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Abstract. The goal of the paper is to describe the large time behavior of

a Markov process associated with a symmetric diffusion in a high contrast
random stationary environment and to characterize the limit process under the

diffusive scaling. The advantage of the proposed approach is that we explicitly

present the limit operator on the extended space. That gives us a possibility
to use this operator for approximations of diffusion processes in porous media

with random structure of inclusions. We also describe the spectrum of the limit
operator. Our approach uses auxiliary Markov processes defined on extended

state spaces, as well as tools from homogenization theory in random media.

1. Introduction. Elliptic and parabolic operators with high contrast rapidly oscil-
lating periodic coefficients have been widely studied in the homogenization theory.
The first rigorous results for parabolic operators of this type were obtained in [15]
and [5]. In particular, it was shown that, under proper choice of the scaling co-
efficient, the homogenized problem contains a non-local in time operator which
reflects the so-called memory effect. Later on in [2], with the help of the two-
scale convergence technique, the limit problem was written as a coupled system
of parabolic PDEs in the space with higher number of variables. Homogenization
problems for elliptic and hyperbolic operators in strongly inhomogeneous periodic
media were originally studied in [18], where the asymptotic expansion of solutions
was constructed. In [24, 25] high contrast problems in domains with singular or
asymptotically singular periodic geometry were considered. A number of interest-
ing results on homogenization of high contrast operators has been obtained in the
recent work [14]. At present, there are many works in the existing mathemati-
cal literature that describe the effective behavior of high contrast periodic media.
Under proper scaling, in parabolic problems this usually results in the memory ef-
fect while homogenization of spectral problems leads to a non-linear dependence on
the spectral parameter. Rigorous homogenization results for high contrast random
stationary media have been obtained in [7, 8] and some other works.
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This work focuses on a problem that is situated within double-porosity models
which are typically used to simulate flow in fractured formations. During the last
decade, there appeared a significant body of literature devoted to the modeling of
such problems. There is an extensive literature on this subject. We will not attempt
a literature review here but will merely mention a few references. A recent review
of the mathematical homogenization methods developed for flow in double porosity
media can be viewed in [4, 19].

The paper focuses on the large time behavior of diffusion in high contrast ran-
dom statistically homogeneous media. We also study the limit behavior of the
corresponding semigroups. Equivalently, we consider the limit behavior of diffusion
defined in a high contrast environment with a random microstructure on a finite
time interval.

In this paper we deal with second order divergence form operators in Rd. Each
such an operator is a generator of a Markov semigroup. The corresponding Markov
process (generalized diffusion) has continuous trajectories. However, the presence
of a non-local in temporal variable term in the effective operator means that the
limit dynamics of the coordinate process is not Markov.

The goal of this work is to equip the coordinate process with additional compo-
nents in such a way that the dynamics of the enlarged process remains Markovian
in the limit. We show that it is sufficient to combine the coordinate process in Rd
with a position of the diffusion inside the rescaled inclusions for the time intervals
when the diffusion is trapped by one of the inclusions.

It is interesting to observe that, although in the original processes the additional
components are functions of the coordinate process, in the limit process these com-
ponents are getting independent while the coordinate process becomes coupled with
them.

The explicit form of the limit operator on the extended space gives us a possibility
to use this operator as a generator of an approximation dynamics for the processes
in high contrast random stationary disperse porous media. The discrete version of
such approximation process was constructed in [22], where we considered a discrete
diffusion in a high-contrast random environment given by a jump random walk on
the lattice Zd. The crucial step in this construction is to describe the “clock process”
governing transitions from the observable “real” space to the supplementary “astral”
spaces and back. The “clock process” is a continuous time finite Markov chain with
transition rates depending on parameters of the limit operator.

To our best knowledge, the questions considered in this paper have not been stud-
ied in the existing literature. In the discrete framework the results on scaling limit
of symmetric random walk in high contrast periodic environments were obtained
in [22]. The construction of related Markov semigroups for symmetric diffusions in
high contrast periodic media on large time scales has been discussed in [21].

The limit behaviour of the spectrum of high contrast operators in a random
disperse type environment is the subject of recent works [8, 9]. In [8] the authors
consider a random double porosity model in a regular bounded domain and show
that, for some particular examples of random media, the spectrum of the original
operator converges in the sense of Hausdorff to the spectrum of the homogenized
operator. In [9] it is explained that in the case of the whole space Rd the Hausdorff
convergence need not take place. The approach used in the present work also allows
us to study the asymptotic behaviour of the spectrum of the original operators. This
is illustrated in Section 5.
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The rest of the paper is organized as follows. Section 2 deals with problem
setup. We describe the model equation and provide the assumptions on the data. In
Section 3 we introduce proper functional spaces, and construct the limit semigroup
and the homogenized operator in the extended space, the semigroup convergence is
then proved in Section 4. Finally, in Section 5 we study the spectrum of the limit
operator. Then the semigroup convergence in L2 spaces allows us to provide some
information about the limit behavior of the spectrum of the original operators. Our
approach essentially relies on the approximation technique developed in [10] and the
technique of correctors in random media. In contrast with the periodic framework,
the auxiliary operators used to introduce correctors need not be of Fredholm type in
the case of random inclusions. The construction of the first corrector can be found
in the existing literature, see for instance [13]. However, when defining the higher
order correctors we face additional difficulties. Lastly, in Section 6 some concluding
remarks are forwarded.

2. Problem setup. Let (Ω,F ,P) be a standard probability space. Consider a
symmetric diffusion operator in divergence form

Ãωε f(y) = div (ãωε (y)∇f(y)) , (1)

where

ãωε (y) =

{
I, y ∈ Rd \Gω =

(
Gω
)c
,

ε2I, y ∈ Gω, (2)

I being the unit matrix. Here Gω ⊂ Rd, ω ∈ Ω, is a classical disperse set, i.e. a
random statistically homogeneous ergodic set Gω ⊂ Rd that consists of a countable
number of uniformly bounded simply connected domains with uniformly Lipschitz
boundary. Moreover, the distance between any two such domains admits a uniform
deterministic lower bound. The complement Rd \ Gω is almost surely (a.s.) con-
nected and unbounded. The set Gω corresponds to the matrix blocks (inclusions),
and Rd \Gω ⊂ Rd to the fractures system, see [7].

To be more specific, we consider in this work disperse media that satisfy the
following additional condition: there is a finite collection of bounded C2 regular
domains (patterns) in Rd such that a.s. any connected component of Gω can be
obtained by a proper translation and rotation of one of these domains. For the
elements of this collection we use the notation Dj , j = 1, . . . , N , N ∈ N, and the
whole collection is denoted D, D = {Dj}Nj=1. Thus N is the number of elements in
D.

We assume without loss of generality that each pattern Dj , j ≥ 1, contains the
origin. The union of all subsets of Gω that have the same geometry as Dj is denoted

Gωj , the copies Gω,ij of Dj in Gωj are enumerated by index i ∈ N. So we have

Gω =

N⋃
j=1

Gωj , Gωj =
⋃
i∈N
Gω,ij ,

and for the complement Rd \Gω is used the notation Gω0 .

Under these assumptions for each Gω,ij there exist a shift xω,ij ∈ Rd and a rotation

Sω,ij ∈ SO(d) such that Gω,ij is the image of Dj under the mapping ξ 7→ (Sω,ij )−1ξ+

xω,ij . The inverse mapping reads ξ 7→ Sω,ij (ξ − xω,ij ).
Letting

α0 = P
{

0 ∈ Gω0
}
, αoj = P

{
0 ∈ Gωj

}
(3)
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we have α0 +
∑

j≥1 α
o
j = 1, and assume without loss of generality that αoj > 0 for

all j. Define

αj = |Dj |−1αoj = |Dj |−1P
{

0 ∈ Gωj
}
. (4)

An example of such a disperse medium is associated with a Bernoulli site perco-
lation model on the lattice Zd embedded in Rd. Let {ξj , j ∈ Zd}, ξj ∈ {0, 1}, be a
sequence of i.i.d. random variables having the Bernoulli law:

P(ξj = 1) = p, P(ξj = 0) = 1− p with 0 < p < 1.

