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Abstract

The paper deals with homogenization of Navier–Stokes-type system describing electrorheological fluid 
with random characteristics. Under non-standard growth conditions we construct the homogenized model 
and prove the convergence result. The structure of the limit equations is also studied.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Rheological properties of some fluids might change essentially in the presence of an electro-
magnetic field. For such fluids the viscous stress tensor is not only a nonlinear function of the 
deformation velocity tensor, it also depends on the spatial argument. A collection of interesting 
experimental data as well as a number of mathematical models of electrorheological fluids can 
be found in [10].

In this work we assume that the driving electromagnetic field has a random statistically ho-
mogeneous microstructure. Then the viscous stress tensor of the fluid is getting a random rapidly 
oscillating function of the spatial variables. The corresponding system of equations takes the 
form (the so-called generalized Navier–Stokes equations)
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⎧⎨⎩
∂uε

∂t
− div

(
A
(x
ε
,Duε

))+ div(uε ⊗ uε) + ∇π = 0, in G × (0, T ),

divuε = 0, uε|∂G = 0, u|t=0 = u0,

(1)

where the viscous stress tensor A(y, ξ) satisfies non-standard p(·)-growth conditions which are 
specified in detail in the next section. In (1) uε denotes the fluid velocity field and Duε stands 
for its symmetrized gradient, π is the pressure, div(uε ⊗ uε) is the nonlinear convective term, 
and A(x, Duε) is the viscosity stress tensor of the fluid; ε is a small positive parameter that 
characterizes the microscopic length scale.

The goal of this work is to study the limit behavior of uε as ε → 0. We assume that A(y, ξ)

is a symmetric matrix being a random ergodic statistically homogeneous function of y ∈ R
d . 

In particular, the exponent p(y) that characterizes the growth conditions of A(y, ξ) might be a 
random statistically homogeneous function. Under a monotonicity assumption and certain con-
ditions on p, we construct the effective model and prove the homogenization result. We show in 
particular that the homogenized system is deterministic.

Similar results in the periodic framework have been obtained in [11]. Qualitative theory of a 
generalized Navier–Stokes system was developed in [3] and [12].

Our approach relies on a priori estimates, monotonicity arguments, generalized div–curl 
lemma and ergodic theorems.

2. Problem setup

Given a Lipschitz bounded domain G in Rd we study initial–boundary problem (1) in QT =
G × [0, T ] for a fixed T > 0.

Let (�, F, P) be a standard probability space with a measure preserving dynamical system 
τy , y ∈ R

d . We recall that τy is a group of measurable mappings τy : � �→ � such that

• τy1+y2 = τy1 ◦ τy2 , τ0 = Id.
• P(τy(Q)) = P(Q) for any Q ∈F and any y ∈ R

n.
• τ : � × R

n �→ � is measurable; we assume here that Rd is equipped with the Borel 
σ -algebra.

In what follows we assume that the dynamical system τ· is ergodic that is any function which is 
invariant with respect to τ· is equal to a constant almost surely (a.s.).

We also assume that � is a compact metric space and that τ is continuous with respect to this 
topology.

Now we set

A(y, ξ) = A(τyω, ξ)

where A = A(ω, ξ) possesses the following properties:

h1. A : � × M �→ M, where M is the space of symmetric d × d-matrices which is identified 

with R
d(d+1)

2 . We assume that A is a Carathéodory function, that is A is continuous in ξ for 
almost all ω ∈ � and measurable in ω for any ξ .

h2. For all ω ∈ � and ξ1 	= ξ2 (
A(ω, ξ1) − A(ω, ξ2), ξ1 − ξ2

)
> 0.
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h3. There exists c0 > 0 such that(
A(ω, ξ), ξ

)≥ c0|ξ |p(ω) − (c0)
−1.

h4. There exists c1 > 0 such that

∣∣A(ω, ξ)
∣∣p′(ω) ≤ c1|ξ |p(ω) + c1, p′(ω) = p(ω)

p(ω) − 1
,

where the random variable p(ω) satisfies the following estimates:

1 < α ≤ p(ω) ≤ β < ∞. (2)

2.1. Functional spaces

We introduce here several functional spaces. We denote

C∞
0,sol(G) = {ψ ∈ C∞

0 (G;Rd),divψ = 0},

and H is the closure of C∞
0,sol(G) in L2(G ; Rd) norm. We also define Xε as the closure of the 

space C∞([0, T ]; C∞
0,sol(G)) in the Luxemburg norm

‖Dψ‖Lpε (QT ) = inf
{
λ > 0 :

∫
QT

∣∣λ−1Dψ
∣∣pε(x)

dxdt ≤ 1
}
;

here QT = G × (0, T ) and pε(x) = p(τx/εω). Observe that the space Xε depends on ω.
We say that a vector function u ∈ Xε ∩ L∞((0, T ); H) is a weak solution of problem (1) if

(i) for any ϕ ∈ C∞
0,sol and for any t ′, t ′′ ∈ [0, T ] the relation holds

∫
G

[u(x, t ′′) − u(x, t ′)] · ϕ(x)dx +
t ′′∫

t ′

∫
G

[
A
(x
ε
,Du

)− u ⊗ u
]
· Dϕ dxdt = 0;

(ii)

lim
t→+0

∫
G

u(x, t) · ϕ(x)dx =
∫
G

u0(x) · ϕ(x)dx;

(iii) the energy inequality

1

2

∫
G

[u(x, t ′′) · u(x, t ′′) − u(x, t ′) · u(x, t ′)]dx +
t ′′∫

t ′

∫
G

A
(x

ε
,Du

)
· Dudxdt ≤ 0

holds for almost all t ′, t ′′ ∈ [0, T ].
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Notice that from the definition of a solution it follows that (u(·, t), ϕ) is a continuous function of 
t for any ϕ ∈ C∞

0,sol. In other words, u(·, t) is a weakly continuous function of t with values in H . 
However, it does not imply the energy equality. The theory admits the strict energy inequality, 
which means the violation of energy conservation law.

