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On the asymptotic behaviour
of eigenvalues of a boundary-value problem
in a planar domain of Steklov sieve type

R. R. Gadyl’shin†, A. L. Piatnitskii, and G. A. Chechkin

Abstract. We consider a two-dimensional spectral problem of Steklov
type for the Laplace operator in a domain divided into two parts by a perfo-
rated partition with a periodic microstructure. The Steklov boundary con-
dition is imposed on the lateral sides of the perforation, the Neumann
condition on the remaining part of the boundary, and the Dirichlet and
Neumann conditions on the outer boundary of the domain. We construct
and justify two-term asymptotic expressions for the eigenvalues of this prob-
lem. We also construct a two-term asymptotic formula for the correspond-
ing eigenfunctions.

Keywords: asymptotic behaviour of eigenvalues, spectral problem,
Steklov problem, homogenization of spectral problems.

Introduction

The homogenization of spectral problems in domains with microstructure is an
important and, in many cases, difficult problem. The first results in this direction
were obtained in [1] for perforated domains and in [2] for operators with rapidly
oscillating coefficients. Later, many papers were published in which the homoge-
nization of diverse elliptic spectral problems was considered. In particular, problems
with a spectral condition of Steklov type were studied; see, for example, [3]–[6]. In
these papers, homogenization problems of a spectral problem of Steklov type with
a fast change of the type of the boundary condition were investigated (for the scalar
equation, see [3], and for the system of elasticity theory, see [4]). In [5], the leading
terms of the asymptotic expansion of the eigenvalue in a dense cascade connection
were constructed. The behaviour of a solution of the problem in two domains con-
nected by thin rods was studied in [6]. Problems of homogenization of operator
pencils were considered in [7].

An asymptotic analysis of problems in domains with singular boundaries and
of operators with singularities (for example, with high-contrast coefficients) was
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carried out, for example, in [8]–[10]. Problems concerning the homogenization
and the asymptotic behaviour of multiple eigenvalues were discussed in the papers
[11]–[16] and elsewhere.

Numerous papers are devoted to homogenization problems in domains with per-
forated partitions (see, for example, [17]–[23]). In Ch. I, § 3 of [18], the problem
was considered in a domain perforated along a closed curve. It was proved that the
solutions of the original problem converge uniformly to solutions of limit problems
on compact subdomains that do not include the curve. Solutions of boundary-value
problems in a domain divided into two parts by a perforated surface with different
thicknesses were considered in [19] and [22]. In particular, the weak convergence
in L2 of solutions of the original problem to solutions of two independent prob-
lems in domains separated by this surface was proved. In [20], the asymptotic
behaviour of solutions of the boundary-value problem in a domain perforated along
a manifold was studied with different boundary conditions on the boundary of the
cavities. The case when the perforation makes no contribution to the problem in
the limit was considered. The paper [23] is devoted to the study of a problem of the
type of a fine sieve with a spectral condition on a perforated partition. The Steklov
problem on a periodic connection was treated in [24]. This domain can be regarded
as half of a domain perforated along a hyperplane (but without the other fixed part
of the domain). The asymptotic behaviour of the spectrum as the small parameter
tends to zero was shown. The problem in a domain perforated along a segment was
considered in the paper [21]. Here it was assumed that the width of the cavities is
a small parameter, whereas the length is of finite size. The behaviour of eigenvalues
as the small parameter tends to zero was investigated.

In this paper, we consider the problem in a domain divided into two parts by
a thick partition with canals. The thickness of the partition and the period of
the arrangement of the canals are of the same order and are equal to ε. The
thickness of canals is aε, where a < 1 is a constant. Here and below, the small
parameter ε is determined by the equation ε = 1/(2N + 1), where N � 1 is
a positive integer. We assume that the spectral condition of Steklov type is imposed
on the boundaries of the canals, a homogeneous Dirichlet boundary condition on
the outer boundary of the domain, and a homogeneous Neumann condition on the
remaining part of the boundary of the partition. In [17], a limit (homogenized)
problem was derived for this problem. However, the leading term of the asymptotic
expansion of an eigenfunction gives no impression of the structure of this function
in a small neighbourhood of the ‘sieve’ (the perforated partition). The behaviour
of the eigenfunction in this neighbourhood is of particular interest since it is the
very place at which a rearrangement of the initial spectral boundary conditions into
effective ones occurs, and the eigenfunctions have rapidly oscillating structure. For
this reason, to better understand the homogenization process and to improve the
rate of convergence, it is required to construct the second terms of the asymptotic
expansion of the eigenpairs, and that is the object of this paper.

We also discuss the meaning of the spectral conditions of Steklov type that are
imposed on the lateral surface of the perforation. In problems of heat conduction
and others related to diffusion equations, the Neumann–Dirichlet operator or its
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inverse, the Dirichlet–Neumann operator, plays an important role. For a harmonic
function vanishing on a part of the boundary of the domain, this operator defines
the profile of the solution for a given flow on the remaining part of the boundary. It
is known that on the corresponding part of the boundary the Dirichlet–Neumann
operator in the space L2 is self-adjoint, positive and has compact resolvent. The
Steklov-type spectral problem is equivalent to the spectral problem for the cor-
responding Dirichlet–Neumann operator. As usual, knowing the spectrum of the
operator enables us to obtain information about the behaviour of solutions of evo-
lutionary problems related to this operator.

In applied problems, the presence of thin partitions with a microstructure whose
surface is equipped a flow of heat is quite natural. The reader can interpret such
a partition as a thin heating pad which is permeated by warm canals or heaters.

§ 1. Statement of the problem and preliminaries

We denote by Ω a domain in R2 whose boundary Γ is smooth and, in a neighbour-
hood of the ends of the segment Γ1 = [−1/2, 1/2] on the abscissa axis, Γ coincides
with the lines x1 = −1/2 and x1 = 1/2, respectively. Consider a non-empty part
of the boundary Γ2 := {x ∈ Γ: x2 > c} for some fixed c > 0, and let Γ3 = Γ \ Γ2.

Let Q be the rectangle {x∈R2 : x1 ∈ (−1/2, 1/2), x2 ∈ (−hε/2, hε/2)} and let B
be the rectangle {ξ ∈R2 : ξ1 ∈ (−a/2, a/2), ξ2 ∈ (−h/2, h/2)}, 0 < a < 1, h > 0.
We recall that ε = 1/(2N + 1), where N ∈ N. We introduce the notation

Bj
ε = {x ∈ Ω: ε−1(x1 − εj, x2) ∈ B}, j ∈ Z, Bε =

⋃
j

Bj
ε

and consider the perforated strip Qε := Q\Bε. We denote the vertical boundary of
the canals by Γε = ∂Bε∩Q. We define the domain Ωε as the set Ω\Qε (see Fig. 1).

Figure 1. Structure of Ωε

We write

Γε
3 =

{
x ∈ Γ3 : |x2| >

hε

2

}
, Υε =

{
x ∈ ∂Qε : |x2| =

hε

2

}
.
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We define the space H1(Ωε,Γ2) as the closure, with respect to the norm of
H1(Ωε), of the set C∞(Ωε ) of functions vanishing on a neighbourhood of Γ2.

Consider the following spectral problem of Steklov type:
−∆uε = 0 in Ωε,

uε = 0 on Γ2,

∂uε

∂ν
= 0 on Υε ∪ Γε

3,
∂uε

∂ν
= λεuε on Γε.

(1.1)

Here and below, ν is the unit normal vector pointing outwards.
It is known (see [25]) that the spectral problem for the Laplace operator in

a bounded domain with the Steklov condition on a part of the boundary is self-
adjoint, and the resolvent of the corresponding operator is compact and posi-
tive. Therefore, the problem (1.1) has a discrete spectrum going to ∞. We
denote the eigenvalues of the problem, renumbered taking their multiplicities into
account, by λε,1, λε,2, . . . , λε,j , . . . → ∞, and the corresponding eigenfunctions
by uε,1, uε,2, . . . , uε,j , . . . . The following normalisation condition is natural for the
problem (1.1): ∫

Γε

uε,iuε,j dx2 = δj
i , (1.2)

where δj
i = 1 when i = j and δj

i = 0 when i 6= j.
In what follows, we also use the notation [u] for the jump of a function u on Γ1.