We then define Bj = j + [− 1
2 ,

1
2 ]d, j ∈ Zd, and consider the set G1,ω =

⋃
{j : ξj=1}

Bj .

This set is a.s. a union of countable number of bounded connected sets (components)
and not more than one unbounded connected component, see [12]. We consider the
generic bounded connected component of G1,ω, call it E and denote by Eδ its open
δ-neighbourhood with 0 < δ < 1

4 . Let Ẽδ be the minimal open simply connected set

that contains Eδ. Smoothing the boundary of Ẽδ we denote the obtained set by Êδ.
Then we fix an integer number M ≥ 1 and keep only those sets that contain not
more than M points of Zd. By construction, there exists a finite collection of open

bounded simply connected sets with a smooth boundary such that each Êδ can be
obtained by a proper shift of one of the sets of this collection. This is the desired
collection D. By the standard arguments of percolation theory, Gω is statistically
homogeneous and ergodic.

After the scaling x = εy, t = ε2s we get the following diffusion operator

Aωε f(x) = div
(
aωε (x)∇f(x)

)
, (5)

where

aωε (x) = ãωε (
x

ε
) =

{
I, x ∈ Rd \ εGω =

(
Gωε
)c
,

ε2I, x ∈ εGω, (6)

and Gωε = εGω. The corresponding Cauchy problem reads

∂

∂t
uωε (x, t) = div

(
aωε (x)∇uωε (x, t)

)
, uωε (x, 0) = ϕ(x). (7)

For each ε > 0 the operator Aωε has random statistically homogeneous coefficients
in Rd, where the randomness is defined through the random geometry of Gωε . These
operators are also called metrically transitive with respect to the unitary group of
the space translations in Rd. In L2(Rd) we introduce a domain of Aωε by

D(Aωε ) =
{
f ∈ H1(Rd) : f ∈ H2(Gωε ) ∩H2(Rd \Gωε ), ε2∇f(x)

∣∣
∂Gωε
· n+

= −∇f(x)
∣∣
∂Gωε
· n−

} (8)

The last relation in (8) represents the continuity of the normal flux aε∇f through
the boundary ∂Gωε . Here n−, n+ are respectively the internal and external normals
on ∂Gωε .

Remark 2.1. Notice that, according to the classical trace theorem, see for instance
[16], for any function v ∈ D(Aωε ) its trace and the trace of its flux on the interface
∂Gωε is a well-defined L2(∂Gωε ) function.

Then (Aωε , D(Aωε )) is almost surely a self-adjoint operator in L2(Rd), and for any
λ > 0 the operator (λI − Aωε ) is coercive, here and in what follows the notation I
is used for the identity operator. By the Hille-Yosida theorem, Aωε is a generator
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of a strongly continuous, positive, contraction semigroup Tωε (t) on L2(Rd) for a.e.
ω ∈ Ω, and the solution to (7) can be written as

uωε (x, t) = Tωε (t)ϕ(x). (9)

In the next sections we construct a Markov semigroup T (t) acting on an extended
space and prove ω-a.s. convergence Tωε (t) → T (t) as ε → 0 on any finite time
intervals. Thus the Markov semigroup T (t) describes the limit behaviour of the
process corresponding to Tωε , and the projection on the first component of this
limit process gives an approximation for the solutions (9) of Cauchy problem (7).

We omit in this paper discussions on the choice of the extended space and the
generator, and refer the reader to [21], where the analogous idea was realised in the
case of periodic high contrast media.

3. The limit semigroup T (t). In this section we describe the generator A of the
limit Markov semigroup T (t). Denote

E = Rd ×D?, where D? = {?} ∪D;

here the symbol ? stands for a single point set that corresponds to the unbounded
connected (fast) component in the effective dynamics. We consider functions F
defined on E of the following vector form

F (x, ξ) =

{
f0(x), if x ∈ Rd, ξ = ?,
fj(x, ξ), if x ∈ Rd, ξ ∈ Dj , j = 1, . . . , N,

(10)

with f0 ∈ L2(Rd), fj ∈ L2(Rd ×Dj). Equipped with the norm

‖F‖2 = α0

∫
Rd

f2
0 (x) dx+

N∑
j=1

αj

∫
Rd

∫
Dj

(fj)
2(x, ξ) dξdx (11)

where α0, αj was defined in (4), α0 > 0, αj > 0, this set of functions is a Hilbert
space. We call this Hilbert space L2(E,α).

Let us consider in L2(E,α) an operator of the following form

(AF )(x, ξ) =


Θ · ∇∇f0(x) + 1

α0

N∑
j=1

αj
∫
∂Dj

∂fj(x,ξ)

∂n−
ξ

dσ(ξ)

4ξf1(x, ξ)
. . .

4ξfN (x, ξ)

 (12)

where a positive definite constant matrix Θ will be defined later on, see (43), σ(ξ) is
the element of the surface volume on the Lipshitz boundary ∂Dkj , n−ξ is the (inner)

normal to ∂Dkj . The domain of definition of this operator is specified below in (15).
Observe that, for each j = 1, . . . , N , the argument ξ of the function fj(x, ξ) belongs
to Dj , and that the function in the first line on the right-hand side depends only
on x. Using the relation n+ = −n− and the Stokes formula one can rewrite the
operator (12) as follows:

(AF )(x, ξ) =


Θ · ∇∇f0(x)− 1

α0

N∑
j=1

αj
∫
Dj
4ξfj(x, ξ)dξ

4ξf1(x, ξ)
. . .

4ξfN (x, ξ)

 . (13)
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We denote

Υ(x) = − 1

α0

N∑
j=1

αj

∫
Dj

4ξfj(x, ξ)dξ. (14)

For each set Dj , j ≥ 1, denote by Dj(∆) the domain of a self-adjoint operator
in L2(Dj) that corresponds to the Laplacian in Dj with homogeneous Dirichlet
boundary conditions. Since the boundary of Dj is C2 regular, we have Dj(∆) =
H2(Dj)∩H1

0 (Dj). Notice that this operator is positive. The space Dj(∆) is equipped
with the norm ‖g‖Dj(∆) = ‖∆g‖L2(Dj).

Defining an operator A in L2(E,α) by formulas (12), (13), one can easily check
that, with a domain

D̂(A) =
{
F = (f0, . . . , fN ) ∈L2(E,α) : f0 ∈ H2(Rd),

fj −f0 ∈ L2(Rd;Dj(∆)), fj(x, ξ)
∣∣∣
ξ∈∂Dj

= f0(x),
(

Θ ·∇∇f0(x)

− 1
α0

N∑
j=1

αj
∫
Dj
4ξfj(x, ξ)dξ, 4ξf1(x, ξ), . . . ,4ξfN (x, ξ)

)
∈ L2(E,α)

}
,

(15)

the operator (A, D̂(A)) is a closed symmetric operator in L2(E,α), and D̂(A) is
dense in L2(E,α).

We introduce the following two spaces:

H1
D(E,α) =

{
f0 ∈ H1(Rd), fj − f0 ∈ L2(Rd;H1

0 (Dj))
}

(16)

and

H2
D(E,α) =

{
f0 ∈ H2(Rd), fj − f0 ∈ L2(Rd;H2(Dj) ∩H1

0 (Dj)) (17)

Notice that
N∑
j=1

αj

∫
Rd

∫
Dj

|∇ξfj |2(x, ξ) dξdx <∞ ∀F ∈ H1
D(E,α)

and
N∑
j=1

αj‖fj‖2L2(Rd;H2(Dj)) =

N∑
j=1

αj

∫
Rd

∫
Dj

(
|fj(x, ξ)|2 +

d∑
k,l=1

∣∣∣∣∂2fj(x, ξ)

∂ξk∂ξl

∣∣∣∣2)dξdx <∞
for any F ∈ H2

D(E,α).
The space H−1(E,α) is defined as the dual space to H1

D(E,α) in L2(E,α).