The following statement has been proved in [12].

Theorem 1. Assume that

α ≥ α0(d) = max

{
d + √

3d2 + 4d

d + 2
,

3d

d + 2

}

and

α ≤ p(x) ≤ β < ∞.

Then generalized Navier–Stokes system (1) has a weak solution for any u0 ∈ H .

Remark 1. In dimension d = 3 we have α0(3) ∈ (1.84, 1.85).

The condition α ≥ α0 ensures that the convective term u ⊗ u can be estimated in terms of the 
viscous term. More precisely, the following statement holds.

Lemma 2.1. If u ∈ X ∩ L∞(0, T , H), then

|u|2 ∈ L1(0, T ,Lα′
(G)).

Remark 2. In the classical case we have p = 3d+2
d+2 , see [7,8]. Notice that if α = 3d+2

d+2 then

|u|2 ∈ Lα′
(0, T ,Lα′

(G)) = Lα′
(QT );

here α′ = α
α−1 . In this case the convective term is completely subjected to viscous one.

Due to Theorem 1, for each ε > 0 problem (1) has a solution. Our goal is to study the limit 
behavior of these solutions as ε → 0.

The following sections deal with the homogenization procedure. This procedure relies on a 
number of auxiliary cell problems and the corresponding functional spaces. We introduce these 
spaces here.

We denote by Lp(·)(�, Rd(d+1)/2) the space of functions defined on � with values in the 
space of d × d symmetric matrices and such that∫

�

|φ(ω)|p(ω) dP(ω) < ∞.

This space is equipped with the corresponding Luxemburg norm
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‖φ‖Lp(·)(�,Rd(d+1)/2) = inf
{
λ > 0 :

∫
�

|λ−1φ(ω)|p(ω) dP(ω) ≤ 1
}
.

As an immediate consequence of the properties of dynamical system τ and the Fubini theorem 
we have

Lemma 2.2. Let φ ∈ Lp(·)(�, Rd(d+1)/2). Then a.s. φ(τxω) ∈ L
p(τxω)

loc (Rd , Rd(d+1)/2). More-
over,

E
∫
S

|φ(τxω)|p(τxω)dx = |S|
∫
�

|φ(ω)|p(ω) dP(ω)

for any bounded Borel set S ⊂ R
d .

We now denote by ∂i and Di the generator of τ in the i-th coordinate direction and its domain 

in L2(�), respectively. We also set D =
d⋂

i=1
Di and

D∞ = {ϕ ∈ L∞(�) : ∂i1, . . . , ∂ikϕ ∈ L2(�) for all i1, . . . , ik}.

The set D∞ is dense in Lp(�) for any p > 1. The realizations of functions from D∞ are a.s. 
smooth functions, see [5].

Denote G(�) the closure of {Dωφ : φ ∈ (D∞)d , divω φ = 0} in Lp(·)(�; Rd(d+1)/2), where 
(Dωφ)ij = 1

2 (∂iφj + ∂jφi), and divω φ = ∂1φ1 + . . . + ∂dφd . We then define

G⊥(�) =
{
θ ∈ Lp′(·)(�;Rd(d+1)/2) :

∫
�

θ · v dP(ω) = 0 for all v ∈ G(�)
}
.

3. Homogenization

In this section we prove a number of auxiliary statements and formulate the homogenization 
result. From item (iii) of the definition of a solution to problem (1) it follows that for each ε > 0
and each ω ∈ � we have

sup
0≤t≤T

‖uε(·, t)‖2
L2(G;Rd ) +

t∫
0

∫
G

|Duε(x, s)|pε(x) dxds ≤ C‖u0‖2
L2(G;Rd )

(3)

with a deterministic constant C. We recall that pε(x) = p(τx/εω). Considering h3., h4. and (2)
we derive from (3)

Lemma 3.1. For each ω ∈ � the sequence Duε is bounded in Lα(QT ; Rd(d+1)/2), and the se-
quence Aε = A(x/ε, Duε) is bounded in Lβ ′

(QT ; Rd).
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Using the standard arguments (see [12, Section 5]), one can show that {uε(·, t)} is a family 
of weakly equicontinuous functions [0, T ] �→ L2(G; Rd(d+1)/2). Moreover, by the Aubin–Lions 
lemma, this family is compact in L2(QT ; Rd). This yields the following convergence result.

Lemma 3.2. For P-almost all ω, for a subsequence, as ε → 0,

uε(·, t) ⇀ u(·, t) weakly in L2(G;Rd) for all t ∈ [0, T ];
uε(·, t) → u(·, t) in L2(G;Rd) for a.a. t ∈ [0, T ];

Duε ⇀ Du weakly in Lα(QT ;Rd(d+1)/2));
A
( ·
ε
,Duε

)
⇀ z0 weakly in Lβ ′

(QT ;Rd(d+1)/2).