We treat the problem (1.1) and the problems arising below with a jump on Γ1 in
the sense of integral identities with the corresponding solutions belonging to the
space H1(Ωε,Γ2).

As was shown in [17], the homogenized problem for (1.1) acquires the form

−∆u0 = 0 in Ω,

u0 = 0 on Γ2,

∂u0

∂ν
= 0 on Γ3,

[u0] = 0 on Γ1,

[
∂u0

∂x2

]
= −2hλ0u0 on Γ1.

(1.3)

This problem is self-adjoint and has a discrete spectrum. The corresponding eigen-
values λ0,k indexed according to their multiplicities tend to +∞ as k →∞. More-
over, as a special case of Theorem 3.1 in the paper [17], we obtain the following
assertion.

Proposition 1.1. Let the multiplicity of an eigenvalue λ0 = λ0,j of the boundary-
value problem (1.3) be equal to n, that is, λ0,j = · · · = λ0,j+n−1. Then the
boundary-value problem (1.1) has precisely n eigenvalues λ

(l)
ε = λε,j+l−1, l =

1, . . . , n, that tend to λ0 as ε → 0.
Let u

(l)
ε be the orthonormalised (in L2(Ωε)) eigenfunctions of the boundary-value

problem (1.1) corresponding to λ
(l)
ε . Then from every sequence εq −−−→

q→∞
0 one can
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single out a subsequence εqi
such that

‖u(l)
εqi
− u

(l)
∗ ‖H1(Ωεqi

) −−−→
q→∞

0, (1.4)

where the u
(l)
∗ are orthonormalised (in L2(Ω)) eigenfunctions of the boundary-value

problem (1.3) corresponding to λ0 (and depending in general on the choice of both
the sequence εq −−−→

q→∞
0 and its subsequence).

Remark 1.1. Below, we omit the index j if possible, that is, we write λ0 and λ
(l)
ε ,

l = 1, . . . , n.

We note an interesting specific feature of the limit problem (1.3). The coefficient
in the spectral condition in this problem depends on the parameter h (the thickness
of the partition), but not on the parameter a which characterizes the width of the
holes (see the formula (11) in [17]). The dependence on a manifests itself only in
the subsequent terms of the asymptotic expansions of the eigenpairs. This is related
to the fact that the coefficient in the limit spectral condition is determined by the
effective length of the vertical part of the boundary of the partition in the prelimit
problem. This effective length does not depend on the parameter a.

In this paper, the cases of both a simple and a multiple eigenvalue λ0 are con-
sidered (the multiplicity of λ0 is n > 1). Two-term asymptotic expansions for the
eigenvalues (of the boundary problem (1.1)) that converge to λ0 are constructed
and justified, together with the leading terms of the asymptotic expansions of the
corresponding eigenfunctions.

§ 2. Auxiliary assertions

In this section, we prove some auxiliary assertions needed to construct asymp-
totic expansions of the solution of the problem (1.1).

Let Π = {ξ : −1/2 < ξ1 < 1/2} be a strip and let

Πah = Π \
{{[

−1
2
,−a

2

]
∪

[
a

2
,
1
2

]}
×

[
−h

2
,
h

2

]}
.

We write

Υ = Υ+ ∪Υ−, Υ± =
{

ξ : ξ1 ∈
[
−1,−a

2

]
∪

[
a

2
, 1

]
, ξ2 = ±h

2

}
,

Γ± =
{

ξ : ξ1 = ±a

2
, ξ2 ∈

[
−h

2
,
h

2

]}
.

We denote the remaining part of the boundary of the strip by Σ, that is,

Σ = ∂Πah \ (Υ ∪ Γ+ ∪ Γ−)

(see Fig. 2).
For an arbitrary s > 0 we shall also write

Πs
ah = {ξ ∈ Πah : |ξ2| < s}.
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Figure 2. A cell of periodicity, Πah

In what follows, the index ξ of the operator ∆ξ and of other operators means that
this operator is taken with respect to the variables ξ.

All the auxiliary problems of this section are considered in the space of functions
that are 1-periodic with respect to the variable ξ1. In this connection, the solutions
of the problems in Πah have periodic conditions on Σ. Moreover, by symmetry, they
reduce to auxiliary problems with boundary conditions of Neumann or Dirichlet
type on Σ.

We clarify this reduction in the case of the auxiliary problem
∆ξX0 = 0 in Πah,

∂X0

∂νξ
= 0 on Υ,

∂X0

∂νξ
= 1 on Γ±,

X0 is 1-periodic with respect to ξ1,

(2.1)

whose solution is sought in the class of functions satisfying the condition

X0(ξ) = −h|ξ2|+ o(1) as ξ2 → ±∞. (2.2)

It can readily be seen that the problem (2.1) is invariant with respect to replacing
the variable ξ1 by −ξ1. By the maximum principle, the problem (2.1), (2.2) has
at most one solution, and therefore, if a solution exists, then it is an even function
with respect to ξ1 and, as a consequence, it satisfies the problem

∆ξX0 = 0 in Πah,

∂X0

∂νξ
= 0 on Σ ∪Υ,

∂X0

∂νξ
= 1 on Γ±.

(2.3)

The converse assertion can also readily be proved: if a function X0 is a solution of
the problem (2.3), (2.2), then it is also a solution of the problem (2.1). Therefore,
in what follows, instead of (2.1), (2.2), we study the problem (2.3), (2.2).
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We also consider the auxiliary problems
∆ξX̃0 = 0 in Πah,

∂X̃0

∂νξ
= 0 on Σ ∪Υ ∪ Γ±

(2.4)

and 
∆ξY0 = 0 in Πah,

∂Y0

∂νξ
= 0 on Υ, Y0 = 0 on Σ,

∂Y0

∂νξ
= ±1 on Γ±.

(2.5)

The following assertion holds.

Lemma 2.1. There are solutions of the problems (2.3) and (2.4) having the fol-
lowing asymptotic behaviour, respectively :

X0(ξ) = −h|ξ2|+O(e−π|ξ2|) as ξ2 → ±∞,

X̃0(ξ) = ξ2 ± Cah +O(e−π|ξ2|) as ξ2 → ±∞,
(2.6)

where Cah > 0. These solutions are unique and are even functions with respect to ξ1.
There is a unique solution of (2.5) decaying exponentially by the rule O(e−π|ξ2|)

as ξ2 → ±∞. This solution is an odd function of ξ1.

Proof. We shall prove the existence of a solution of (2.4) satisfying the second
condition in (2.6). To this end, we write Z̃0 = X̃0−ξ2. The problem for Z̃0 becomes

∆ξZ̃0 = 0 in Πah,

∂Z̃0

∂νξ
= 0 on Σ ∪ Γ±,

∂Z̃0

∂νξ
= ∓1 on Υ±.

(2.7)

We write ΠN
ah = {ξ ∈ Πah : −N < ξ2 < N} and consider the sequence of problems

∆ξZ̃
N
0 = 0 in ΠN

ah,

∂Z̃N
0

∂νξ
= 0 on ∂ΠN

ah \Υ,
∂Z̃N

0

∂νξ
= ∓1 on Υ±.

(2.8)

The solubility condition for these problems is satisfied. We choose an additive con-
stant in such a way that the solution is odd with respect to ξ2. Then Z̃N

0 (ξ1, 0) = 0.
Therefore, by the theorem on traces and by the Friedrichs inequality (see, for exam-
ple, Ch. III, § 5 in [26]), the following inequalities hold:∫

Υ

(Z̃N
0 )2 dξ1 6 C̃‖Z̃N

0 ‖2H1(Πh+1
ah )

6 C‖∇Z̃N
0 ‖2L2(Π

h+1
ah )

6 C‖∇Z̃N
0 ‖2L2(ΠN

ah), (2.9)

and the constant C does not depend on N . Multiplying the equation (2.8) by
Z̃N

0 and integrating by parts, we arrive at the relation∫
ΠN

ah

|∇Z̃N
0 |2 dξ 6

∫
Υ

|Z̃N
0 | dξ1 6C1

(∫
Υ

|Z̃N
0 |2 dξ1

)1/2

6C2

(∫
Πh+1

ah

|∇Z̃N
0 |2 dξ

)1/2

.
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Hence, ‖∇Z̃N
0 ‖L2(ΠN

ah) 6 C3. Then (2.9) implies the inequality

‖Z̃N
0 ‖L2(Π

h+2
ah ) 6 C3.