Lemma 3.1. For any m > 0 the operator (mI−A, D̂(A)) is a coercive self-adjoint
operator in L2(E,α).

Proof. Consider the following quadratic form in L2(E,α)

Γ(F, F ) = α0

∫
Rd

Θ∇f0(x) · ∇f0(x) dx

+

N∑
j=1

αj

∫
Rd

∫
Dj

|∇ξfj |2(x, ξ) dξdx+m‖F‖2L2(E,α)

(18)
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with a domainD(Γ) = H1
c (E,α). Notice that fj(x, ·)

∣∣
∂Dj

= f0(x) for any F ∈ D(Γ).

According to [23, Theorem VIII.15] there exists a unique self-adjoint operator Ãm
that has the following properties:
- its domain D(Ãm) is dense in L2(E,α);

- D(Ãm) belongs to D(Γ);

- (ÃmF, F )L2(E,α) = Γ(F, F ) for any F ∈ D(Ãm).

We are going to show that Ãm coincides with mI − A. First we prove that
D(Ãm) ⊂ D̂(A). Separating the first component f0 in (10) we will use the no-

tation F = (f0, V ). Taking F ∈ D(Ãm) and U = (0, U1) ∈ D(Γ) with U1 ∈
C∞0 (Rd ; C∞0 (D)), and using the relation (ÃmF,U)L2(E,α) = Γ(F,U), we obtain

(ÃmF,U)L2(E,α) = Γ(F,U) =

N∑
j=1

αj((m−∆ξ)Vj , U1,j),

where the terms (−∆ξVj , U1,j) on the right-hand side are understood as a pairing
between L2(Rd ; H−1(Dj)) and L2(Rd ; H1

0 (Dj)). This implies that (m −∆ξ)Vj ∈
L2(Rd × Dj) and

(
0, {(m −∆ξ)Vj}j≥1

)
∈ L2(E,α). Therefore, (0, V ) ∈ H2

c (E,α).

Choosing now U = (u0(x), 0) with u0 ∈ C∞0 (Rd) and considering the fact that
N∑
j=1

αj
∫
Dj
4ξVj(·, ξ)dξ ∈ L2(Rd), we get mf0 − div(Θ∇f0) ∈ L2(Rd). Therefore,

f0 ∈ H2(Rd), and D(Ãm) ⊂ D̂(A).

Moreover, ÃmF = (m − A)F for any F ∈ D(Ãm). Since Ãm is self-adjoint,

D(Ãm) = D̂(A). This yields the desired statement.

We define the following set of functions:

DA =
{
f0(x) ∈ C∞0 (Rd), fj(x, ξ)− f0(x) ∈ C∞0 (Rd,Dj(∆))

}
. (19)

Notice that fj(x, ξ)
∣∣
ξ∈∂Dj

= f0(x) for any F = {fj}j≥0 ∈ DA.

Corollary 3.2. The set DA ⊂ L2(E,α) defined in (19) is a core of A, i.e. DA is

a dense subset of L2(E,α) and A = A
∣∣
DA

, see [10] for the details.

Proof. Clearly, DA is a dense subset in L2(E,α). In order to show that DA is a
core of A we should also check that for some m > 0 the set {(m−A)F, F ∈ DA} is
dense in L2(E,α). Denote J∞ = {(u0, U) = (u0(x), Uj(x, ξ)) : u0 ∈ C∞0 (Rd), Uj ∈
C∞0 (Rd ; C∞0 (Dj))}. Observe that J∞ is dense in L2(E,α). By Lemma 3.1 for an
arbitrary U ∈ J∞ and for any m > 0 the equation

mF −AF = U (20)

has a unique solution F = (f0, V ) ∈ D̂(A). Then the equation for V can be
rewritten as

(m−∆ξ)(V (x, ξ)− f0(x)) = U(x, ξ)−mf0(x) in D,

(V (x, ξ)− f0(x))
∣∣
ξ∈∂D = 0,

(21)

or, in the coordinate form,

(m−∆ξ)(Vj(x, ξ)− f0(x)) = Uj(x, ξ)−mf0(x) in Dj ,

(Vj(x, ξ)− f0(x))
∣∣
ξ∈∂Dj

= 0, j ≥ 1.
(22)
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From this equation we derive the following relation:

Vj(x, ξ) = V Ij (x, ξ) +mf0(x)V 0
j (ξ) + f0(x) (23)

with V Ij = (mI−∆ξ)
−1Uj ∈ C∞0 (Rd; Dj(∆)) and V 0

j = (mI−∆ξ)
−11 ∈ Dj(∆).

Substituting the right-hand side of (23) for V into the first equation in (20) yields

mf0 −Θ · ∇∇f0 − cmf0 = w0,

where

w0 = u0−
N∑
j=1

αj

∫
Dj

∆ξ(mI−∆ξ)
−1Uj(·, ξ) dξ, c = −

N∑
j=1

αj

∫
Dj

∆ξ(mI−∆ξ)
−11 dξ.

Under our assumptions on U we have w0 ∈ C∞0 (Rd). Also, it is straightforward
to check that c < 1 for any m > 0. Consequently, f0 is a Schwartz class function
in Rd. Taking a proper sequence of smooth cut-off functions ϕn we conclude that
(m−A)(ϕnf0, V +ϕnf0) converges in L2(E,α) to U . Since (ϕnf0, V +ϕnf0) ∈ DA,
this yields the desired statement.

Summarizing the above arguments we conclude that A is a generator of a strongly
continuous, positive, contraction semigroup T (t) on L2(E,α) with core DA defined
by (19).

4. The semigroup convergence. In this section we prove the convergence of
semigroups acting in different spaces following the methods developed in [10].

Define a bounded linear transformation πωε : L2(E,α) → L2(Rd) for every ε ∈
(0, 1) and every ω ∈ Ω as follows:

(πωε F )(x) =

{
f0(x), if x ∈ εGω0 ;

f̂j(εx̂
ω,i
j , Sω,ij (xε − x̂

ω,i
j )), if x ∈ εGω,ij ,

(24)

where(Sω,ij )−1 and x̂ω,ij are respectively the rotation and the vector that define the

translation from Dj to its copy Gω,ij , and

f̂j(εx̂
ω,i
j , ξ) =

1

εd|Dj |

∫
εDj

fj(εx̂
ω,i
j + (Sω,ij )−1η, ξ) dη. (25)

Lemma 4.1. Almost surely the linear operators πωε are uniformly bounded in the
operator norm for all ε ∈ (0, 1), that is

‖πωε F‖L2(Rd) ≤ C‖F‖L2(E,α) (26)

for any F ∈ L2(E,α); the constant C is deterministic and does not depend on ε.
Moreover, for each F ∈ L2(E,α) the following relation holds a.s.

‖πωε F ||2L2(Rd) → ‖F‖2L2(E,α) as ε→ 0. (27)

Proof. For every x ∈ Rd and every ω

N∑
j=0

χGωj
(x) = 1,
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where χD is the characteristic function of D ⊂ Rd. Then we get

‖πωε F‖2L2(Rd) =

∫
Rd

(
πωε F (x)

)2
dx =

N∑
j=0

∫
Rd

(
πωε F (x)

)2
χGωj

(
x

ε
)dx

=

∫
Rd

f2
0 (x)χGω0

(
x

ε
)dx

+

N∑
j=1

∑
i∈N

∫
Rd

(
f̂j
(
εx̂ω,ij ,Sω,ij

(x
ε
− x̂ω,ij

)))2

χGω,ij
(
x

ε
)dx.

(28)

By the Jenssen inequality and the definition of f̂j in (25) this implies that

‖πωε F‖2L2(Rd) ≤
∫
Rd

f2
0 (x) dx+

N∑
j=1

1

|Dj |

∫
Rd

∫
Dj

(
fj(x, ξ)

)2
dξ dx ≤ Č‖F‖L2(E,α)

with Č = max
j
{(αoj )−1}. This yields (26).