Notice that u = u(x, t) and z0 = z0(x, t) might depend on ω.
Passing to the limit in the integral identity (i) we obtain

∫
G

[u(x, t ′′) − u(x, t ′)] · ϕ(x)dx +
t ′′∫

t ′

∫
G

[
z0 − u ⊗ u

] · Dϕ dxdt = 0 (4)

for any ϕ ∈ C∞
0,sol(G) and for any t ′, t ′′ ∈ [0, T ]. The crucial step now is to determine a re-

lation between z0 and Du. To this end we consider the following auxiliary problem: given 
ξ ∈ R

d(d+1)/2 find vξ ∈ G(�) such that∫
�

A(ω, vξ (ω) + ξ) · θ(ω)dP(ω) = 0 for any θ ∈ G(�). (5)

Lemma 3.3. Under assumptions h1.–h4. problem (5) has a unique solution for each ξ ∈
R

d(d+1)/2.

Proof. The proof of Lemma 3.3 relies on classical result for monotone operators. Denote by 
Aξ the operator mapping G(�) to G⊥(�) and defined by Aξ [θ ](ω) = A(ω, ξ + θ(ω)). Due to 
assumption h2. this operator is monotone. From h4. it follows that Aξ is bounded. Then, from
h1. and h4. with the help of Lebesgue theorem one can derive that the function

s −→
∫
�

A(ω, ξ + θ1(ω) + sθ2(ω)) · θ3(ω)dP(ω)

is continuous in s ∈ R for any θ1, θ2, θ3 ∈ G(�). Also, as an immediate consequence of h3., 
we have ‖θ‖−1(Aξ (θ), θ) → ∞, as ‖θ‖ → ∞. Then, by [8, Theorem 2.2.1] problem (5) has a 
unique solution. �
Remark 3. Notice that the proof of Lemma 3.3 relies on assumptions h1.–h4. only, it does not 
use ergodic properties of the dynamical system τx .
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The homogenized diffusion tensor is now introduced by

Aeff(ξ) =
∫
�

A(ω, ξ + vξ (ω)) dP(ω).

Consider an auxiliary variational problem

f (ξ) = min
v∈G(�)

∫
�

|ξ + v(ω)|p(ω)

p(ω)
dP(ω). (6)

The conjugate (in the sense of Young) functional takes the form

f ∗(ξ) =
{∫

�

|w|p′(ω)

p′(ω)
dP(ω) : w ∈ G⊥(�),

∫
�

w dP(ω) = ξ
}
.

Both functionals f and f ∗ are convex, continuous and even. Moreover, f (ξ) > 0 for ξ 	= 0, and 
f ∗(ξ) > 0 for ξ 	= 0.

Lemma 3.4. Function f (ξ) satisfies the following inequality

f (λξ) ≤
{

λαf (ξ), if λ ≤ 1,

λβf (ξ), if λ ≥ 1.

Proof. Denote wξ the function in G(�) that provides the minimum in (6). We have

f (λξ) =
∫
�

|λξ + wλξ (ω)|p(ω)

p(ω)
dP ≤

∫
�

|λξ + λwξ (ω)|p(ω)

p(ω)
dP

≤
∫
�

λp(ω) |ξ + wξ(ω)|p(ω)

p(ω)
dP.

This implies the desired inequality. �
Let Lf (QT ) be the associated with f Orlicz space defined as

Lf (QT ) =
{
φ ∈ L1(QT ,Rd(d+1)/2) :

∫
QT

f (φ(x)) dx < ∞
}

with the norm

‖φ‖Lf = inf
{
λ > 0 :

∫
QT

f (λ−1φ)dx ≤ 1
}
.

We also need the following Sobolev–Orlicz spaces:
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W
1,f

0 (G) = {φ ∈ W
1,1
0 (G) : divφ = 0, f (Dφ) ∈ L1(G)

}
,

‖φ‖
W

1,f
0 (G)

= ‖Dφ‖Lf (G),

and

Xf (QT ) = {ϑ ∈ L1((0, T ),W
1,1
0 (G;Rd)) : divx ϑ = 0, f (Dϑ) ∈ L1(QT )

}
,

‖ϑ‖Xf (QT ) = ‖Dϑ‖Lf (QT ).

The following statement has been proved in [4, Proposition X.2.6].

Lemma 3.5. The space C∞
0,sol(G) is dense in W 1,f

0 (G), and the space C∞([0, T ], C∞
0,sol(G)) is 

dense in Xf (QT ).

For star-shaped domains this result can be easily proved with the help of smoothing operators. 
For a generic Lipschitz domain the proof is more involved.

The properties of homogenized diffusion tensor Aeff are given in the following statement.

Lemma 3.6. The homogenized tensor Aeff is strictly monotone and continuous. Moreover, the 
flux A(ξ + vξ (·)) is a weakly continuous function of ξ with values in Lp′(·)(�, Rd(d+1)/2). There 
exist c0 > 0 and c1 > 0 such that

Aeff(ξ) · ξ ≥ c0f (ξ) − c−1
0 ,

f ∗(Aeff(ξ)
)≤ c1f (ξ) + c1. (7)

Proof. Considering problem (5) and h3., we have

Aeff(ξ) · ξ =
∫
�

A(ω, ξ + vξ (ω)) · ξ dP =
∫
�

A(ω, ξ + vξ (ω)) · (ξ + vξ (ω)) dP

≥ c0

∫
�

|ξ + vξ (ω)|p(ω) dP − c−1
0 ≥ c0f (ξ) − c−1

0 .