Since Z̃N
0 is a harmonic function, it follows that, using the Schauder estimates (see,

for example, Ch. 6, § 6.1 in [27]), we obtain ‖Z̃N
0 ( · ,±(h + 1))‖L∞(−1/2,1/2) 6 C4,

and, by the maximum principle,

‖Z̃N
0 ‖L∞(ΠN

ah\Π
h+1
ah ) 6 C4. (2.10)

Passing to the limit as N → ∞, we obtain a bounded solution Z̃0 of the prob-
lem (2.7). Indeed, by the elliptic estimates for a harmonic function, for any k > 2
and N > k + 1 the following estimate holds:

‖Z̃N
0 ( · , h + k)‖C2[−1/2,1/2] 6 C5,

and C5 depends neither on N nor on k. Therefore, for the specified values of N
the functions Z̃N

0 admit the bound ‖Z̃N
0 ‖H1(Πh+k

ah ) 6 C(k). Passing to the weak
limit along a subsequence, we obtain a harmonic function on Πh+k

ah satisfying the
boundary conditions required in (2.7). Further, using the diagonal procedure, we
construct a harmonic function on Πah which is a solution of the problem (2.7). Its
boundedness on the set Πah \ Πh+1

ah follows from (2.10), and the boundedness on
the set Πh+1

ah is a consequence of the standard elliptic estimates.
Using the method of separation of variables, we can readily prove that a harmonic

function which is bounded in the infinite half-strip {ξ ∈ R2 : − 1/2 <ξ1 < 1/2,
ξ2 > h} and satisfies the condition of periodicity or the homogeneous Neumann
condition on the lateral surface of this half-strip converges with an exponential rate
to a constant. For more general operators, this result can be found. for example,
in [28] and [29]. Therefore, the function Z̃0 converges with an exponential rate to
a constant as ξ2 → +∞. We denote this constant by Cah. By construction, the
solution Z̃0 is odd with respect to ξ2, and therefore Z0 converges with exponential
rate to ±Cah as ξ2 → ±∞. As a result, we arrive at the bound |Z̃0(ξ) − Cah| 6
Ce−πξ2 , which can be obtained by the method of separation of variables, taking
into account that the width of the strip is equal to 1. Therefore, X̃0(ξ) = ξ2 ±
Cah +O(e−π|ξ2|) as ξ2 → ±∞.

The uniqueness of the solution X̃0 satisfying the condition (2.6) is a simple
consequence of the maximum principle. The evenness with respect to ξ1 is obvious.

It remains to prove that Cah is positive. We claim that the function Z̃0 is positive.
Since it is odd with respect to ξ2, we have Z̃0(x1, 0) = 0. Since Z̃0 is harmonic,
periodic with respect to ξ1 and bounded, it follows that its mean value with respect
to the period is a constant as a function of ξ2, which is equal to Cah. If Cah 6 0,
then Z̃0 takes negative values in {ξ ∈ Πah : ξ2 > 0}. Taking into account the
boundary conditions in (2.7), we can readily see that this assumption contradicts
the maximum principle. Thus, Z̃0 is positive, and Cah > 0.

We now claim that the problem (2.3) has a solution satisfying the first relation
in (2.6) for some constant C > 0. To this end, we choose a smooth even function θ
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on R such that θ(s) = h|s| for |s| > h/2. Then the function Z0(ξ) = X0(ξ) + θ(ξ2)
must be a solution of the problem

∆ξZ0 = θ′′(ξ2) in Πah,

∂Z0

∂νξ
= 0 on Σ,

∂Z0

∂νξ
= 1 on Γ±,

∂Z0

∂νξ
= −h on Υ

(2.11)

and satisfy the condition |Z0(ξ)| 6 Ce−π|ξ2|. It can readily be seen that∫
Γ±

dξ2 +
∫

Υ

(−h) dξ1 −
∫

Πah

θ′′(ξ2) dξ = 0. (2.12)

Consider the family of problems

∆ξZ
N
0 = θ′′(ξ2) in ΠN

ah,

∂ZN
0

∂νξ
= 0 on ∂ΠN

ah \ (Γ± ∪Υ),

∂ZN
0

∂νξ
= 1 on Γ±,

∂ZN
0

∂νξ
= −h on Υ.

(2.13)

The equation (2.12) ensures the solubility of this problem. We choose a correspond-
ing additive constant in such a way that the following equation holds:∫

Πh+2
ah

ZN
0 dξ = 0.

Then, by Poincaré’s inequality (see, for example, Ch. I, § 1.4 in [30]), we have the
bound ∫

Πh+2
ah

|ZN
0 |2 dξ 6 C

∫
Πh+2

ah

|∇ZN
0 |2 dξ (2.14)

with a constant C independent of N . Multiplying the equation in (2.13) by ZN
0 and

integrating the equation thus obtained over ΠN
ah, we arrive (after an integration by

parts) at the relation∫
ΠN

ah

|∇ZN
0 |2 dξ +

∫
Πh

ah

ZN
0 θ′′(ξ2) dξ −

∫
Γ±

ZN
0 dξ2 + h

∫
Υ

ZN
0 dξ1 = 0.

Thus, using (2.14) and the theorem on traces for H1-functions, we derive the bound∫
ΠN

ah

|∇ZN
0 |2 dξ 6 C.

Using the Schauder estimates (see, for example, Ch. 6, § 6.1 in [27]), we obtain
‖ZN

0 ( · ,±(h + 1))‖L∞(−1/2,1/2) 6 C5. This implies that (a subsequence of) ZN
0

converges as N →∞ to a bounded solution of the problem (2.11). By construction,
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this solution is an even function of the variables ξ2 and ξ1. According to [29], the
solution ZN

0 converges as ξ2 → ±∞ with exponential rate to C±. Because of
the evenness, we have the equation C− = C+. By subtracting the constant C±
from the solution thus constructed, we obtain a solution of the problem (2.11) with
the desired properties.

The uniqueness follows readily from the maximum principle.
The last assertion of the lemma can be proved similarly, with substantial sim-

plifications. This completes the proof of Lemma 2.1. �

The last lemma implies immediately the following assertion.

Corollary 2.1. The periodic continuation of the function X0 with respect to ξ1 is
a solution of the problem (2.1). The function X̃0, periodically continued with respect
to ξ1, satisfies the problem (2.4) in which the Neumann condition on Σ is replaced
by the periodicity condition. Similarly, the periodic continuation of the function Y0

is a solution of the problem (2.5) with periodic boundary conditions on Σ.

Remark 2.1. We now give a rather explicit formula for the constant Cah. To this
end, we use the following considerations. We note that the function X̃0 is odd with
respect to ξ2, and therefore it is possible to study the problem in the half-strip
Πah ∩ {ξ2 > 0}, introducing the homogeneous Dirichlet condition on the segment
Θ = {(ξ1, ξ2) : − a/2 > ξ1 > a/2, ξ2 = 0}. Further, by conformally mapping
the domain thus obtained onto the upper half-plane in such a way that the points
(−a/2, 0) and (a/2, 0) pass to −1 and 1, respectively, on the real axis, the point at
infinity passes to the point at infinity on the half-plane, and the points a/2 + ih/2
and 1/2 + ih/2 pass to b1 > 1 and b2 > b1 on the real axis, respectively, we can
implicitly evaluate the constant Cah.