We turn to (27) and consider the set of functions in L2(E,α) which are piece-wise
constant and compactly supported with respect to the first variable x. We denote
this set by E and notice that it is dense in L2(E,α). If F ∈ E then (27) holds by
the Birkhoff ergodic theorem. Then, taking into account (26) we conclude that (27)
holds for any F ∈ L2(E,α).

Now we are ready to formulate the main result of the work.

Theorem 4.2 (Main theorem). For every F ∈ L2(E,α) ω-a.e.

Tωε (t)πωε F → T (t)F, i.e. ‖Tωε (t)πωε F−πωε T (t)F‖L2(Rd) → 0 for all t ≥ 0 (29)

as ε→ 0.

The proof of the semigroup convergence in (29) relies on the following approxi-
mation theorem [10, Theorem 6.1, Ch.1].

Theorem (see [10]). For ε ∈ (0, 1], let Tε(t) and T (t) be strongly continuous
contraction semigroups on Banach space Lε and L, with generators Aε and A. Let
D be a core for A. Assume that πε : L 7→ Lε are bounded linear transformations
with sup

ε
‖πε‖ < +∞. Then the following are equivalent:

a) For each f ∈ L, Tε(t)πεf → T (t)f as ε→ 0, for all t ≥ 0.

b) For each f ∈ D, there exists a family fε ∈ Lε, ε ∈ (0, 1], such that fε → f
and Aεfε → Af as ε→ 0.

According to this theorem the semigroups convergence (29) is a consequence of
the following statement:

Theorem 4.3. Let the generators A and Aωε of the strongly continuous, positive,
contraction semigroups T (t) and Tωε (t) be defined by (12) and (1), (2), (8), respec-
tively, and assume that a core DA ⊂ L2(E,α) for the generator A is defined by
(19), and that a bounded linear transformation πωε : L2(E,α)→ L2(Rd) is defined
by (24) for every ε ∈ (0, 1).



4670 BRAHIM AMAZIANE, ANDREY PIATNITSKI AND ELENA ZHIZHINA

Then there exists a positive definite symmetric constant matrix Θ such that a.s.
for every F ∈ DA, there exists Fωε ∈ D(Aωε ) such that

‖Fωε − πωε F‖L2(Rd) → 0 and ‖Aωε Fωε − πωε AF‖L2(Rd) → 0 as ε→ 0. (30)

Proof. The proof relies on the correctors technique. For any F ∈ DA, F =
(f0, {fj}), where

f0(x) ∈ C∞0 (Rd), fj(x, ξ) ∈ C∞0
(
Rd; C2

(
Dj
))
,

with

fj(x, ξ)
∣∣
ξ∈∂Dj

= f0(x), x ∈ Rd, ∀ j = 1, . . . , N, (31)

we construct the following family of functions Fωε depending on the realization ω
of random environment:

Fωε (x) =



f0(x) + ε(∇f0(x), hωε (xε ))

+ ε2(∇∇f0(x), gωε (xε )) + ε2qωε (xε ), x ∈ Rd\Gωε ,∑
i∈N

[
f1(x,Sω,i1 (xε − x̂

ω,i
1 ))

+ εφω1 (x,Sω,i1 (xε − x̂
ω,i
1 ))

]
χGω,i1

(xε ), x ∈ εGω1 ,

. . .∑
i∈N

[
fN (x,Sω,iN (xε − x̂

ω,i
N ))

+ εφωN (x,Sω,iN (xε − x̂
ω,i
N ))

]
χGω,iN

(xε ), x ∈ εGωN .

(32)

Here hωε (ξ), gωε (ξ), qωε (ξ) are random functions of ξ (so-called correctors) that also
depend on ε; hωε (ξ) is the random vector function whose gradient does not depend
on ε, gωε (ξ) is the random matrix function. In what follows we drop both indices
ω and ε when refer to these functions. Correctors φωj (x, ξ) has been introduced in
order to ensure the continuity of the function Fωε and the fluxes on the boundary
∂
(
εGωj

)
of the corresponding inclusions.

Observe that for any F ∈ DA as well as for any F ∈ C(E) and any x ∈ εGω,ij we
have:

(πωε F )(x) = f̂j
(
εx̂ω,ij ,Sω,ij

(x
ε
− x̂ω,ij

))
= fj

(
x,Sω,ij

(x
ε
− x̂ω,ij

))
+O(ε), (33)

where the L∞ norm of O(ε) does not exceed Cε. Our goal is to choose the correctors
in such a way that the function Fωε defined in (32) belongs to D(Aωε ), and both
relations in (30) are fulfilled. Denote by B0 the ball in Rd centered at 0 that contains
the supports in x of all the functions fj , j = 0, 1, . . . , N .

In order to introduce the correctors in (32) we substitute for Fωε in the expression
Aωε F

ω
ε − πωε AF the right-hand side of (32). Using repeatedly the formula

∂

∂x
f(x,

x

ε
) =

( ∂
∂x
f(x, ξ) +

1

ε

∂

∂ξ
f(x, ξ)

)∣∣∣
ξ= x

ε

, (34)

for x ∈ Rd\Gωε after straightforward computation we obtain

(Aωε F
ω
ε )(x) = 4x

(
f0(x) + ε∇f0(x) · h(

x

ε
) + ε2∇∇f0(x) · g(

x

ε
) + ε2q(

x

ε
)
)

=
(
4f0(x) + 2∇∇f0(x)∇ξh(ξ) +

1

ε
∇f0(x) 4ξh(ξ)

+∇∇f0(x)4ξg(ξ) + ε24xq(
x

ε
) + Ξωε (x, ξ)

)∣∣
ξ= x

ε

,

(35)
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with

Ξωε (x, ξ) = ∆∇f0(x) · εh(ξ) + 2∇∇∇f0(x) · ε∇ξg(ξ) + ∆∇∇f0(x) · ε2g(ξ)

In a similar way for x ∈ εGω,ij , we have

(Aωε F
ω
ε )(x) = ε24x

(
fj
(
x,Sω,ij

(x
ε
− x̂ω,ij

))
+ εφωj

(
x,Sω,ij

(x
ε
− x̂ω,ij

)))
=
(
4ξfj(x,Sω,ij (ξ − x̂ω,ij )) + Ψω

j (x,Sω,ij (ξ − x̂ω,ij ))
)∣∣
ξ= x

ε

, ξ ∈ Gω,ij ,

(36)
with

Ψω
j (x, ξ̂) = ε2∆xfj(x, ξ̂) + 2ε∇x · ∇ξfj(x, ξ̂)

+ε3∆xφ
ω
j (x, ξ̂) + 2ε2∇x · ∇ξφωj (x, ξ̂) + ε∆ξφ

ω
j (x, ξ̂),

ξ̂ = Sω,ij (ξ − x̂ω,ij ) ∈ Dj .
In order to make Fωε belong to D(Aωε ) we should design it in such a way that the
following conditions are fulfilled on ∂Gωε :

1) continuity condition on ∂(εGω,ij )(
f0(x) + ε∇f0(x) · h(

x

ε
) + ε2∇∇f0(x) · g(

x

ε
) + ε2q(

x

ε
)
)∣∣∣
x∈∂(εGω,ij )

=
(
fj

(
x,Sω,ij

(x
ε
− x̂ω,ij

))
+ εφωj

(
x,Sω,ij

(x
ε
− x̂ω,ij

)))∣∣∣
x∈∂(εGω,ij )

;
(37)

2) continuity of the normal fluxes condition

∇x
(
f0(x) + ε∇f0(x) · h

(x
ε

)
+ ε2∇∇f0(x) · g(

x

ε
) + ε2q

(x
ε

)) ∣∣∣
x∈∂(εGω,ij )

·n−

= −ε2∇x
(
fj

(
x,Sω,ij

(x
ε
− x̂ω,ij

))
+ εφωj

(
x,Sω,ij

(x
ε
− x̂ω,ij

)))∣∣∣
x∈∂(εGω,ij )

·n+,
(38)

The main purpose of the functions φωj (x, ξ) is to compensate the discrepancy be-
tween the inner and outer expansions for the function Fωε at the boundary ∂Gωε ,
see Proposition 4.6 below. It follows from (31) that continuity condition (37) leads
to the relation

φωj
(
x,Sω,ij

(x
ε
− x̂ω,ij

))∣∣∣
x∈∂(εGω,ij )

=
(
∇f0(x) · h(

x

ε
) + ε∇∇f0(x) · g(

x

ε
) + εq(

x

ε
)
)∣∣∣
x∈∂(εGω,ij )

.

