √|x1|)g‖L2(�)

)
. (54)

It remains to obtain estimates for uk in Gk
0 being a solution of the problem

⎧⎪⎨
⎪⎩

Auk = f + rk, x ∈ Gk
0,

B uk = g, x ∈ �k
0,

uk(0, x′) = ψk(x′), B uk(k, x′) = 0, x′ ∈ Q,

(55)

where ψk(x′) = uk(0, x′) satisfies the estimate (54). The estimates for uk in G0
−k are obtained 

similarly. We proceed in two steps: At the first step we consider homogeneous problem with 
nonhomogeneous Dirichlet boundary condition on S0 (Lemma 4.3); then, at the second step, we 
study nonhomogeneous problem with zero Dirichlet boundary condition on S0 (Lemma 4.4).

Lemma 4.3. For a solution uk of problem (55) with f + rk = g = 0 the following estimates hold:

‖uk‖L∞(Gk
1)

≤ C ‖ψk‖H 1/2(Q),

‖∇uk‖L2(Gk
0)

+ ‖uk‖
L2(GN+1

N )
≤ C ‖ψk‖H 1/2(Q), ∀N,

with a constant C independent of k.
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Proof. In view of the maximum principle, since B uk(k, x′) = 0,

‖uk‖L∞(S1) ≤ ‖uk‖L∞(S1/2).

In the cylinder G1
0 we represent uk as a sum vk + wk , where vk and wk satisfy the homoge-

neous equation and homogeneous boundary conditions on �k−k, vk(0, x′) = ψk(x′), vk(1, x′) =
wk(0, x′) = 0, wk(1, x′) = uk(1, x′). Then the function vk(x) satisfies the following estimate:

‖vk‖H 1(G1
0)

+ ‖vk‖L∞(S1/2) ≤ C ‖ψk‖H 1/2(Q).

By the strong maximum principle,

‖wk‖L∞(S1/2) ≤ α ‖uk‖L∞(S1),

where 0 < α < 1, α does not depend on k. In this way we obtain

‖uk‖L∞(S1) ≤ ‖uk‖L∞(S1/2) ≤ ‖vk‖L∞(S1/2) + ‖wk‖L∞(S1/2)

≤ C‖ψk‖H 1/2(Q) + α ‖uk‖L∞(S1), α < 1,

which yields

‖uk‖L∞(S1) ≤ C

1 − α
‖ψk‖H 1/2(Q), 0 < α < 1.

Applying the maximum principle once more we obtain

‖uk‖L∞(Gk
1)

≤ C ‖ψk‖H 1/2(Q), (56)

with C independent on k. It follows from (56) that

‖uk‖
L2(GN+1

N )
+ ‖∇uk‖L2(G2

0)
≤ C‖ψk‖H 1/2(Q), N ≥ 0. (57)

Let us note that (57) is valid in L∞(Gk
δ), for any δ > 0.

We proceed with estimating ‖∇uk‖L2(Gk
0)

.

Multiplying the equation in (55) by p+uk and integrating the resulting relation by parts over 
Gk

1 gives

∫
Gk

1

(a∇ uk,∇ uk)p dx =
∫
S1

ukp+ ∂uk

∂na

dx′ − 1

2

{∫
S1

−
∫
Sk

}
(uk)2 (a1j

∂p+

∂xj

− b1p
+) dx′.

Since both p+(x) and uk(x) are elements of H 1(Gk
1) ∩ L∞(Gk

1), p
+ uk ∈ H 1(G2

1) and

‖p+uk‖ 1 2 ≤ C ‖ψk‖H 1/2(Q).
H (G1)
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Since div
(
a∇uk

) ∈ L2(Gk
0) and div

(
a∇p+ −bp+) = 0, then the normal components of (a∇uk

)
and 

(
a∇p+ − bp+)

on S1 are well-defined elements of H−1/2(Q) (see [2]), and the inequality 
holds

‖a1j ∂xj
uk‖H−1/2(Q) ≤ C‖ψk‖H 1/2(Q), ‖a1j ∂xj

p+ − b1p
+‖H−1/2(Q) ≤ C. (58)

Taking into account (56) and (58), we estimate the integral on the left-hand side as follows

∫
Gk

1

(a∇ uk,∇ uk)p dx ≤ C
(‖ψk‖2

H 1/2(Q)
+ ‖ψk‖H 1/2(Q) ‖∇uk‖L2(Gk

1)

)
.

Finally

‖∇ uk‖L2(Gk
0)

≤ C‖ψk‖H 1/2(Q),

where C does not depend on k. Lemma 4.3 is proved. �
The next statement deals with the nonhomogeneous equation with zero Dirichlet boundary 

condition on the base S0 and homogeneous Neumann boundary condition on Sk.

Lemma 4.4. Let uk be a solution of problem (55) with ψk = 0. Then the following estimate is 
valid:

‖uk‖
L2(GN+1

N )
+ ‖∇uk‖L2(Gk

0)
≤ C M, ∀N,

with the constant M having the form

M = ‖(1 + x2
1)f ‖L2(Gk

0)
+ ‖(1 + x2

1)g‖L2(�k
0)

.