Indeed, using the Christoffel–Schwartz theorem to construct such a mapping,
we have the formula

w = F (z) = − i
π

∫ z

0

√
ζ2 − b2

1

(ζ2 − 1)(ζ2 − b2
2)

dζ, (2.15)

where w are the coordinates on the plane on which the half-strip is given, and z
are the coordinates on the given half-plane onto which the half-strip is mapped.
Under this mapping, the original boundary-value problem passes to a new one in
a half-plane on whose border the solution has the homogeneous Neumann condition
on the axis, except for the segment [−1, 1], on which the homogeneous Dirichlet
condition is given. The solution of this problem can be expressed explicitly. It has
the form Re ln

√
z2 − 1 with the asymptotic behaviour ln |z| − ln 2 at infinity.

Now, finding the constants b1 and b2 from the equations
− i

π

∫ 1

0

√
ζ2 − b2

1

(ζ2 − 1)(ζ2 − b2
2)

dζ =
a

2
,

− 1
π

∫ b1

1

√
ζ2 − b2

1

(ζ2 − 1)(ζ2 − b2
2)

dζ =
h

2
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and using the formula for the inverse mapping z = F−1(w) with the constants
b1 and b2 substituted, we can find the constant Cah:

Cah = 2
∫ b2

b1

Re ln
√

(F−1)2 − 1
∣∣∣∣∂F−1

∂w

∣∣∣∣ dη1, w = η1 + iη2

(here |∂F−1/∂w| stands for the Jacobian).

Consider the following auxiliary problems:
∆ξX1 =

∂Y0(ξ)
∂ξ1

in Πah,

∂X1

∂νξ
= 0 on Σ ∪Υ ∪ Γ±,


∆ξX2 = 1 in Πah,

∂X2

∂νξ
= 0 on Σ ∪Υ ∪ Γ±,

(2.16)



∆ξX3 = 0 in Πah,

∂X3

∂νξ
= 0 on Σ ∪Υ,

∂X3

∂νξ
= X0 on Γ±,



∆ξX4 = 0 in Πah,

∂X4

∂νξ
= 0 on Σ ∪Υ,

∂X4

∂νξ
= X̃0 on Γ±,

(2.17)



∆ξX5 = 0 in Πah,

∂X5

∂νξ
= 0 on Σ ∪Υ,

∂X5

∂νξ
= ±Y0 on Γ±,

(2.18)



∆ξY1 =
∂X0(ξ)

∂ξ1
in Πah,

Y1 = 0 on Σ,

∂Y1

∂νξ
= 0 on Γ± ∪Υ,



∆ξY2 =
∂X̃0(ξ)

∂ξ1
in Πah,

Y2 = 0 on Σ,

∂Y2

∂νξ
= 0 on Γ± ∪Υ,

(2.19)



∆ξY3 = 0 in Πah,

∂Y3

∂νξ
= 0 on Υ,

Y3 = 0 on Σ,

∂Y3

∂νξ
= ±X0 on Γ±,



∆ξY4 = 0 in Πah,

∂Y4

∂νξ
= 0 on Υ,

Y4 = 0 on Σ,

∂Y4

∂νξ
= ±X̃0 on Γ±,

(2.20)



∆ξY5 = 0 in Πah,

∂Y5

∂νξ
= 0 on Υ,

Y5 = 0 on Σ,

∂Y5

∂νξ
= Y0 on Γ±.

(2.21)
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To describe the solutions of the above problems, we need the following constants:

h

2
(1− a)Ãah = Aah =

1
2

∫ a/2

−a/2

∫ h/2

−h/2

∂Y0(ξ)
∂ξ1

dξ,

h

2
(1− a)B̃ah = Bah =

∫ h/2

−h/2

X0

(
a

2
, ξ2

)
dξ2.

(2.22)

We note that, by the Newton–Leibniz formula and the oddness of the function Y0,
we have∫ a/2

−a/2

∫ h/2

−h/2

∂Y0(ξ)
∂ξ1

dξ =
∫ h/2

−h/2

Y0(ξ1, ξ2) dξ2

∣∣∣∣a/2

−a/2

= 2
∫ h/2

−h/2

Y0

(
a

2
, ξ2

)
dξ2.

(2.23)
The following lemma holds.

Lemma 2.2. There are unique solutions of the problems (2.16)–(2.18) having the
following asymptotic behaviour:

X1(ξ) =
h

2
(1− a)Ãah|ξ2|+O(e−π|ξ2|) as ξ2 → ±∞,

X2(ξ) =
1
2
ξ2
2 +

h

2
(1− a)|ξ2|+O(e−π|ξ2|) as ξ2 → ±∞,

X3(ξ) =
h

2
(1− a)B̃ah|ξ2|+O(e−π|ξ2|) as ξ2 → ±∞,

X4(ξ) = ±Cah +O(e−π|ξ2|) as ξ2 → ±∞,

X5(ξ) =
h

2
(1− a)Ãah|ξ2|+O(e−π|ξ2|) as ξ2 → ±∞.

(2.24)

These solutions are even functions of ξ1. Moreover, the constant Ãah is positive.
There are unique solutions of the problems (2.19)–(2.21) that decay exponentially

by the rule O(e−π|ξ2|) as ξ2 → ±∞. These solutions are odd functions of ξ1.

Proof. Taking into account the equations (2.22) and (2.23), we see that the proofs
of all the assertions of the lemma, except for the positivity of the constant Ãah, are
simple modifications of the proof of the previous lemma.

We claim that Ãah > 0. It suffices to prove that Aah > 0. By (2.23), this will
follow from the pointwise-positivity of the function Y0(ξ) on the set Γ+. We claim
that Y0(ξ) is non-negative on the closure of the set Πah ∩ {ξ1 > 0}. Since Y0(ξ)
is an odd function of ξ1, it follows that Y0(0, ξ2) = 0. Suppose that Y0(ξ) takes
negative values at some points of the set Πah ∩ {ξ1 > 0}. Since Y0(ξ) tends to zero
as ξ2 → ±∞, it follows that a negative minimum is attained at some point of the
closure of the set Πah ∩ {ξ1 > 0}. For our choice of the boundary conditions, this
contradicts the maximum principle. Moreover, Y0(ξ) is positive on Γ+, since the
corresponding normal derivative is positive. �

Lemma 2.3. Let f ∈ H1/2(Γ1) and g ∈ L2(Γ1) be arbitrary functions and let
u

(1)
0 , . . . , u

(n)
0 be orthonormalised (in L2(Γ1)) eigenfunctions of the homogenised

problem (1.3) corresponding to the eigenvalue λ0. Then the necessary and sufficient
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conditions for the solubility of the boundary-value problem

∆U = 0 in Ω,

U = 0 on Γ2,

∂U

∂ν
= 0 on Γ3,

[U ] = f(x1) on Γ1,[
∂U

∂x2

]
= −2hλ0

U(x1,+0) + U(x1,−0)
2

+ g(x1) on Γ1

(2.25)

have the following form : for all l = 1, . . . , n,∫
Γ1

g(x1)u
(l)
0 dx1 +

1
2

∫
Γ1

(
∂u

(l)
0

∂x2
(x1,+0) +

∂u
(l)
0

∂x2
(x1,−0)

)
f(x1) dx1 = 0. (2.26)

Proof. We first consider two problems with zero jump of the function on Γ1:

−∆W = 0 on Ω \ Γ1,

W = 0 on Γ2,

∂W

∂ν
= 0 on Γ3,

[W ] = 0 on Γ1,[
∂W

∂x2

]
= −2hλ0W + G(x1) on Γ1;

(2.27)



−∆w = 0 on Ω \ Γ1,

w = 0 on Γ2,

∂w

∂ν
= 0 on Γ3,

[w] = 0 on Γ1,[
∂w

∂x2

]
= g̃(x1) on Γ1,

(2.28)

where g̃ ∈ H−1/2(Γ1). The integral identity of the problem (2.28) has the form∫
Ω

∇w∇v dx = 〈g̃, v〉Γ1 ∀ v ∈ H1(Ω,Γ2), (2.29)

where 〈 · , · 〉Γ1
stands for the action of a functional in H−1/2(Γ1) on a function

in H1/2(Γ1). The operator of the problem(2.28) assigns to a function g̃(x1) in the
space H−1/2(Γ1) a function w in the space H1(Ω), as follows immediately from
the integral identity by Riesz’ theorem. In particular, this also implies the unique
solubility of the problem (2.28) in H1(Ω,Γ2). Further, the trace of a function in the
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Sobolev space H1(Ω) is an element of the space H1/2(Γ1), and therefore the linear
operator A taking g̃ to w|Γ1 is a bounded operator from H−1/2(Γ1) to H1/2(Γ1).
As an operator from L2(Γ1) to L2(Γ1), this operator is compact. Using the integral
identity (2.29), we can readily prove that it is positive definite and symmetric.