(39)

Notice that equality (39) defines the functions φωj
(
x,Sω,ij

(
x
ε − x̂

ω,i
j

))
only for x ∈

∂(εGω,ij ).

With the help of (34) the relation (38) can be rewritten as(
∇f0(x) + ε∇∇f0(x)h(ξ) +∇ξ(∇f0(x)h(ξ)) + ε2∇∇∇f0(x)g(ξ)

+ε∇ξ(∇∇f0(x)g(ξ)) + ε∇ξq(ξ)
)∣∣∣
ξ= x

ε∈∂ G
ω,i
j

· n−

= −
(
ε2∇xfj(x, ξ̂) + ε∇ξfj(x, ξ̂) + ε2∇ξφωj (x, ξ̂) + ε3∇xφωj (x, ξ̂)

)∣∣∣
ξ̂∈∂Dj

· n+

(40)

with ξ̂ = Sω,ij (ξ − x̂ω,ij ) ∈ Dj .
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We first consider the ansatz in (32) in the set εGω0 . Collecting power-like terms
in (35) and (40) and considering the terms of order ε−1 in (35) and of order ε0 in
(40), we conclude that h(·) should satisfy the equation

∇f0(x) 4ξh(ξ) = 0, ξ ∈ Gω0 ,
(
∇f0(x) +∇f0(x)∇ξh(ξ)

)
· n−ξ = 0, ξ ∈ ∂Gω0 ;

here x is a parameter. Since f0 does not depend on ξ, this problem can be rewritten
as follows:

4ξh(ξ) = 0, ξ ∈ Gω0 , ∇ξh(ξ) · n−ξ = −n−ξ , ξ ∈ ∂Gω0 . (41)

This suggests the choice of h, it should coincide with the standard corrector used for
homogenization of the Neumann problem in a random perforated domain, see [13].
We recall that the gradient of h(ξ) is a statistically homogeneous matrix function
that does not depend on ε, and h satisfies equation (41). Moreover, h shows a
sublinear growth in L2. Namely, assuming that

∫
B0
h(xε )dx = 0, we have∥∥εh( ·

ε

)∥∥
L2(B0)

−→ 0, a.s. as ε→ 0. (42)

We also have ∥∥∇ξh( ·
ε

)∥∥
L2(B0)

≤ C

a.s. with a constant C that does not depend on ε, see [13].
The matrix Θ in (12) is then defined by

Θ = E
[
(I +∇ξh(ξ))χGω0 (ξ)

]
, i.e. Θij = E

[
(δij +∇iξhj(ξ))χGω0 (ξ)

]
, (43)

where χGω0 (·) is the characteristic function of Gω0 . It is proved in [13] that Θ is
positive definite.

At the next step we collect the terms of order ε0 on the right-hand side of (35) and
equate them to Θ·∇∇f0(x)+Υ(x) in order to make the difference (Aωε F

ω
ε −πωε AF ) =(

Aωε F
ω
ε (x)− (Θ · ∇∇f0(x) + Υ(x))

)
small in L2(εGω0 ) norm. This yields(

4f0(x) + 2∇∇f0(x) · ∇ξh(ξ) +∇∇f0(x) · 4ξg(ξ) +4ξq(ξ)
)∣∣
ξ= x

ε

= Θ · ∇∇f0(x) + Υ(x),
(44)

where x ∈ (εGω0 ∩ B0); the function Υ(x) is defined in (14). We also collect the
terms of order ε1 in (40):

ε
(
∇∇f0(x)h(ξ) +∇ξ(∇∇f0(x) · g(ξ)) +∇ξq(ξ)

)∣∣∣
ξ= x

ε∈∂G
ω,i
j

· n−

= −ε∇ξfj(x,Sω,ij (ξ − x̂ω,ij ))
∣∣∣
ξ= x

ε∈∂G
ω,i
j

· n+.
(45)

Selecting all the terms in (44)-(45) that contain the second order derivatives
of f0, we arrive at the following problem for the random matrix valued function
g(xε ) = {gij(xε )}:(
4f0(x) + 2∇∇f0(x) · ∇ξh(ξ) +∇∇f0(x) · 4ξg(ξ)

)∣∣
ξ= x

ε

= Θ · ∇∇f0(x),

x ∈ εGω0 ∩B0,

∇ξg(ξ) · n−
∣∣
ξ= x

ε

= −h(ξ)⊗ n−
∣∣
ξ= x

ε

, x ∈ ε∂Gω0 ∩B0.

(46)

In addition to these two equations we impose the homogeneous Dirichlet boundary
condition on the boundary of B0

g
(x
ε

)
= 0 on ∂B0.
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Finally, g(xε ) is introduced as a solution to the following problem:

ε24xg(
x

ε
) = E

[
(I +∇ξh(ξ))χω(ξ)

]
− I− 2ε∇xh(

x

ε
), x ∈ V ε := εGω0 ∩B0,

ε∇xg(
x

ε
) · n− = −h(

x

ε
)⊗ n−, x ∈ ε∂Gω0 ∩B0,

g(
x

ε
) = 0, x ∈ ∂B0;

(47)
here I stands for the unit d× d matrix.

Lemma 4.4. Problem (47) has a unique solution. Moreover, a.s.

lim
ε→0
‖ε2g

( ·
ε

)
‖H1(εGω0 ∩B0) = 0. (48)

The proof of this lemma is provided in Appendix 1, Section 6.

Next, collecting the remaining terms in (44) and (45), we arrive at the following
problem for the function q(xε ):

ε24xq(
x

ε
) = Υ(x), x ∈ εGω0 ∩B0,

∇ξq(ξ) · n−
∣∣
ξ= x

ε

= −∇ξfj(x,Sω,ij (ξ − x̂ω,ij )) · n+
∣∣
ξ= x

ε

, x ∈ ε∂Gω,ij ∩B0,
(49)

where the function Υ(x) ∈ C∞0 (Rd) is defined in (14). We then equip system (49)
with the homogeneous Dirichlet boundary condition at ∂B0:

q(
x

ε
) = 0 for x ∈ ∂B0. (50)

Denote Φε(x) = ε2q(xε ). Let φΦ(·) ∈ C∞0 (B0) be a function such that

φΦ ≥ 0, and φΦ = 1 for all

x ∈ {x ∈ Rd : there exist j and ξ such that fj(x, ξ) 6= 0}.
(51)

Proposition 4.5. The following limit relations hold a.s.:

lim
ε→0
‖Φε‖H1(εGω0 ∩B0) = 0, (52)

lim
ε→0
‖φΦΦε‖H1(εGω0 ∩B0) = 0. (53)

Moreover,

lim
ε→0
‖∆x

(
φΦΦε

)
−Υ‖L2(εGω0 ∩B0) = 0. (54)

The proof of this statement is given in Appendix 2.
We now turn to the correctors εφωj , j = 1, . . . , N . Our goal is to define them in

such a way that

f̂j
(
x̂ω,ij ,Sω,ij

(x
ε
− x̂ω,ij

))
+ εφωj (x,Sω,ij (

x

ε
− x̂ω,ij ))

= f0(x) + ε(∇f0(x), h(xε )) + ε2(∇∇f0(x), g(
x

ε
)) + ε2q(

x

ε
) on ε∂Gω,ij ;

(55)

−ε2∇
[
f̂j
(
x̂ω,ij ,Sω,ij

(x
ε
− x̂ω,ij

))
+ εφωj (x,Sω,ij (

x

ε
− x̂ω,ij ))

]
· n+

= ∇
[
f0(x) + ε(∇f0(x), h(xε )) + ε2(∇∇f0(x), g(

x

ε
)) + ε2q(

x

ε
)
]
· n−

on ε∂Gω,ij

(56)
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and
ε
∥∥∑

i

χGω,ij
(
x

ε
)φωj (x,Sω,ij (

x

ε
− x̂ω,ij ))

∥∥
L2(εGωj )

+ε3
∥∥∑

i

χGω,ij
(
x

ε
)∆xφ

ω
j (x,Sω,ij (

x

ε
− x̂ω,ij ))

∥∥
L2(εGωj )

−→ 0
(57)

as ε→ 0.