This gives the first inequality in (7). To justify the second one we notice that A(ξ +vξ ) ∈ G⊥(�), 
and 

∫
�

A(ξ + vξ ) dP = Aeff(ξ). Therefore, by the definition of f ∗,

f ∗(Aeff(ξ)) ≤
∫
�

|A(ω, ξ + vξ (ω))|p′(ω) dP

≤ c2

∫
�

|A(ω, ξ + vξ (ω)) · (ω, ξ + vξ (ω)) dP + c3

= c2A
eff(ξ) · ξ + c3 ≤ c2

(
γf ∗(Aeff(ξ)) + C(γ )f (ξ)

)+ c3;



4118 A. Piatnitski, V. Zhikov / J. Differential Equations 260 (2016) 4110–4129
here we have also used h4., h3., the Young inequality and Lemma 3.4. Choosing in the last 
expression γ = (2c2)

−1, we obtain the second estimate in (7).
Strict monotonicity of Aeff(ξ) is an immediate consequence of the strict monotonicity of 

A(ω, ξ) and the definition of Aeff. Indeed,

(Aeff(ξ1) − Aeff(ξ2)) · (ξ1 − ξ2)

=
∫
�

(
A(ω, ξ1 + vξ1(ω)) − A(ω, ξ2 + vξ2(ω))

) · (ξ1 − ξ2) dP

=
∫
�

(
A(ω, ξ1 + vξ1(ω)) − A(ω, ξ2 + vξ2(ω))

) · (ξ1 + vξ1(ω) − (ξ2 + vξ2(ω))) dP > 0.

In order to prove weak continuity of A(ξ + vξ (·)) we first show that vξ (·) is a weakly con-
tinuous in ξ function with values in Lp(·)(�, Rd). To this end we consider a sequence ξj that 
converges to ξ and notice that, due to condition h3., we have ‖vξj

‖Lp(·) ≤ C. Then for a sub-
sequence vξj

converges to some η ∈ G(�) weakly in Lp(·)(�, Rd). By monotonicity, for any 
ζ ∈ G(�) it holds

∫
�

A(ω, ξj + ζ ) · (vξj
− ζ ) dP =

∫
�

(
A(ω, ξj + ζ ) − A(ω, ξj + vξj

)
) · (vξj

− ζ ) dP ≤ 0.

From h1. and h4. we deduce by the Lebesgue theorem that A(ω, ξj + ζ ) → A(ω, ξ + ζ ) strongly 
in Lp′(·)(�, Rd(d+1)/2). Passing to the limit j → ∞ in the last inequality yields

∫
�

A(ω, ξ + ζ(ω)) · (η − ζ(ω)) dP ≤ 0.

This implies with the help of Minty’s argument that η is a solution of problem (5). Since a 
solution of (5) is unique, η = vξ . Therefore, vξj

converges to vξ .
Denote by z a weak limit (for a subsequence) of A(·, ξj + vξj

(·)), as j → ∞. Since z ∈
G⊥(�),

∫
�

z · vξ dP = 0,

∫
�

z · ζ dP = 0 for all ζ ∈ G(�).

By monotonicity,

∫
�

(
A(ω, ξj + vξj

(ω)) − A(ω, ξj + ζ(ω))
) · (vξj

(ω) − ζ(ω)) dP ≥ 0.

Passing to the limit j → ∞ we get
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∫
�

(
z − A(ω, ξ + ζ(ω))

) · (vξ (ω) − ζ(ω)) dP ≥ 0.

Using one more time Minty’s technique we conclude that z = A(ω, ξ + vξ (ω)). �
The homogenized problem reads⎧⎨⎩

∂u

∂t
− div

(
Aeff(Du)

)+ div(u ⊗ u) + ∇π = 0, (x, t) ∈ QT ,

divu = 0, u|∂G = 0, u|t=0 = u0.

(8)

We say that a vector function u ∈ Xf (QT ) ∩ L∞((0, T ), H) is a solution of problem (8) if

(i) for any ϕ ∈ C∞
0,sol(G) and for any t ′, t ′′ ∈ [0, T ] it holds

∫
G

[u(x, t ′′) − u(x, t ′)] · ϕ(x)dx +
t ′′∫

t ′

∫
G

[
Aeff(Du) − u ⊗ u

] · Dϕ dxdt = 0;

(ii)

lim
t→+0

∫
G

u(x, t) · ϕ(x)dx =
∫
G

u0(x) · ϕ(x)dx;

(iii) the inequality

1

2

∫
G

[u(x, t ′′) · u(x, t ′′) − u(x, t ′) · u(x, t ′)]dx +
t ′′∫

t ′

∫
G

Aeff(Du) · Dudxdt ≤ 0

holds for almost all t ′, t ′′ ∈ [0, T ].

We proceed with the main homogenization result of this work.

Theorem 2. Assume that

β < α∗ =
⎧⎨⎩

αd

d − α
, if α < d,

+∞, if α ≥ d.

Then almost surely, as ε → 0, any limit point u of the family uε is a solution of the homogenized 
problem (8).

Remark 4. Notice that the previous theorem does not state that the limit function is deterministic. 
Although the limit problem is not random, a solution need not be unique. Then, the limit points 
of uε might be distinct for different realizations.
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4. Stochastic two-scale convergence

We first recall the definition of stochastic two-scale convergence. Let {vε = vε(x, t, ̃ω), 0 <
ε ≤ ε0} be a family of functions such that for P almost all ω̃ ∈ � we have vε(·, ·, ̃ω) ∈ Lp(QT )

for all ε ∈ (0, ε0].