Thus, the eigenvalue problem (1.3) and the boundary-value problem (2.27),
treated in H1(Ω,Γ2), are equivalent, respectively, to the equations

u0|Γ1 + 2hλ0Au0|Γ1 = 0,

W |Γ1 + 2hλ0AW |Γ1 = G (2.30)

in L2(Γ1). The Fredholm alternative can be applied to the equation (2.30). There-
fore, necessary and sufficient conditions for the solubility of the problem (2.27) are
given by the orthogonality conditions∫

Γ1

G(x1)u
(l)
0 (x1, 0) dx1 = 0, l = 1, . . . , n. (2.31)

We note that for G ∈ H−1/2(Γ1) the solubility condition for the problem (2.27)
acquires the form 〈G, u

(l)
0 |Γ1〉Γ1 = 0.

We now reduce the problem (2.25) to a problem with zero jump of the function
on Γ1. To this end, we consider the auxiliary problem

∆U± = 0 on Ω±,

U± = 0 on Γ2 ∩ Ω±,
∂U±

∂ν
= 0 on Γ3 ∩ Ω±,

U± = ∓f(x1)
2

on Γ1,

(2.32)

where Ω± ≡ Ω ∩ {x2 ≷ 0}, and write U = U± in Ω±. As in the above case of
the integral identity (2.29), it can readily be derived from the integral identity
corresponding to the problem (2.32) that [∂U/∂x2] ∈ H−1/2(Γ1). We multiply
the equation of the problem by u

(l)
0 and integrate over the domain, using Green’s

formula twice. We obtain∫
Γ1

[
∂U
∂x2

]
u

(l)
0 dx1 +

1
2

∫
Γ1

(
∂u

(l)
0

∂x2
(x1,+0) +

∂u
(l)
0

∂x2
(x1,−0)

)
f(x1) dx1 = 0. (2.33)

We will seek the function U in the form U = W − U . Then we obtain the
problem (2.27) for W , where

G(x1) = g(x1)−
[

∂U
∂x2

]
.

It follows from this equation, from the necessary and sufficient conditions (2.31) for
the solubility of the boundary-value problem (2.27), and from the equation (2.33)
that the conditions (2.26) are necessary and sufficient for the solubility of the prob-
lem (2.25). This completes the proof of Lemma 2.3. �

We also need the following lemma (see [31]).
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Lemma 2.4. Let K : H → H be a self-adjoint operator with discrete spectrum on
a Hilbert space H. Suppose that the following relations hold for v ∈ H and $ ∈ R:

‖v‖H = 1, κ := ‖Kv −$v‖H < |$|.

Then there is an eigenvalue $j of K such that

|$j −$| 6 κ.

Moreover, for every κ1 ∈ (κ, |$|) there are {aj} ∈ R such that∥∥∥v −
∑

ajuj

∥∥∥
H

6 2
κ
κ1

,

where the sum is taken over all the eigenvalues of K in the interval [$−κ1, $+κ1]
and {uj} are the corresponding eigenfunctions. The coefficients aj satisfy the rela-
tion

∑
|aj |2 = 1.

§ 3. Statement and proof of the main assertion

We denote by (u, v)L2(Γ1) and ‖u‖L2(Γ1) the inner product and the norm in
L2(Γ1) and retain this notation for the traces of functions on Γ1. We write

〈u〉(x1) :=
u(x1 + 0) + u(x1 − 0)

2
.

This notation is used also for vector functions.
Let u

(l)
0 be the eigenfunctions of the boundary-value problem (1.3) corresponding

to an eigenvalue λ0 of multiplicity n and satisfying the following normalisation
conditions:

‖u(l)
0 ‖L2(Γ1) = 1;

(
u

(l)
0 , u

(k)
0

)
L2(Γ1)

= 0 for l 6= k;(〈
∂u

(l)
0

∂x2

〉
,

〈
∂u

(k)
0

∂x2

〉)
L2(Γ1)

+ (1− 3Ãah)
(

∂u
(l)
0

∂x1
,
∂u

(k)
0

∂x1

)
L2(Γ1)

= 0 for l 6= k.

(3.1)
To prove the existence of these functions u

(l)
0 we first choose an arbitrary basis of

the eigensubspace orthonormalised in L2(Γ1). For the chosen matrix, the matrix
whose components are defined by the left-hand side of the inequality in the second
line of (3.1) (including l = k) is symmetric. This matrix can be reduced to diagonal
form by an orthogonal transformation. Applying this transformation to the basis
chosen originally, we obtain a basis satisfying all the conditions in (3.1).

We write

λ
(l)
1 =

1− a

2

(
B̃ahλ2

0 +
∥∥∥∥〈

∂u
(l)
0

∂x2

〉∥∥∥∥2

L2(Γ1)

+ (1− 3Ãah)
∥∥∥∥∂u

(l)
0

∂x1

∥∥∥∥2

L2(Γ1)

)
, (3.2)

where the constants Ãah and B̃ah are defined by the equations (2.22). If λ
(l)
1 =

λ
(l+1)
1 = · · · = λ

(l+nl−1)
1 and the other λ

(k)
1 have values different from λ

(l)
1 , then
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we say that the multiplicity of λ
(l)
1 is equal to nl. We refer to the linear sub-

space spanned by the corresponding eigenfunctions u
(l)
0 , u

(l+1)
0 , . . . , u

(l+nl−1)
0 as the

eigensubspace of λ
(l)
1 .

By Proposition 1.1, there are n eigenvalues λ
(l)
ε of the problem (1.1) (listed

according to multiplicity) that converge to λ0. We denote the corresponding ortho-
normalised (in L2(Γε)) eigenfunctions by u

(l)
ε . We extend the functions u

(j)
ε to Ω

in such a way that the following inequalities hold:

‖u(j)
ε ‖H1(Ω) 6 C‖u(j)

ε ‖H1(Ωε)

with a constant C independent of ε. This extension is possible by [32] and by
our assumptions about the structure of Ωε. We retain the same notation for the
extended functions.

The main content of this paper is the proof of the following theorem.

Theorem 3.1. Let λ0 be an eigenvalue of the problem (1.3) of multiplicity n and
let u

(l)
0 be the corresponding eigenfunctions normalised by the conditions (3.1).

Then the asymptotic formulae for the eigenvalues λ
(l)
ε of the problem (1.1) that

converge to λ0 as ε → 0 have the form

λ(l)
ε = λ0 + ελ

(l)
1 + o(ε3/2−µ), (3.3)

where λ
(l)
1 is defined by the equation (3.2) and µ is an arbitrarily small positive

number.
If the multiplicity of λ

(l)
1 is equal to nl, then the joint multiplicity of the eigen-

values λ
(l)
ε (of the problem (1.1)) having the asymptotic behaviour (3.3) is also

equal to nl, and the subspace formed by the corresponding eigenfunctions u
(l)
ε con-

verges to the eigensubspace of λ
(l)
1 in L2(Γ1).

Proof. To construct the asymptotic expansions, we use the method of matching
different asymptotic expansions (see [33], [34], and [12]–[16] for a multiple eigen-
value). For the convenience of the reader, let us explain the main ideas of this
method in connection with the problem considered in this paper. We are looking
for the eigenfunctions and eigenvalues of the problem (1.1) in the form of asymp-
totic series in powers of the small parameter ε, and for the leading terms we choose
the eigenfunction and the eigenvalue of the limit problem. In a neighbourhood
of the perforated partition, we introduce stretched (internal) variables ξ = x/ε,
after which we rewrite the functions entering the asymptotic expansion, and also
the operator ∆ and the boundary conditions on the partition in the coordinates ξ
and x, and we assume the periodicity with respect to ξ1. The periodicity condition
is chosen in accordance with the fact that the perforation and boundary conditions
on the partition have periodic microstructure. We say that the resulting expan-
sion is internal. In the remaining part of the domain, we preserve the variables x
in the asymptotic expansion. This expansion is said to be external. On the part of
the domain on which |x2| � 1 and |ξ2| � 1, the coefficients of the Taylor series in x2

for the functions of the external expansion must be consistent with the asymptotic
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expansion of the functions of the internal expansion as |ξ2| → ∞, which leads to
matching conditions for the internal and external expansions.