Proposition 4.6. There exists a family of functions φωj with j = 1, . . . , N and
ε ∈ (0, 1) such that the relations in (55)–(57) are fulfilled.

For the proof, see Appendix 2.
We turn back to the Proof of Theorem 4.3. The statement of this Theorem is

now a straightforward consequence of (41), (42), Lemma 4.4 and Propositions 4.5 -
4.6. Indeed, due to (55) and (56), we have Fωε ∈ D(Aωε ). Then the convergence

‖Fωε − πωε F‖L2(Rd) → 0 as ε→ 0

follows from (33), (42), (48), (53) and (57). Finally, by (46), (54) and (57) we obtain

‖Aωε Fωε − πωε AF‖L2(Rd) → 0 as ε→ 0.

This completes the proof of Theorem 4.3.

5. Spectrum of the limit operator. We proceed with the description of the
spectrum of the limit operator A given by (13), and then using the strong conver-
gence of Markov semigroup Tωε (t) in L2(E) we describe the limit behavior of the
spectra of operators Aωε , as ε→ 0 almost surely.

Remind that each component fj(x, ξ) of F ∈ DA can be written as the sum

fj(x, ξ) = f0(x) + rj(x, ξ) with rj(x, ξ)
∣∣
ξ∈∂Dj

= 0 ∀ j = 1, . . . , N.

Then (13) takes the form

(−AF )(x, ξ) =


−Θ · ∇∇f0(x) + 1

α0

∑N
j=1 αj

∫
Dj
4ξrj(x, ξ)dξ

−4ξr1(x, ξ)
. . .

−4ξrN (x, ξ)

 . (58)

For each j the operator −4ξ on Dj with homogeneous Dirichlet boundary condition
has a discrete positive spectrum {βjm}m∈N, βjm > 0, βjm → ∞ as m → ∞. We
denote by κjm(ξ), m = 1, 2, . . . , the corresponding normalized eigenfunctions and
by M the set of all indices (j,m). We introduce the set M∗ ⊂ M of indices (j,m)
such that

∫
Dj

κjm(ξ)dξ = 〈κjm〉 6= 0. Let B be a (countable) set of all βjm:

B =
⋃

(j,m)∈M

βjm,

and
b1 = min

(j,m)∈M
βjm = min

(j,m)∈M∗
βjm, b1 > 0.

Lemma 5.1. The continuous spectrum σcont(−A) of the operator −A is a countable
set of non-overlapping segments

σcont(−A) =
⋃

(j,m)∈M∗

[λ̂jm, β
j
m],
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where λ̂1 = 0, and λ̂jm < βjm is the nearest to βjm solution of equation

1

α0

N∑
j=1

αj

∞∑
m=1

(ujm)2 βjm

βjm − λ
+ 1 = 0 with ujm = 〈κjm〉.

The point spectrum of the operator −A is the union of eigenvalues βjm with (j,m) ∈
M \M∗:

σp(−A) =
⋃

(j,m)∈M\M∗

βjm.

Each eigenvalue βjm ∈ σp(−A) has infinite multiplicity, so that σp(−A) belongs to
the essential spectrum of −A.

Proof. Each line in the equation −AF = λF except of the first one reads

−A(f0(x) + rj(x, ξ)) = −4ξrj(x, ξ) = λ(f0(x) + rj(x, ξ)), ξ ∈ Dj . (59)

The function f0(x) does not depend on ξ, its Fourier series w.r.t. {κjm(ξ)} for every
j takes the form

f0(x) · 1 = f0(x)
∑
m

ujmκjm(ξ), with ujm =

∫
Dj

κjm(ξ) dξ. (60)

Denoting by γjm = γjm(x) the Fourier coefficients of rj , from (59) - (60) we get

−4ξrj(x, ξ) =
∑
m

βjmγ
j
mκjm(ξ) = λf0(x)

∑
m

ujmκjm(ξ) + λ
∑
m

γjmκjm(ξ).

Consequently, for any λ 6∈ B we have γjm = λf0(x)
ujm

βjm−λ
, and thus the function

rj(x, ξ) =
∑
m

γjmκjm(ξ) = λf0(x)
∑
m

ujm

βjm − λ
κjm(ξ), (61)

is a solution of equation −A(f0 +rj) = −4ξrj = λ(f0 +rj) for any j and any λ 6∈ B.
Inserting (61) in the first line of the equation −AF = λF with −A given by (58)

yields

−Θ · ∇∇f0(x)− λf0(x)
1

α0

∑
j

αj
∑
m

ujm βjm

βjm − λ

∫
Dj

κjm(ξ)dξ = λf0(x).

Consequently

−Θ · ∇∇f0(x) = λf0(x)

 1

α0

∑
j

αj
∑
m

(ujm)2 βjm

βjm − λ
+ 1

 . (62)

Since the spectrum of the operator −Θ ·∇∇ fills up the positive half-line, we obtain
that all λ > 0 such that

1

α0

∑
j

αj
∑
m

(ujm)2 βjm

βjm − λ
+ 1 ≥ 0

belong to the spectrum of the operator −A. One can easily check that the segment
[0, β1], b1 = min(j,m)∈M∗ βjm > 0 belongs to the continuous spectrum of −A. This
implies the desired statement on σcont(−A).

Recall that 〈κjm〉 = 0 for all (j,m) ∈M \M∗. It is straightforward to check that
for any (j,m) ∈ M \ M∗ the function F (j,m) = (0, . . . , ϕ(x)κjm(ξ), 0, . . . , 0) with
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ϕ(x) ∈ L2(Rd) , is the eigenfunction of −A with the corresponding eigenvalue βjm.
This completes the proof.

Notice that the operators Aωε for every ε have statistically homogeneous coeffi-
cients, i.e. they are metrically transitive with respect to the unitary group of the
space translations in Rd. Then from the general results, see e.g. [20], it follows that
the spectra of the operators Aωε are non-random for a.e. ω.

Proposition 5.2. For any λ ∈ σ(−A) a.s. there exists a sequence λε, λε ∈ σ(Aωε ),
that converges to λ as ε→ 0.

Proof. Since λ ∈ σ(−A), there exist functions Fn ∈ DA, ‖Fn‖L2(E,α) = 1 such that
‖(A + λ)Fn‖L2(E,α) → 0 as n → ∞. Using Theorem 4.3 we additionally have that
for any Fn ∈ DA there exists Fωn,ε ∈ D(Aωε ) for a.e. ω such that

‖Fωn,ε − πωε Fn‖L2(Rd) → 0 and ‖Aωε Fωn,ε − πωε AFn‖L2(Rd) → 0 as ε→ 0.

Thus using Lemma 4.1 we obtain that for any (small) δ > 0 there exists ε0 =
ε0(λ, δ) > 0 such that for all ε < ε0 there exists Fωn,ε ∈ L2(Rd) with ‖Fωn,ε‖ = 1,
and

‖Aωε Fωn,ε + λFωn,ε‖L2(Rd) < δ. (63)

This implies that there is a point of the spectrum of −Aωε in the δ-neighbourhood
of λ.

6. Conclusions. We have presented in this work new homogenization results for
diffusion processes in high contrast random statistically homogeneous porous media
that is defined by its generator (1) - (2). Our approach relies on introducing an
extended state space for the process. Namely, we equip the coordinate process with
extra components characterising the behaviour of the process inside the slow diffu-
sion inclusions. In the extended space the limit process remains Markov, however,
its first component need not be Markov. This explains the appearance of the mem-
ory in the limit dynamics of the coordinate process. This memory effect is governed
by random times that the process spends in the inclusions.