Definition 4.1. We say that the family vε ∈ Lp(QT ) weakly stochastic two-scale converges, as 
ε → 0, to a function v = v(x, t, ω), v ∈ Lp(QT × �), if a.s.

lim sup
ε→0

‖vε‖Lp(QT ) < ∞, (9)

and for any ϕ ∈ C∞
0 (QT ) ×D∞(�) it holds

lim
ε→0

∫
QT

vε(x, t)ϕε(x, t) dxdt −→
∫

QT

∫
�

v(x, t,ω)ϕ(x, t,ω)dxdtdP,

where ϕε(x, t) = ϕ(x, t, τx/εω).

We emphasize that in the above definition the functions vε need not be statistically homoge-
neous.

Notice that the two-scale limit function might also depend on the realization of the medium ̃ω. 
Observe also that although the two-scale limit is defined separately for each typical realization 
of the medium, that is for a given ω̃, the limit function is defined on the whole �. We do not 
indicate the dependence on ω̃ explicitly.

We recall some of the main properties of stochastic two-scale convergence (see [13]) that are 
used in the further analysis. For the reader convenience we provide a proof of these statements. 
It should be noted that the proof of these statements relies on the ergodicity of τx .

Lemma 4.1. Every family of functions {vε, ε > 0} such that (9) holds, weakly two-scale con-
verges for a subsequence to some v = v(x, t, ω), v ∈ Lp(QT × �).

Proof. With the help of the Birkhoff ergodic theorem we obtain that for any ϕ ∈ C∞
0 (QT ), 

φ ∈D∞(�) and for almost all ω̃ ∈ �

lim sup
ε→0

∣∣∣∣∣∣∣
∫

QT

vε(x)ϕ(x)φ(τ x
ε
ω̃)dx

∣∣∣∣∣∣∣≤

≤ lim sup
ε→0

‖vε‖Lp(QT )

⎛⎜⎝ ∫
QT

|ϕ(x)|q |φ(τ x
ε
ω̃)|qdx

⎞⎟⎠
1
q

≤

≤ Cω̃ lim
ε→0

⎛⎜⎝ ∫ |ϕ(x)|qφ(τ x
ε
ω̃)|qdx

⎞⎟⎠
1
2

= Cω̃

⎛⎜⎝ ∫ ∫
|ϕ(x)|q |φ(ω)|qdP(ω)dx

⎞⎟⎠
1
q

.

QT QT �
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Using the diagonal procedure we can choose a subsequence εj → 0 such that the limit 
lim

εj →0

∫
QT

vε(x)ϕ(x)φ(τ x
ε
ω̃)dx exists for each ϕ and φ. It immediately follows from the last for-

mula that this limit defines a linear bounded functional on Lq(QT × �). Therefore, there exists 
a function v ∈ Lp(QT × �) such that

lim
ε→0

∫
QT

vε(x)ϕ(x)φ(τ x
ε
ω̃)dx =

∫
QT

∫
�

v(x, t,ω)ϕ(x)φ(ω)dxdP.

By the density arguments the last relation also holds for any test function ϕ ∈ C∞
0 (QT ) ×

D∞(�). This completes the proof. �
Lemma 4.2. Let a family vε be such that a.s.

‖vε‖Lp(QT ) ≤ C, lim
ε→0

ε‖∇xv
ε‖Lp(QT ) = 0.

Then, for a subsequence,

vε 2
⇀v weakly two-scale in Lp(QT ),

with v = v(x, t), v ∈ Lp(QT ).

Proof. Choosing a test function of the form ϕ(x, t)φ(τx/εω), we get for a subsequence

0 = lim
ε→0

∫
QT

ε∇xv
ε(x, t)ϕ(x, t)φ(τx/εω)dx = − lim

ε→0

∫
QT

vε(x, t)ϕ(x, t)divω φ(τx/εω)dx

= −
∫

QT

∫
�

v(x, t,ω)ϕ(x, t)divω φ(ω)dxdP.

Therefore, for almost all (x, t) ∈ QT we have∫
�

v(x, t,ω)divω φ(ω)dP.

In the same way as in [13, Lemma 2.5] one can show that the set {divω φ : φ ∈ D∞} is dense in 
the space of Lq(�) functions with zero average. Therefore, v does not depend on ω. �
Lemma 4.3. Let a family vε satisfy a.s. the estimate

‖vε‖Lp(QT ) + ‖∇xv
ε‖Lp(QT ) ≤ C

for all ε ∈ (0, ε0]. Then, for a subsequence,

∇xv
ε 2
⇀∇xv(x, t) + v1(x, t,ω) weakly two-scale in Lp(QT × �),
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with v = v(x, t), v ∈ Lp((0, T ); W 1,p(G)) and v1 ∈ Lp(QT ; Lp
pot(�)), where Lp

pot(�) is the 
closure in Lp(�) of the set {∂ωu : u ∈ D∞(�)}.

Proof. According to the previous lemma a two-scale limit of vε does not depend on ω. Denote 
by V = V (x, t, ω) the two-scale limit of ∇xv

ε , and by v = v(x, t) the two-scale limit of vε . Since 
the two-scale convergence in Lp(QT × �) implies the weak convergence in Lp(QT ), we have 
v ∈ Lp(0, T ; W 1,p(Q)). Taking a test function ϕ(x, t)φ(τx/εω) with divω φ = 0, we arrive at the 
following relation∫

QT

∫
�

V (x, t,ω)ϕ(x, t)φ(ω)dxdP = lim
ε→0

∫
QT

∇xv
ε(x, t)ϕ(x, t)φ(τx/εω)dx

= −
∫

QT

∫
�

v(x, t)∇xϕ(x, t)φ(ω)dxdP

=
∫

QT

∫
�

∇xv(x, t)ϕ(x, t)φ(ω)dxdP.