Before passing to the proof of the theorem, we note that the convergence in (1.4)
is equivalent to the convergence

‖u(l)
ε − u

(l)
∗ ‖L2(Γ1) → 0,

where u
(l)
∗ is an element of the eigensubspace in L2(Γ1) generated by the eigenfunc-

tions u
(1)
0 , . . . , u

(n)
0 .

We denote by u0 the vector function with the components u
(1)
0 , . . . , u

(n)
0 .

Lemma 3.1. The function u0 is infinitely smooth in the closed domains

[−1/2, 1/2]× [0,±s], 0 < s < c.

Proof. Denoting the sets [−1/2, 1/2]× [0,±s] by the symbols Ω±s, we can readily
see that the function u0 satisfies the following problem on the set Ω−s ∪ Ω+s:

−∆ũ0 = 0 in Ω−s ∪ Ω+s,

∂ũ0

∂ν
= 0 on Γ3, [ũ0] = 0 on Γ1,

ũ0 = u0 on {x ∈ Ω: x2 = ±s},
[
∂ũ0

∂x2

]
= −2hλ0ũ0 on Γ1.

Using the symmetric reflection of the coefficients and the right-hand sides of this
problem with respect to the vertical boundary, we reduce this problem to a problem
with periodic boundary conditions on Γ3. The corresponding periodic continuation
is assumed in problems arising in the proof of the lemma.

It can readily be seen that this problem is coercive for sufficiently small s =
s(λ0) > 0, and therefore the solution ũ0 exists and is unique.

Consider the auxiliary problems

−∆u±0 = 0 in Ω±s,

∂u±0
∂ν

= 0 on Γ3,

u±0 = h± on {x ∈ Ω: x2 = ±s},
∂u±0
∂x2

= ±r± on Γ1

and denote by A± the operators assigning to the functions h± and r± the restric-
tions to Γ1 of the solutions u±0 . By Proposition 1.2 in [35], these Neumann–Dirichlet
operators taking r± to u±0

∣∣
Γ1

are elliptic pseudodifferential operators of order −1
with smooth symbols. We also consider the problem

−∆û0 = 0 in Ω−s ∪ Ω+s,

∂û0

∂ν
= 0 on Γ3, [û0] = 0 on Γ1,

û0 = h± on {x ∈ Ω: x2 = ±s},
[
∂û0

∂x2

]
= r on Γ1.

(3.4)
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We note that the operator A = A+ + A− taking the functions h± and r to û0|Γ1

is also an elliptic pseudodifferential operator of order −1 with smooth symbol.
Substituting the functions u0 and −2hλ0ũ0 for h± and r, respectively, into (3.4)

and considering the smoothing properties of the operator A, we obtain the desired
assertion on the smoothness of A. �

We introduce the functions

α0(x1) := u0(x1, 0), α1,±(x1) :=
∂u0

∂x2
(x1,±0).

By Lemma 3.1 and properties of solutions of the boundary-value problem (1.3),
for the function u0(x) we have

∂2u0

∂x2
2

(x1,±0) = −α′′
0(x1) ∈ C∞

[
−1

2
,
1
2

]
, (3.5)

α′
0

(
±1

2

)
=

∂u0

∂x1

(
±1

2
, 0

)
= 0, (3.6)

α1,+(x1)−α1,−(x1) =
∂u0

∂x2
(x1,+0)− ∂u0

∂x2
(x1,−0)

= −2hλ0u0(x1, 0) = −2hλ0α0(x1), (3.7)

u0(x) = α0(x1) + α1,±(x1)x2 −α′′
0(x1)

x2
2

2
+O(x3

2) as x2 → ±0.

By making the change x2 = εξ2 in the last equation, we obtain

u0(x) = α0(x1) + εα1,±(x1)ξ2 − ε2α′′
0(x1)

ξ2
2

2
+O(ε3ξ3

2) as x2 = εξ2 → ±0.

By the method of matching asymptotic expansions, we conclude that the leading
terms of the internal expansion in a neighbourhood of Γ1 must have the form

v̂ε(x) = v0(ξ;x1) + εv1(ξ;x1) + ε2v2(ξ;x1), where ξ =
x

ε
, (3.8)

v0(ξ;x1) ∼ α0(x1) as ξ2 → ±∞, (3.9)

v1(ξ;x1) ∼ α1,±(x1)ξ2 as ξ2 → ±∞, (3.10)

v2(ξ;x1) ∼ −α′′
0(x1)

ξ2
2

2
as ξ2 → ±∞. (3.11)

Here x1 is a ‘slow’ variable and ξ = (ξ1, ξ2) is a ‘fast’ variable.
In the variables (ξ;x1), the Laplace operator and the boundary operator become

∆ = −ε−2∆ξ − 2ε−1 ∂2

∂x1 ∂ξ1
− ∂2

∂x2
1

,
∂

∂ν
= (ν, ε−1∇ξ) + (ν,∇x). (3.12)

It is sometimes convenient to use the notation

∂

∂νξ
= (ν, ε−1∇ξ),

∂

∂νx
= (ν, ε−1∇x).
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Remark 3.1. By the ε-periodicity of the boundary of Ωε in a neighbourhood of the
partition Γ1, we seek the functions vj(ξ;x1) that are 1-periodic with respect to ξ1.

We write
Λ̂ε = λ0E + εΛ1, (3.13)

where Λ1 is an n×n diagonal matrix with, for now, arbitrary entries λ
(1)
1 , . . . , λ

(n)
1 ,

and E stands for the identity matrix. We denote the diagonal entries of the
matrix Λ̂ε by λ̂

(l)
ε , l = 1, . . . , n1. Then, taking into account Remark 3.1, sub-

stituting (3.8), (3.13) and (3.12) into (1.1), and equating coefficients of like powers
of ε in the equations and boundary conditions thus obtained, we derive the following
boundary value problems for vj :

∆ξv0 = 0 in Πah,

∂v0

∂νξ
= 0 on Υ ∪ Γ±,

v0 is 1-periodic with respect to ξ1,

(3.14)


∆ξv1 = −2

∂2v0

∂ξ1 ∂x1
in Πah,

∂v1

∂νξ
= 0 on Υ,

∂v1

∂νξ
= −∂v0

∂νx
+ λ0v0 on Γ±,

v1 is 1-periodic with respect to ξ1,

(3.15)


∆ξv2 = −2

∂2v1

∂ξ1 ∂x1
− ∂2v0

∂x2
1

in Πah,

∂v2

∂νξ
= 0 on Υ,

∂v2

∂νξ
= −∂v1

∂νx
+ λ0v1 + Λ1v0 on Γ±,

v2 is 1-periodic with respect to ξ1,

(3.16)

where the functions vj , j = 0, 1, 2, must satisfy the asymptotic conditions (3.9)–
(3.11).

Obviously, the function
v0(ξ;x1) ≡ α0(x1) (3.17)

is a solution of the boundary-value problem (3.14) and has the required behaviour
(3.9) as ξ2 → ±∞. Taking this identity into account, we can represent the
boundary-value problem (3.15) in the form

∆ξv1 = 0 in Πah,

∂v1

∂νξ
= 0 on Υ ∪ Σ,

∂v1

∂νξ
= ∓α′

0(x1) + λ0α0(x1) on Γ±,

(3.18)

with the condition of periodicity on Σ replaced by the homogeneous Neumann
condition. These problems are equivalent because of their symmetry with respect
to the vertical coordinate axis ξ2 and the uniqueness of the solution of each of them.
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Taking (3.7) into account, we can readily see that for every function β(x1), the
function

v1(ξ;x1) =
〈

∂u0

∂x2

〉
(x1) X̃0(ξ) + λ0α0(x1)X0(ξ)−α′

0(x1)Y0(ξ) + β(x1) (3.19)

is a solution of the boundary-value problem (3.18) and has the desired asymp-
totic behaviour (3.10). We note that a more precise asymptotic expansion for the
function v1 is of the form

v1(ξ;x1) = α1,±(x1)ξ2 ± Cah

〈
∂u0

∂x2

〉
(x1) + β(x1) +O(e−π|ξ2|) as ξ2 → ±∞.