The extension of these results to diffusion-convection equations is straightforward
under the natural assumption that the transport coefficient is of order ε in Rd \Gω
and of order ε2 in Gω. The study still needs to be improved by developing a general
approach that would allow us to incorporate the case of complex processes that
include passive solute transport through highly heterogeneous random media. In
this case, the flow is governed by a coupled system of an elliptic equation and a
linear convection-diffusion concentration equation with a diffusion term small with
respect to the convection, i.e., with a relatively high Peclet number. Our future
study will focus on extension of the homogenization results obtained in [3, 6] for
the periodic case to the case of high contrast random media.

Appendix 1. The second corrector g. Proof of Lemma 4.4. Recall that the
matrix valued function g(xε ) was defined as a solution to the following problem:

ε24xg(
x

ε
) = E

[
(I +∇ξh(ξ))χω(ξ)

]
− I− 2ε∇xh(

x

ε
),

x ∈ V ε := εGω0 ∩B0,

ε∇xg(
x

ε
) · n− = −h(

x

ε
)⊗ n−, x ∈ ε∂Gω0 ∩B0,

gωε (
x

ε
) = 0, x ∈ ∂B0,

(64)
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where B0 is a ball that is centered at the origin and contains the supports of
fj , j = 0, 1, . . . , N . In this section we will use notation χω(·) = χGω0 (·) for the
characteristic function of the random set Gω0 . In the coordinate form the above
problem reads

ε24xgij(
x

ε
) = E

[
(δij +∇iξhj(ξ))χω(ξ)

]
− δij − 2ε∇jxhi(

x

ε
), x ∈ V ε,

ε∇xgij(
x

ε
) · n− = −hi(x

ε
) (n−)j , x ∈ ∂V ε ∩B0,

gij(
x

ε
) = 0, x ∈ ∂B0.

(65)
Each component of g(xε ) = {gij(xε )} can be considered separately and in what
follows we omit a super index ij.

Denote Ψε(
x
ε ) = ε2g(xε ). Our first goal is to prove that the set of functions Ψε(

x
ε )

is bounded in H1(V ε). Integrating by parts and using the second equality in (65)
we get∫

V ε

ε24xg(
x

ε
) ε2g(

x

ε
)dx = −ε4

∫
V ε

∣∣∇xg(
x

ε
)
∣∣2dx+ ε4

∫
∂ V ε

∂g(xε )

∂n
g(
x

ε
) dσ(x)

= −ε4

∫
V ε

∣∣∇xg(
x

ε
)
∣∣2dx− ε3

∫
∂ V ε

h(
x

ε
)n− g(

x

ε
) dσ(x).

(66)

On the other hand, using the first equality in (65) and integrating by parts we
transform the left hand side of (66) as follows:∫

V ε

ε24xg(
x

ε
) ε2g(

x

ε
)dx

= ε2

∫
V ε

E
[
(I +∇ξh)χω

]
g(
x

ε
)dx− ε2

∫
V ε

(
I +∇ξh(

x

ε
)
)
g(
x

ε
)dx

−ε3

∫
V ε

∇xh(
x

ε
)g(

x

ε
)dx (67)

= ε2

∫
V ε

(
E
[
(I +∇ξh)χω

]
− (I +∇ξh(

x

ε
))
)
g(
x

ε
)dx

−ε3

∫
∂V ε

h(
x

ε
)n−g(

x

ε
)dσ(x) + ε3

∫
V ε

h(
x

ε
) divxg(

x

ε
)dx.

Thus, (66) - (67) imply

ε4

∫
V ε

∣∣∇xg(
x

ε
)
∣∣2dx = −ε2

∫
V ε

(
E
[
(I +∇ξh)χω

]
− (I +∇ξh(

x

ε
))
)
g(
x

ε
)dx

−ε3

∫
V ε

h(
x

ε
) divxg(

x

ε
)dx.

(68)

We get from (68) that

‖∇xΨε‖2L2(V ε) ≤ A‖Ψε‖L2(V ε) + ‖εh‖L2(V ε) ‖∇xΨε‖L2(V ε). (69)
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We have used here the fact that Λωε = E
[
(I +∇ξhω)χω

]
− (I +∇ξhω(xε ))χω(xε ) is

a stationary random field with finite second moment E(Λωε )2 < +∞. Moreover, by
the Birkhoff’ theorem

lim
ε→0

E(Λωε ) = 0, (70)

and thus Λωε a.s. weakly converges to zero in L2(B0) as ε→ 0.

Next we apply the results on extensions in random perforated domains, see [1],
[13]. According to these results there exists a liner extension operator L : H1(V ε)→
H1(B0) such that for any f ∈ H1(V ε)

Lf |H1(V ε) = f, ‖Lf‖L2(B0) ≤ C ‖f‖L2(V ε), ‖∇(Lf)‖L2(B0) ≤ C̃ ‖∇f‖L2(V ε),

where the constants C and C̃ do not depend on ε. Keeping for the extended function
LΨε the same notation Ψε and considering the Dirichlet boundary condition on ∂B0

in (65), by the Friedrichs inequality we obtain

‖Ψε‖2L2(V ε) ≤ ‖Ψε‖2L2(B0) ≤ c1‖∇xΨε‖2L2(B0) ≤ C‖∇xΨε‖2L2(V ε). (71)

Combining this with (69) yields

‖∇xΨε‖L2(V ε) ≤ A1, ‖Ψε‖L2(V ε) ≤ A2 (72)

with the constants A1 and A that do not depend on ε. Thus a.s. the family of
functions {Ψε} is bounded in H1(V ε) and in H1(B0). Due to the compactness of
embedding of H1(B0) in L2(B0) we can pass to the limit in the product Λωε Ψε as
ε→ 0. Thus the integral

ε2

∫
V ε

(
E
[
(I +∇ξh)χω

]
− (I +∇ξh(

x

ε
))
)
g(
x

ε
)dx

=

∫
B0

(
E
[
(I +∇ξh)χω

]
− (I +∇ξh(

x

ε
))
)
χω
(x
ε

)
Ψε(

x

ε
)dx

tends to zero as ε → 0 a.s. Taking into account relations (42) we derive from (68)
that

‖∇xΨε‖L2(B0) → 0 (73)

and, by the Friedrichs inequality,

‖Ψε‖L2(B0) → 0. (74)

Appendix 2. Proofs of Propositions 4.5 and 4.6. We begin this section by
proving Proposition 4.5. Denote Φε(x) := ε2q(xε ). Then Φε(x) is a solution of the
following problem:

4xΦε(x) = Υ(x), x ∈ V ε = εGω0 ∩B0,

∇xΦε(x) · n− = −ε2∇xfj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+, x ∈ ε∂Gω,ij ∩B0,

Φε(x) = 0, x ∈ ∂B0.

(75)

In what follows we will use the following notations:

∇f(x,
x

ε
) = ∇xf(x,

x

ε
), ∇h(ξ) = ∇ξh(ξ), ∇Φε(x) = ∇xΦε(x).
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In order to show that the functions Φε(x) are bounded in H1(V ε) we follow the line
of the proof in the previous section. Multiplying the equation in (75) by Φε(x) and
integrating the resulting relation over V ε after integration by parts we obtain∫
V ε

Υ(x) Φε(x)dx =

∫
V ε

4Φε(x) Φε(x)dx

=

∫
∂ V ε

Φε(x)∇Φε(x) · n− dσ(x)−
∫
V ε

∣∣∇Φε(x)
∣∣2dx

= −
∫
V ε

∣∣∇Φε(x)
∣∣2dx

−
∑
j

∑
i

∫
ε∂Gω,ij

Φε(x) ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+ dσ(x).