Denoting v1(x, t, ω) = V (x, t, ω) − ∇xv(x, t) we conclude that for almost all (x, t) ∈ QT and 
for any φ ∈ D∞ such that divω φ = 0 it holds∫

�

v1(x, t,ω)φ(ω)dP = 0.

This implies the desired statement. �
Example (Periodic case). The periodic framework can be interpreted as a particular case of the 
random one. In this case � = [0, 1)d , F is the Borel σ -algebra on �, and P is the Lebesgue 
measure. The dynamical system τy is the set of shifts on the torus, that is for any ω ∈ [0, 1)d we 
set τyω = I(ω + y), where I(ω + y) ∈ [0, 1)d , and (ω + y) − I(ω + y) ∈ Z

d . One can observe 
that in the periodic case for any ω1 and ω2 there exists y ∈ Z

d such that ω2 = τyω1. This property 
plays a crucial role in the analysis of periodic media.

In the periodic case Lemmas 4.1–4.3 are classical and can be found in [9,1].
Considering a priori estimate (3) and using the arguments from [13] and [11,12], one can 

justify the following statement:

Proposition 4.1. For a subsequence,

uε 2
⇀u(x, t) weakly two-scale in Lα(QT ),

Duε 2
⇀Du(x, t) + u1(x, t,ω) weakly two-scale in Lα(QT × �),

where u1(x, t, ·) ∈ G(�) a.a. in QT and
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∫
QT

∫
�

|Du(x, t) + u1(x, t,ω)|p(ω) dxdtdP(ω) < ∞;

A(·/ε,Duε)
2
⇀z(x, t,ω) weakly two-scale in Lβ ′

(QT × �), (10)

where ∫
QT

∫
�

|z(x, t,ω)|p′(ω) dxdtdP(ω) < ∞,

z(x, t, ·) ∈ G⊥(�) a.a. in QT . Moreover, z0(x, t) = ∫
�

z(x, t, ω) dP(ω) with z0 introduced in 
Lemma 3.2.

Proof. The two-scale convergence follows from the previous lemmas. We should justify (10)
and similar estimate for z. Denote for brevity U(x, t, ω) = Du(x, t) +u1(x, t, ω). For any γ > 0
consider Uγ ∈ C∞

0 (QT ) ×D∞(�) such that ‖U − Uγ ‖Lα(QT ×�) ≤ γ . For any δ ∈ (0, 1) by the 
convexity argument we have

∫
QT

∣∣(1 − δ)Uγ (t, x, τ x
ε
ω) + δDuε(t, x)

∣∣p(τ x
ε
ω)

dxdt

≤ (1 − δ)

∫
QT

|Uγ (t, x, τ x
ε
ω)|p(τ x

ε
ω)

dxdt + δ

∫
QT

|Duε(t, x)|p(τ x
ε
ω)

dxdt. (11)

Using the inequality |a + δb|p − |a|p − δp|a|p−2ab = o(δ) (|a|p + |b|p), as δ → 0, that holds 
uniformly in a and b, we obtain

∣∣(1 − δ)Uγ (t, x, τ x
ε
ω) + δDuε(t, x)

∣∣p(τ x
ε
ω)

= (1 − δp(τ x
ε
ω)
)|Uγ (t, x, τ x

ε
ω)|p(τ x

ε
ω)

+ δp(τ x
ε
ω)|Uγ (t, x, τ x

ε
ω)|p(τ x

ε
ω)−2

Uγ (t, x, τ x
ε
ω)Duε(t, x)

+ o(δ)
(|Uγ (t, x, τ x

ε
ω)|p(τ x

ε
ω) + |Duε(t, x)|p(τ x

ε
ω))

.

Integrating the last equality over QT and combining the resulting relation with (11) after straight-
forward rearrangements we obtain

∫
QT

|Duε(t, x)|p(τ x
ε
ω)

dxdt

≥
∫ (

1 − p(τ x
ε
ω)
)|Uγ (t, x, τ x

ε
ω)|p(τ x

ε
ω)

dxdt
QT
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+
∫

QT

p(τ x
ε
ω)|Uγ (t, x, τ x

ε
ω)|p(τ x

ε
ω)−2

Uγ (t, x, τ x
ε
ω)Duε(t, x) dxdt

+ oδ(1)
(|Uγ (t, x, τ x

ε
ω)|p(τ x

ε
ω) + |Duε(t, x)|p(τ x

ε
ω))

,

where oδ(1) tends to zero as δ → 0. Due to the a priory estimates for Duε and by the Birkhoff 
theorem, the last term on the right-hand side does not exceed oδ(1) for sufficiently small ε. Ap-
plying again the Birkhoff theorem we conclude that the first term on the right-hand side converges 
to the integral ∫

QT

∫
�

(1 − p(ω))|Uγ (t, x,ω)|p(ω)dxdtdP.

Since p(·)|Uγ |p(·)Uγ can be used as a test function in the definition of two-scale convergence, 
the second term on the right-hand side converges to the integral∫

QT

∫
�

p(ω)|Uγ (t, x,ω)|p(ω)−2Uγ (t, x,ω)U(t, x,ω)dxdtdP.