(3.20)
Recalculating the asymptotic expansion of the sum (3.8) as ξ2 → ±∞ in the

variables x2 and taking (3.20) into account, we see that the external expansion of
the eigenfunctions should be sought in the form

ûε(x) = u0(x) + εu1(x), (3.21)

where

u1(x) ∼ ±Cah

〈
∂u0

∂x2

〉
(x1) + β(x1) as x2 → ±0.

Obviously, the last conditions are equivalent to the boundary conditions

u1(x1,±0) = ±Cah

〈
∂u0

∂x2

〉
(x1) + β(x1),

which, in turn, in the notation (3.5), are equivalent to the conditions

[u1](x1) = 2Cah

〈
∂u0

∂x2

〉
(x1), (3.22)

β(x1) = 〈u1〉(x1). (3.23)

Rewriting the asymptotic expansion of the function (3.21) as x2 → 0 in the
internal variables ξ, we can refine the asymptotic behaviour of the function v2(ξ;x1)
at infinity (3.11):

v2(ξ;x1) ∼ −α′′
0(x1)

ξ2
2

2
+

∂u1

∂x2
(x1,±0)ξ2 as xi2 → ±∞. (3.24)

On the other hand, it follows from Lemmas 2.1 and 2.2 that for every function
ϕ(x1) the function

v2(ξ;x1) = −2
〈

∂u0

∂x2

〉′

(x1) Y2(ξ)− 2λ0α
′
0(x1)Y1(ξ) + 2α′′

0(x1)X1(ξ)

−α′′
0(x1)X2(ξ)−

〈
∂u0

∂x2

〉′

(x1) Y4(ξ)− λ0α
′
0(x1)Y3(ξ)

+ α′′
0(x1)X5(ξ) + λ0

〈
∂u0

∂x2

〉
(x1) X4(ξ) + λ2

0α0(x1)X3(ξ)

− λ0α
′
0(x1)Y5(ξ) + Λ1α0(x1)X0(ξ) + λ0β(x1)X0(ξ)

− β′(x1)Y0(ξ) + ϕ(x1)X̃0(ξ) (3.25)
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is a solution of the boundary-value problem (3.16) and has the asymptotic behaviour

v2(ξ;x1) = −α′′
0(x1)

ξ2
2

2
+

(
α′′

0(x1)
(

3Aah −
h

2
(1− a)

)
+ λ2

0α0(x1)Bah

− hΛ1α0(x1)− hλ0β(x1)
)
|ξ2|+ ϕ(x1)ξ2 ± Cahϕ(x1)

± λ0

〈
∂u0

∂x2

〉
(x1) Cah +O(e−π|ξ2|) as |ξ2| → ∞.

Comparing this equation with (3.24) and taking (2.22) into account, we obtain[
∂u1

∂x2

]
(x1) = h(1− a)

(
α′′

0(x1)(3Ãah − 1) + λ2
0α0(x1)B̃ah

)
− 2h

(
Λ1α0(x1) + λ0β(x1)

)
,〈

∂u1

∂x2

〉
(x1) = ϕ(x1). (3.26)

In turn, this, together with (3.5) and (3.23), implies that[
∂u1

∂x2

]
(x1) = −2hλ0〈u1〉(x1) + h(1− a)

(
∂2u0

∂x2
1

(x1, 0)(3Ãah − 1)

+ λ2
0u0(x1, 0)B̃ah

)
− 2hΛ1u0(x1, 0). (3.27)

Substituting (3.21) into (1.1), we obtain the following equation and boundary
conditions for u1: −∆u1 = 0 in Ω \ Γ1,

u1 = 0 on Γ2,
∂u1

∂ν
= 0 on Γ3.

(3.28)

Since ∫
Γ1

∂2u
(l)
0

∂x2
1

u
(k)
0 dx1 = −

∫
Γ1

∂u
(l)
0

∂x1

∂u
(k)
0

∂x1
dx1

by (3.6), it follows from Lemma 2.3 and the equations (3.1) that the boundary-value
problem (3.28), (3.22), (3.27) is soluble when the entries of the diagonal matrix Λ1

are defined by the equations (3.2). Thus, the formulae (3.2) are obtained (at the
formal level).

We note that the functions β(x1) and ϕ(x1) are defined by (3.23) and (3.26),
respectively. Thus, we finally determine v1(ξ) and v2(ξ) and achieve the validity
of the relations

v1(ξ) =
∂u0

∂x2
(x1,±0)ξ2 + u1(x1,±0) +O(e−π|ξ2|) as ξ2 → ±∞,

v2(ξ) = −∂2u0

∂x2
1

(x1,±0)
ξ2
2

2
+

∂u1

∂x2
(x1,±0)ξ2

+ Cahϕ(x1)± λ0

〈
∂u0

∂x2

〉
(x1) Cah +O(e−π|ξ2|) as ξ2 → ±∞.

(3.29)
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We proceed with the rigorous justification of the formulae thus obtained (that is,
with the completion of the proof of Theorem 3.1).

Let χ(t) be an infinitely differentiable truncating function vanishing for |t| < 1
and equal to 1 for |t| > 2 and let γ be an arbitrary number in the interval (0, 1).
Write

ũε(x) = χ(ε−γx2)ûε(x) +
(
1− χ(ε−γx2)

)
v̂ε(x). (3.30)

Then it follows from (3.21), (1.3), (3.28) and (3.8), (3.13)–(3.16), (3.18) that this
function is a solution of the following problem:

−∆ũε = Fε in Ωε,

ũε = 0 on Γ2,

∂ũε

∂ν
= 0 on Υε ∪ Γε

3,
∂ũε

∂ν
= Λ̂εũε + gε on Γε,

(3.31)

where

Fε(x) = εF1,ε(x) + F2,ε(x) + F3,ε(x), (3.32)

F1,ε(x) = −
(

1− χ

(
x2

εγ

))(
2

∂2v2

∂ξ1 ∂x1

(
x1,

x

ε

)
+

∂2v1

∂x2
1

(
x1,

x

ε

)
+ ε

∂2v2

∂x2
1

(
x1,

x

ε

))
, (3.33)

F2,ε(x) = −ε−2γχ′′
(

x2

εγ

)(
ûε(x)− v̂ε(x)

)
, (3.34)

F3,ε(x) = −ε−γχ′
(

x2

εγ

)
∂

∂x2

(
ûε(x)− v̂ε(x)

)
, (3.35)

gε(x) =
∂vε

∂ν
− Λ̂εvε = ε2

(
∂v2

∂νx
− λ0v2 − Λ1(v1 + εv2)

)
. (3.36)

By (3.33) and (3.29), we see that suppF1,ε ⊂ {x : |x2| 6 2εγ}, and hence

‖εF1,ε‖L2(Ωε) = O(ε3γ/2). (3.37)

It follows from (3.21), (3.8), (3.17) and (3.29) that

ûε(x)− v̂ε(x) = O(ε3γ + ε2) for εγ 6 |ξ2| 6 2εγ , (3.38)

∂ûε

∂x2
(x)− ∂v̂ε

∂x2
(x) = O(ε2γ) for εγ 6 |ξ2| 6 2εγ . (3.39)

By (3.34) and (3.38), we see that suppF2,ε ⊂ {x : εγ 6 |x2| 6 2εγ}, and hence

‖F2,ε‖L2(Ωε) = O(ε3γ/2). (3.40)

Similarly, it follows from (3.35) and (3.39) that ‖F3,ε‖L2(Ωε) = O(ε3γ/2). This,
together with (3.32), (3.37) and (3.40), implies that

‖Fε‖L2(Ωε) = O(ε3γ/2). (3.41)
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Finally, it follows from (3.36), (3.17), (3.19), (3.25) and (3.23), (3.26) that

‖gε‖L2(Γε) = O(ε2), (3.42)

‖ũε − u0‖L2(Γε) = O(ε). (3.43)

Consider the boundary-value problem
−∆wε = Fε in Ωε,

wε = 0 on Γ2,

∂wε

∂ν
= 0 on Υε ∪ Γε

3,
∂wε

∂ν
= 0 on Γε.