(76)
By the Friedrichs inequality∣∣∣ ∫

V ε

4Φε(x) Φε(x)dx
∣∣∣ ≤ C1‖Υ(x)‖L2(B0) ‖∇Φε(x)‖L2(V ε). (77)

with a constant C1 that does not depend on ε.
To estimate the second integral on the right-hand side of (76) we extend the

functions Φε on B0, denote the extended functions by Φ̄ε(x) and apply the Stokes
formula. This yields∫

ε∂Gω,ij

ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+Φε(x) dσ(x)

=

∫
εGω,ij

ε24fj(x,Sω,ij (
x

ε
− x̂ω,ij )) Φ̄ε(x) dx

+

∫
εGω,ij

ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · ∇Φ̄ε(x) dx.

(78)

From this relation by the Friedrichs inequality we derive the following upper bound:∑
j

∑
i

∣∣∣ ∫
ε∂Gω,ij

ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+ Φε(x) dσ(x)

∣∣∣ ≤ C ‖∇Φε‖L2(V ε). (79)

Finally, (76), (77) and (79) imply the desired upper bound:

‖∇Φε‖L2(V ε) ≤ C̃, (80)

i.e. the functions Φε(x) are bounded in H1(V ε). Consequently, the extensions
Φ̄ε(x) are also bounded in H1(B0) and form a compact set in L2(B0). Thus, there
exists Φ0 ∈ H1(B0) such that, for a subsequence,

‖Φ̄ε − Φ0‖L2(B0) → 0.

Our goal is to prove that Φ0 ≡ 0, or equivalently

‖Φε‖L2(B0) → 0 as ε→ 0. (81)

For an arbitrary ψ̂ ∈ C∞(Gωε ) with a compact support in B0 we have



4680 BRAHIM AMAZIANE, ANDREY PIATNITSKI AND ELENA ZHIZHINA∫
V ε

4Φε(x) ψ̂(x) dx = −
∫
V ε

∇Φε(x) · ∇ψ̂(x) dx

+
∑
j

∑
i

∫
ε∂Gω,ij

ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+ ψ̂(x) dσ(x).

(82)
On the other hand,∫

V ε

4xΦε(x) ψ̂(x)dx =

∫
V ε

Υ(x)ψ̂(x) dx =

∫
B0

Υ(x)χ{εGω0 }(x) ψ̂(x) dx. (83)

Therefore,∫
B0

∇Φε(x) · ∇ψ̂(x)χ{εGω0 }(x) dx

=
∑
j

∑
i

∫
ε∂Gω,ij

ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+ ψ̂(x) dσ(x)−

∫
V ε

Υ(x)ψ̂(x) dx.
(84)

For an arbitrary ψ ∈ C∞0 (B0), substituting in the last relation the function ψ(x) +

εh
(
x
ε

)
∇ψ(x) for ψ̂ we obtain∫

B0

∇Φε(x) ·
(
∇ψ(x) +∇h

(x
ε

)
∇ψ(x)

)
χ{εGω0 }(x) dx+ o(1)

=
∑
j

∑
i

∫
ε∂Gω,ij

ε2∇fj(x,Sω,ij (
x

ε
− x̂ω,ij )) · n+ ψ̂(x) dσ(x)−

∫
V ε

Υ(x)ψ̂(x)dx

= −
∑
j

∑
i

∫
εGω,ij

ε24fj(x,Sω,ij (
x

ε
− x̂ω,ij ))ψ(x) dx−

∫
V ε

Υ(x)ψ(x)dx+ o(1),

(85)

where o(1) a.s. tends to zero as ε→ 0; here we have used the inequality

‖εh
( ·
ε

)
‖H1(εGω0 ) ≤ C

and the fact that ‖εh
( ·
ε

)
‖L2(εGω0 ) vanishes as ε → 0. Using representation (14) of

the function Υ(x), the Stokes formula and the Birkhoff ergodic theorem we conclude
that the right-hand side in (85) tends to 0 as ε→ 0 for any ψ ∈ C∞0 (B0) and thus

lim
ε→0

∫
B0

∇Φε(x) ·
(
∇ψ(x) +∇h

(x
ε

)
∇ψ(x)

)
χ{εGω0 }(x) dx = 0

Φε(x)
∣∣
∂B0

= 0.

(86)

The subsequence of ∇Φε converges weakly in (L2(B0))d to ∇Φ0, as ε→ 0. By the
definition of matrix Θ the sequence

(
∇ψ +∇h

( ·
ε

)
∇ψ
)
χ{εGω0 } converges weakly in

(L2(B0))d to Θ∇ψ. Since the function h(·) satisfies equation (41), we have

div
[(
∇ψ(x) +∇h

(x
ε

)
∇ψ(x)

)
χ{εGω0 }(x)

]
=
(
∆ψ(x) +∇h

(x
ε

)
∇∇ψ(x)

)
χ{εGω0 }(x).
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The right-hand side here is bounded in L2(B0) and thus compact in H−1(B0). By
the compensated compactness theorem, see [17], we obtain

0 = lim
ε→0

∫
B0

∇Φε(x) ·
(
∇ψ(x) +∇h

(x
ε

)
∇ψ
)
χ{εGω0 }(x) dx =

∫
B0

∇Φ0 ·Θ∇ψ dx.

Since Φ0 = 0 on ∂B0, this implies that Φ0 = 0, and (81) follows. This convergence
to Φ0 = 0 holds for the whole family Φωε .

The proof of other statements of Proposition 4.5 is now straightforward.
We turn to the proof of Proposition 4.6. Denote

Ξ̃ε
(
x
)

= f0(x) + ε(∇f0(x), h(
x

ε
)) + ε2(∇∇f0(x), g(

x

ε
)) + ε2q(

x

ε
).

For each (j, i) with j ∈ {1, . . . , N} and i ∈ N we define an open set εQκ
ω,ji =

{x ∈ Rd : dist(x, ε∂Gω,ij ) < εκ} and introduce in this set coordinates y such that

y′ = (y2, . . . , yd) are smooth coordinates on ε∂Gω,ij , and y1 is directed along the

exterior normal, y1 = −dist(x, ε∂Gω,ij ) if x ∈ εGω,ij and y1 = dist(x, ε∂Gω,ij ) if

x ∈ Rd \ εGω,ij . Under our assumptions on the geometry of Gω,ij there exists κ > 0
such that

• εQκ
ω,ji do not intersect with εQκ

ω,km, if (j, i) 6= (k,m).

• Coordinates y = y(x) are well defined in εQκ
ω,ji, that is y = y(x) is an invert-

ible diffeomorphism.

Letting Ξε
(
y
)

= Ξ̃ε
(
x(y)

)
and f̌ε(y) = f̂j(x̂

ω,i
j ,Sω,ij (x(y)

ε − x̂ω,ij )), we define in

εQκ
ω,ji ∩ εG

ω,i
j the function

εφωj (y) =
(

Ξε
(
0, y′

)
− f̌εj (0, y′) +y1

[ ∂
∂y1

Ξε
(
0, y′

)
− ∂

∂y1
f̌εj
(
0, y′

)]
−Ξ

)
θ
(
− y1

ε

)
+ Ξ,

where θ(s) is a C∞ cut-off function such that 0 ≤ θ ≤ 1, θ = 1 for s < κ
3 and θ = 0

for s > 2κ
3 ; Ξ is the mean value of Ξε over εQκ

ω,ji ∩ (Rd \ εGω,ij ).

By construction (55) and (56) are fulfilled. Relation (57) follows from the prop-
erties of the correctors and elliptic estimates, see [11, Chapter X].

Acknowledgments. An essential part of this work was done during the visit of
A. Piatnitski and E. Zhizhina at the Applied Mathematics Laboratory of the Uni-
versity of Pau. The financial support of the visit and the hospitality of the people
are gratefully acknowledged. This research project was partially supported by the
Carnot Institute, ISIFoR project (Institute for the sustainable engineering of fossil
resources). The work of the second and the third authors was partially supported
by the UiT Aurora project MASCOT.

REFERENCES
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[16] V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, 2nd

edition, Springer, Berlin, Heidelberg, 2011.
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