Summarizing the above relations yields

lim inf
ε→0

∫
QT

|Duε(t, x)|p(τ x
ε
ω)

dxdt

≥
∫

QT

∫
�

(1 − p(ω))|Uγ (t, x,ω)|p(ω)dxdtdP

+
∫

QT

∫
�

p(ω)|Uγ (t, x,ω)|p(ω)−2Uγ (t, x,ω)U(t, x,ω)dxdtdP + oδ(1).

Sending first δ → 0 and choosing sufficiently small γ > 0 we conclude that∫
QT

∫
�

|Uγ (t, x,ω)|p(ω)dxdtdP ≤ C

with a constant C that does not depend on γ . By the Fatou lemma this yields the desired state-
ment. Moreover, we have

lim inf
ε→0

∫
QT

|Duε(t, x)|p(τ x
ε
ω)

dxdt ≥
∫

QT

∫
�

|U(t, x,ω)|p(ω)dxdtdP. �

The last lemma implies that

Du ∈ Lf (QT ), u ∈ Xf (QT ), z0 ∈ Lf ∗
(QT ). (12)
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Indeed, by Lemma 4.1,∫
QT

f (Du)dxdt =
∫

QT

(
min

w∈G(�)

∫
�

|Du(x, t) + w(ω)|p(ω) dP(ω)
)
dxdt

≤
∫

QT

( ∫
�

|Du(x, t) + u1(x, t,ω)|p(ω) dP(ω)
)
dxdt < ∞.

Similarly, ∫
QT

f ∗(z0) dxdt ≤
∫

QT

∫
�

|z(x, t,ω)|p′(ω) dP(ω)
)
dxdt < ∞.

It also follows from Proposition 4.1 that

t2∫
t1

∫
G

z0 · Dudxdt =
t2∫

t1

∫
G

∫
�

z(Du + u1) dxdtdP(ω). (13)

Our next goal is to pass to the limit in the viscous term in (1). To this end we take the difference 
between the relations of items (i) and (iii) of Section 2.1. The resulting relation reads

t1∫
t0

∫
G

A
(x

ε
,Duε

)
· Duε dxdt

≤
t1∫

t0

∫
G

[
A
(x

ε
,Duε

)
− uε ⊗ uε

]
· ∇η dxdt

−
∫
G

([1

2
|uε(x, t1)|2 − uε(x, t1) · η(x)

]− [1

2
|uε(x, t0)|2 − uε(x, t0) · η(x)

])
dx,

for any η ∈ C∞
0,sol(G). Considering the relation∫

G

(1

2
|uε|2 − uε · η

)
dx

∣∣∣t1
t=t0

= 1

2

∫
G

(|uε − η|2) dx

∣∣∣t1
t=t0

and the symmetry of matrices A and uε ⊗ uε , we derive

t1∫
t0

∫
G

A
(x

ε
,Duε

)
· Duε dxdt ≤

t1∫
t0

∫
G

[
A
(x

ε
,Duε

)
− uε ⊗ uε

]
· Dηdxdt

+ 1

2

∫
|uε(x, t0) − η(x)|2 dx.
G
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Choosing t0 in such a way that uε(·, t0) converges to u(·, t0) in L2(G) and u(·, t0) ∈ W
1,α
0 (G), 

and passing to the limit ε → 0 yields

lim
ε→0

t1∫
t0

∫
G

A
(x

ε
,Duε

)
· Duε dxdt ≤

t1∫
t0

∫
G

[z0 − u ⊗ u] · Dηdxdt

+ 1

2

∫
G

|u(x, t0) − η(x)|2 dx. (14)

We are going to show that η = u(x, t0) can be chosen as a test function in the last inequality. Let 
{ηN }∞N=1 be a sequence of functions ηN ∈ C∞

0,sol(G) such that ηN → η in W 1,α
0 (G). We substitute 

ηN for a test function in (14) and pass to the limit, as N → ∞. It is clear that ηN → u(·, t0) in 
L2(G). Therefore, the last term on the right-hand side tends to zero.

Regarding the convection term by Lemma 2.1 we have

|u ⊗ u| ∈ L1((0, T ),Lα).

Then

t1∫
t0

∫
G

(u ⊗ u) · DηN dxdt =
∫
G

t1∫
t0

(u ⊗ u)dt · DηN dx →
∫
G

t1∫
t0

(u ⊗ u) · Du(x, t0) dxdt.

By Lemma 3.5, the space C∞
0,sol(G) is dense in W 1,f

0 (G). Therefore, we can assume that ηN

converges to u(·, t0) in W 1,f

0 (G). This yields

t1∫
t0

∫
G

z0 · DηN dxdt −→
t1∫

t0

∫
G

z0 · Du(x, t0) dxdt;

here we used the fact that

t1∫
t0

z0 dt ∈ Lf ∗
(G).

Letting t1 = t0 + h and combining (14) with the above limit relations, we obtain

lim
ε→0

1

h

t1∫
t0

∫
G

A
(x

ε
,Duε

)
· Duε dxdt ≤ 1

h

t1∫
t0

∫
G

[z0 − u ⊗ u] · Du(x, t0) dxdt

= 1

h

t1∫ ∫
z0 · Dudxdt − R(h)
t0 G
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with

R(h) = 1

h

t0+h∫
t0

∫
G

z0 · (Du(x, t) − Du(x, t0)) dxdt −
∫
G

1

h

t0+h∫
t0

u ⊗ udt · Du(x, t0) dx.