(3.44)

It can readily be seen that this problem is uniquely soluble in H1(Ω,Γ2), and, by
(3.41), the solution satisfies the bound

‖wε‖L2(Γε) 6 Cε3γ/2. (3.45)

Consider the boundary-value problem
−∆zε = 0 in Ωε,

zε = 0 on Γ2,

∂zε

∂ν
= 0 on Υε ∪ Γε

3,
∂zε

∂ν
= g on Γε,

(3.46)

where g ∈ H−1/2(Γε). We denote by Aε the linear operator Aε : H−1/2(Γε) →
H1/2(Γε) assigning to a function g the restriction of the solution zε to Γε:

Aεg = zε|Γε
.

Being an operator from L2(Γε) to L2(Γε), this is a compact self-adjoint operator
for any fixed ε, and its characteristic numbers coincide with the eigenvalues of the
problem (1.1). By the integral identity for the problem (3.46), we can readily prove
that

‖Aε‖L(H−1/2(Γε),H1/2(Γε)) 6 C (3.47)

with a constant C independent of ε.
By (3.31) and (3.44), the function

ǔε = ũε −wε (3.48)

is a solution of the problem

−∆ǔε = 0 in Ωε,

ǔε = 0 on Γ2,

∂ũε

∂ν
= 0 on Υε ∪ Γε

3,

∂ǔε

∂ν
= Λ̂εǔε − Λ̂εwε + gε on Γε.
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Hence, Λ̂εAε(ǔε −wε)|Γε
= ǔε|Γε

−Aεgε. Therefore, by (3.45), (3.47) and (3.42),
we see that

‖Aεǔε − (Λ̂ε)−1ǔε‖L2(Γε) = ‖wε − (Λ̂ε)−1Aεgε‖L2(Γε)

= O(ε3γ/2) = o(ε3/2−µ) ∀µ > 0. (3.49)

We now show how to derive the assertions of Theorem 3.1 from this bound using
Lemma 2.4 and Proposition 1.1. As is shown below (see the end of the proof of the
theorem),

0 < c1 6 ‖ǔ(l)
ε ‖L2(Γε) 6 c2 < ∞, (3.50)

(ǔ(l)
ε , ǔ(k)

ε )L2(Γε) = o(1), l 6= k, (3.51)

where ǔ
(l)
ε is the lth component of the vector ǔε. It follows immediately from

(3.50), (3.49) and Lemma 2.4 that, for every λ
(l)
1 defined by the equation (3.2),

there is an eigenvalue of the problem (1.1) that has the asymptotic behaviour (3.3).
Here, if λ

(l)
1 6= λ

(k)
1 when l 6= k, then by Proposition 1.1, all the eigenvalues of the

problem (1.1) are simple and have the asymptotic behaviour (3.3).
Let a number λ

(l)
1 = · · · = λ

(l+nl−1)
1 defined by the equation (3.2) have multi-

plicity nl. We set κ1 = ε3/2−2µ in Lemma 2.4. Then we may assume without loss
of generality that∥∥∥∥ǔ(l+i−1)

ε −
mi(ε)∑
k=1

ai
ku(l+k−1)

ε

∥∥∥∥
L2(Γε)

6 Cεµ, i = 1, . . . , nl, (3.52)

where the u
(k)
ε are the orthonormalised (in L2(Γε)) eigenfunctions of the problem

(1.1) that correspond to all the eigenvalues λ
(k)
ε in the interval Il(ε) := (λ0 +

ελ
(l)
1 − ε3/2−2µ, λ0 + ελ

(l)
1 + ε3/2−2µ). We stress that

λ0 + ελ
(j)
1 /∈ Il(ε), j 6= l, . . . , l + nl − 1.

It follows from (3.52), (3.50) and (3.51) that mi(ε) > nl. On the other hand,
since the total number of eigenvalues of the problem (1.1) that converge to λ0,j is
equal to n, it follows that mi(ε) = nl. Thus, we have proved that the number of
eigenvalues of (1.1) that have the asymptotic behaviour (3.3) is equal to nl.

We now pass to the proof of the convergence of eigenfunctions on Γ1. We note
that, by the integral identities of the problems (1.1) and (1.3) and the normalisation
conditions for the eigenfunctions u

(j)
ε and u

(j)
0 , the following bounds hold:

‖u(j)
ε ‖H1(Ωε) 6 C, ‖u(j)

0 ‖H1(Ω) 6 C.

We extend the functions ǔ
(j)
ε to Ω in such a way that the following inequalities hold:

‖ǔ(j)
ε ‖H1(Ω) 6 C‖ǔ(j)

ε ‖H1(Ωε)

with a constant C independent of ε, retaining the same notation for the extended
functions.
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By Lemma 3.5 in [17], for arbitrary v1 ∈ H1(Ωε) and v2 ∈ H1(Ωε) we have∣∣∣∣∫
Γε

v1v2 dx2 − h

∫ 1/2

−1/2

v1(x1, εh)v2(x1, εh) dx1

∣∣∣∣ 6 Cε1/2‖v1‖H1(Ωε)‖v2‖H1(Ωε).

Further, by the theorem on the continuity of traces for v1, v2 ∈ H1(Ω), we obtain∣∣∣∣∫
Γ1

v1v2 dx1 −
∫ 1/2

−1/2

v1(x1, εh)v2(x1, εh) dx1

∣∣∣∣ 6 Cε1/2‖v1‖H1(Ωε)‖v2‖H1(Ωε).

The last two inequalities imply the bound∣∣∣∣∫
Γε

v1v2 dx2 − h

∫
Γ1

v1v2 dx1

∣∣∣∣ 6 Cε1/2‖v1‖H1(Ωε)‖v2‖H1(Ωε). (3.53)

The definitions (3.48) and (3.30) of ǔ
(j)
ε and ũ

(j)
ε , the integral identity for the

problem (3.44), and the boundedness of the operator of extension from H1(Ωε)
to H1(Ω), the bounds (3.43) and (3.45) yield that

‖ǔ(j)
ε ‖H1(Ω) 6 C, ‖wε‖H1(Ω) = o(1), ‖ǔ(j)

ε − u
(j)
0 ‖H1(Ω) = o(1). (3.54)

Taking into account (3.53), (1.2) and (3.52), we derive from (3.54) the bound∥∥∥∥ǔ(j)
ε −

nl∑
k=1

aj
ku(k)

ε

∥∥∥∥
L2(Γ1)

6 Cεµ, j = 1, . . . , nl.

Therefore, ∥∥∥∥u
(j)
0 −

n1∑
k=1

aj
ku(k)

ε

∥∥∥∥
L2(Γ1)

= o(1), j = 1, . . . , n1.

To complete the proof of the theorem, it remains to justify the relations (3.50)
and (3.51). It follows from the third bound in (3.54) and from (3.53) that

‖ǔ(j)
ε − u

(j)
0 ‖L2(Γε) = o(1).

Again using the bound (3.53) and recalling the normalisation conditions (3.1), we
obtain ‖ǔ(j)

ε ‖L2(Γε) = h−1 +o(1), which gives the bound (3.50). The relation (3.51)
can be proved analogously.

This completes the proof of Theorem 3.1. �

Postscript. This paper was prepared during the visit of the authors to the Math-
ematisches Forschungsinstitut Oberwolfach for the programme ‘Research in Pairs’
in January 2015. The authors are grateful for the excellent working conditions there.

The final version of the paper was written after the untimely death of Rustem
Rashitovich Gadyl’shin.
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