Proof. Let us consider a sequence of auxiliary problems

⎧⎪⎪⎨
⎪⎪⎩

Auk
n = fn + rk

n, x ∈ Gk
0,

B uk
n = gn, x ∈ �k

0,

uk
n(0, x′) = 0, B uk

n(k, x′) = 0, x′ ∈ Q.

(59)

Here fn(x) = f (x)χ(Gn+1
n ), rk

n(x) = rk χ(Gn+1
n ) and gn(x) = g(x)χ(Gn+1

n ), χ(G
β
α) is a char-

acteristic function of Gβ
α . Multiplying the equation in (59) by pk(x)uk

n(x) and integrating by 
parts over Gk

0 gives

∫
Gk

0

(a∇uk
n,∇uk

n)pk dx =
∫

Gn+1
n

(fn + rk)pk uk
n dx +

∫
Gn+1

n

gn pk uk
n dσ.

Friedrichs’ inequality reads
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‖uk
n‖L2(Gn+1

n )
≤ (1 + √

n)‖∇uk
n‖L2(Gn+1

0 )
.

Then, using the Harnack inequality for pk we obtain∫
Gn+1

0

(a∇uk
n,∇uk

n)pk dx ≤ C min
x′∈Q

pk(n + 1, x′)
(
(1 + √

n)‖fn‖L2(Gn+1
n )

+ |rk
n |

+ (1 + √
n)‖gn‖L2(�n+1

n )

)‖∇uk
n‖L2(Gn+1

0 )
.

Dividing both sides of the last inequality by minQ pk(n + 1, x′) and using Proposition 1 to esti-
mate pk , we obtain

β �‖∇uk
n‖2

L2(Gn+1
0 )

≤ � min
Gn+1

0

pk(x) (min
Q

pk(n + 1, x′))−1 ‖∇uk
n‖2

L2(Gn+1
n )

≤ C
(
(1 + √

n)‖fn‖L2(Gn+1
n )

+ |rk
n | + (1 + √

n)‖gn‖L2(�n+1
n )

)‖∇uk
n‖L2(Gn+1

0 )
.

Consequently,

‖∇uk
n‖L2(Gn+1

0 )
≤ C

(
(1 + √

n)‖fn‖L2(Gn+1
n )

+ |rk
n | + (1 + √

n)‖gn‖L2(�n+1
n )

)
,

and by the Friedrichs’ inequality for m ≤ n

‖uk
n‖L2(Gm+1

m )
≤ C

(
(1 + n)‖fn‖L2(Gn+1

n )
+ (1 + √

n)|rk
n | + (1 + n)‖gn‖L2(�n+1

n )

)
.

Thus,

‖uk
n‖H 1/2(Sn+1)

≤ C
(
(1 + n)‖fn‖L2(Gn+1

n )
+ (1 + √

n)|rk
n | + (1 + n)‖gn‖L2(�n+1

n )

)
.

By Lemma 4.3 we have

‖∇uk
n‖L2(Gk

0)
≤ C

(‖(1 + x1)fn‖L2(Gn+1
n )

+ |rk
n | + ‖(1 + x1)gn‖L2(�n+1

n )

)
,

‖uk
n‖L2(Gm+1

m )
≤ C

(‖(1 + x1)fn‖L2(Gn+1
n )

+ (1 + √
n)|rk

n | + ‖(1 + x1)gn‖L2(�n+1
n )

)
, ∀m.

Obviously, uk = ∑k−1
n=0 uk

n solves problem (55) with ψk = 0.
By the Cauchy–Schwarz inequality

k−1∑
n=0

‖(1 + x1)fn‖L2(Gn+1
n )

≤
( k−1∑

n=0

1

x2
1

)1/2 ( k−1∑
n=0

‖(1 + x2
1)fn‖2

L2(Gn+1
n )

)1/2

≤ C ‖(1 + x2
1)f ‖L2(Gk

0)
.

Taking into account that supp(rk) ⊂ G1−1, we get

‖∇uk‖ 2 k ≤ C
(‖(1 + x2)f ‖ 2 k + |rk| + ‖(1 + x2)g‖ 2 k

);
L (G0) 1 L (G0) 1 L (�0)
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‖uk‖
L2(GN+1

N )
≤ C

(‖(1 + x2
1)f ‖L2(Gk

0)
+ |rk| + ‖(1 + x2

1)g‖L2(�k
0)

)
.

Lemma 4.4 is proved. �
Combining (53), Lemmata 4.3 and 4.4, one can see that for the solution uk of problem (48)

the estimates hold

‖uk‖
L2(GN+1

N )
≤ C

(
‖(1 + x2

1)f ‖L2(G) + ‖(1 + x2
1)g‖L2(�) + |rk|

)
, (60)

‖∇uk‖L2(Gk−k)
≤ C

(
‖(1 + x2

1)f ‖L2(G) + ‖(1 + x2
1)g‖L2(�) + |rk|

)
(61)

with C independent of k. Hence, up to a subsequence, uk converges weakly in the space H 1
loc(G), 

as k → ∞, to a solution u(x) of problem (3) which satisfies estimates (35).
The stabilization of u to constants at infinity is ensured by Theorem 5.1. The uniqueness of 

the solution can be proved in the same way as in Theorem 3.1. �
5. Main results in the semi-infinite cylinder

For the readers convenience, in this section we summarize the results obtained in [5] for a 
solution in a semi-infinite cylinder.