With the help of (13) we rearrange the last inequality as follows

lim
ε→0

1

h

t1∫
t0

∫
G

A
(x

ε
,Duε

)
· Duε dxdt ≤ 1

h

t1∫
t0

∫
G

∫
�

z · (Du + u1) dP(ω)dxdt − R(h). (15)

Due to monotonicity of A(ω, ξ), for any � ∈ C∞
0 (G, D∞(�, Rd(d+1)/2)) we have

1

h

t1∫
t0

∫
G

[
A
(x

ε
,Duε

)
− A

(x

ε
,�(x, τx/εω)

)]
· [Duε − �(x, τx/εω)]dxdt ≥ 0.

We pass to the limit, as ε → 0, in this relation. The term with the integrand A(ε−1x, Duε) · Duε

has been estimated in (15). In other three terms we pass to the two-scale limit. This yields

1

h

t1∫
t0

∫
G

∫
�

[z − A(ω,�(x,ω))] · [Du + u1 − �(x,ω)]dP(ω)dxdt ≥ R(h).

For an arbitrary Lebesgue point t0 of functions z(·, t, ·) · Du(·, t) and z(·, t, ·) · u1(·, t, ·) the 
left-hand side of the last inequality converges as f → 0 to the following integral∫

G

∫
�

[z(x, t0,ω) − A(ω,�(x,ω))] · [Du(x, t0) + u1(x, t0,ω) − �(x,ω)]dP(ω)dx.

It is also easy to check that both integrals in the definition of R(h) tend to zero, as h → 0. 
Therefore,∫

G

∫
�

[z(x, t0,ω) − A(ω,�(x,ω))] · [Du(x, t0) + u1(x, t0,ω) − �(x,ω)]dP(ω)dx ≥ 0

for any test function �. By the standard Minty’s arguments

z(x, t0,ω) = A
(
ω,Du(x, t0) + u1(x, t0,ω)

)
.

By Proposition 4.1 we have z(x, t0, ·) ∈ G⊥(�). Therefore,∫
A
(
ω,Du(x, t0) + u1(x, t0,ω)

) · v(ω)dP(ω) = 0
�
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for any v ∈ G(�), and thus u1(x, t0, ω) is a solution of problem (5) with ξ = Du(x, t0). We then 
conclude that

z0(x, t0) =
∫
�

z(x, t0,ω)(ω)dP(ω) =
∫
�

A
(
ω,Du(x, t0) + u1(x, t0,ω)

)
dP(ω)

= Aeff(Du(x, t0)).

This completes the proof of Theorem 2.

5. Examples

In this section we consider examples of random diffusion tensors A(x, ξ).

Example 1 (Voronoi–Poisson tessellation model). Consider a Poisson point process in Rd with 
intensity 1, and construct the Voronoi tessellation (diagram) for this point process. It is known 
(see [2]) that a.s. the said Voronoi tessellation consists of a countable number of convex poly-
topes, we denote them H1, H2, . . . . Moreover, the polytopes can be enumerated in such a way 
that the characteristic function 1Hj

(y) is a B × F -measurable function of y and ω for any 
j = 1, 2, . . . .

Let η1, η2, . . . be a family of i.i.d. random variable taking on values in [α, β] with α0(d) ≤
α < β ≤ α∗. We then set

p(y) =
∞∑

j=1

ηj 1Hj
(y), A(y, ξ) = |ξ |p(y)−1, ξ ∈R

d(d+1)
2 .

This diffusion matrix A = A(y, ξ) satisfies all the conditions of Theorem 2.
Let (�, F, P) be the underlying probability space with an ergodic dynamical system τy such 

that p(y) = p(τyω) with p(ω) = p(0). Problem (5) then takes the form: find v ∈ G(�) such that∫
�

|ξ + v(ω)|p(ω)−1θ(ω)dP

for any θ ∈ G(�). In this case the effective tensor admits the following variational formula

Aeff(ξ) = min
v∈G(�)

∫
�

1

p(ω)
|ξ + v(ω)|p(ω) dP.

One can easily modify the function p to make its realizations smooth. Taking the convolution 
of p(τyω) with a C∞

0 (Rd) even function ϕ = ϕ(y) such that ϕ ≥ 0 and 
∫
Rd ϕ dy = 1, denoting the 

obtained function by ̂p and letting A(ω, ξ) = |ξ |p̂(ω), p̂(ω) = p̂(0), we define a diffusion matrix 
A(ω, ξ) with a.s. continuous in y realizations that also satisfies the assumptions of Theorem 2.

Example 2 (Bernoulli percolation model). Consider a checker board in Rd with the cell [0, 1)d . 
We associate to each cell a random variable that takes on the value 1 with probability q and the 
value 0 with probability 1 − q , and assume that these random variables are i.i.d. We denote these 
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random variables by ζj , j ∈ Z
d , and the corresponding cells by Qj , so that Qj = [0, 1)d + j . It 

is known (see [6]) that there is a pcr, 0 < pcr < 1, such that for q > pcr the set {⋃
j

Qj : ζj = 1}
a.s. has a unique unbounded connected component, the so-called infinite cluster. We denote it 
by C, and introduce the following two random functions:

p(y) = α + (β − α)1C(y), a(y) = 1 +
∑
j∈Zd

ζj 1Qj
(y)

with α0(d) ≤ α < β ≤ α∗. Then

A(y, ξ) = a(y)|ξ |p(y), ξ ∈ R
d(d+1)/2,

is an admissible diffusion matrix.
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