Let G = (0, ∞) × Q be a semi-infinite cylinder in Rd with the axis directed along x1, where 
Q is a bounded domain in Rd−1 with a Lipschitz boundary ∂Q. The lateral boundary of G is 
denoted by � = (0, +∞) × ∂Q. We study the following boundary-value problem:⎧⎪⎨

⎪⎩
−div (a(x)∇ u(x)) + b(x) · ∇ u(x) = f, x ∈ G,

a∇u · n = g, x ∈ �,

u(0, x ′) = ϕ(x′), x′ ∈ Q.

(62)

Here a(x) is a d × d matrix satisfying the uniform ellipticity condition, and b(x) is a vector in 
R

d , ϕ(x′) ∈ H 1/2(Q). The matrix-valued function a(x) and the vector field b(x) are supposed 
to be measurable, bounded and periodic in x1 functions. The periodicity of the coefficients can 
be perturbed in some fixed finite cylinder, this will not affect the result.

Concerning the functions f and g we suppose that f (x) ∈ L2(G), g(x) ∈ L2(�), and that 
these functions decay exponentially as x1 goes to infinity, i.e. for some γ1 > 0

‖f ‖
L2(GN+1

N )
+ ‖g‖

L2(�N+1
N )

≤ C e−γ1 N, N > 0. (63)

Let us introduce an auxiliary function p(x) which belongs to the null space of the adjoint operator{
−div(a∇ p) − div (b p) = 0, x ∈ Y,

a∇p · n − (b · n)p = 0, x ∈ ∂Y,
(64)

and the effective convection

b̄1 =
∫
G1

0

(
a1j (x)∂jp(x) + b1(x)p(x)

)
dx. (65)
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Theorem 5.1.

(1) Any bounded solution u(x) of problem (62) stabilizes to a constant at the exponential rate 
as x1 → ∞, that is

‖u(x) − C∞‖L2(G∞
n ) ≤ C M e−γ n, ∀n ≥ 0,

for some C0 > 0 and γ > 0, M = ‖(1 + x2
1)f ‖L2(G) + ‖(1 + x2

1)g‖L2(�);
(2) b̄1 < 0 if and only if for any ϕ(x′) ∈ H 1/2(Q) and for any constant l ∈ R, there exists a 

bounded solution u(x) of problem (62) that converges to the constant l, as x1 → ∞;
(3) b̄1 ≥ 0 if and only if for every boundary condition ϕ(x′) there exists a unique constant m(ϕ)

such that a bounded solution of problem (62) converges to this constant as x1 → ∞.

The existence of a solution to (62) has been proved using auxiliary problems in finite growing 
cylinders. Namely, we consider the following problems in Gk

0:

⎧⎪⎪⎨
⎪⎪⎩

−div
(
a(x)∇ vk

)
+ b(x) · ∇ vk = f, x ∈ Gk

0,

a∇vk · n = g, x ∈ �k
0,

vk(0, x′) = ϕ(x′), vk(k, x′) = K x′ ∈ Q,

(66)

where ϕ(x′) ∈ L∞(Q), K is a constant.
The following statements characterizes the asymptotic behavior of vk.

Lemma 5.2. The case f = g = 0.

(1) If b̄1 > 0 then there exist constants C∞
ϕ , γ0 > 0 and γ > 0 such that

|vk − C∞
ϕ | ≤ C0 ‖ϕ‖L∞(Q)

(
e−γ0x1 + e−γ (k−x1)

)
+ C K e−γ (k−x1). (67)

In the case of a constant ϕ, C∞
ϕ = ϕ and

|vk − ϕ| ≤ C0 (|ϕ| + K)e−γ (k−x1).

(2) If b̄1 < 0 then there exists γ > 0 such that

|vk − K| ≤ C0 (‖ϕ‖L∞(Q) + K)e−γ x1 . (68)

(3) If b̄1 = 0 then in Gk
0 the function vk is close to a linear function:

∣∣∣∣vk − C∞
ϕ (k − x1) + Kx1

k

∣∣∣∣ ≤ C0 ‖ϕ‖L∞(Q) e
−γ0x1 + C

k

(‖ϕ‖L∞(Q) + K
)
. (69)

The constant C∞
ϕ is uniquely defined (see Lemma 5.1 in [5]).
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Lemma 5.3. The case ϕ = K = 0, f, g �= 0.
Independently of the sign of b̄1, there exists a constant C∞ such that

‖vk − C∞‖
L2(GN+1

N )
≤ C(‖(1 + x2

1)f ‖L2(G) + ‖(1 + x2
1)g‖L2(�)), (70)

‖∇vk‖L2(G) ≤ C(‖(1 + x2
1)f ‖L2(G) + ‖(1 + x2

1)g‖L2(�)), (71)

where C is independent of k and N .
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