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1. INTRODUCTION

We study a spectral problem with a Steklov bound�
ary condition specified on a thin perforated interface
with a periodic microstructure. Starting with [1] for
perforated domains and with [2] for operators with
rapidly oscillating coefficients, much attention has
been given in the mathematical literature to various
aspects of the homogenization of spectral problems
(see, for example, [3–5]).

The problem is considered in a two�dimensional
domain divided into two parts by an interface with
periodically located channels. The thickness of the
interface and the period of the channels are identical
and equal to ε. The thickness of the channels is aε,
where a < 1 is a constant. Here and below, ε is a small

parameter defined as ε = , where � � 1 is a

positive integer. Assume that a Steklov�type spectral
condition is set on the boundaries of the channels, a
homogeneous Dirichlet boundary condition is speci�
fied on the outer boundary of the domain, and a
homogeneous Neumann condition is set on the rest of
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the interface. A limiting (homogenized) spectral prob�
lem for this problem was obtained in [5]. The goal of
this paper is to construct the leading terms in the
asymptotic expansions of eigenpairs and to justify the
constructed asymptotic expansions.

2. FORMULATION OF THE PROBLEM 
AND PRELIMINARIES

Let Ω be a domain in �2 with a smooth boundary Γ

that coincides with the line segments x ∈ �2: x1 = –

and x ∈ �2: x1 =  near the endpoints of the inter�

val Γ1 = – ;  on the horizontal axis, respectively.

Denote the nonempty boundary segment Γ2 = {x ∈ Γ:
|x2| > c} for some c > 0, and let Γ3 = Γ\Γ2.

Let Q be the rectangle x ∈ �2: x1 ∈ ; , x2 ∈

– ;  and B be the rectangle {ξ ∈ �2: ξ1 ∈

; , ξ2 ∈ ; . Recall that ε = (2� + 1)–1,

where � ∈ �. Define  = {x ∈ Ω: ε–1(x1 – j, x2) ∈ B},

j ∈ �, and Bε =  and consider a strip with chan�

nels Qε := Q\ . The vertical boundary of the channels
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is denoted by Γε = ∂Bε ∩ Q. The domain Ωε is defined

as Ω\  (see figure). Let  = x ∈ Γ3: |x2| >  and

ϒε = x ∈ ∂Qε: |x2| = .

The space H1(Ωε, Γ2) is defined as the closure of the

set C∞( ) of functions vanishing near Γ2 with respect
to the H1(Ωε) norm.

Consider the Steklov�type spectral problem

(1)

Here and below, ν denotes an outward normal vector.
According to [6], problem (1) has a discrete spectrum

λε, 1, …, λε, j, … → ∞. Let uε, 1, …, uε, j,… denote the cor�
responding eigenfunctions orthonormalized in L2(Γε).

It was shown in [5] that the homogenized problem
for (1) has the form

(2)
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where [·] denotes the jump in a function across Γ1.
This problem has a discrete spectrum. The corre�
sponding eigenvalues λ0, k numbered counting multi�
plicity tend to +∞ as k → ∞. Moreover, the following
result was proved in [5].

Proposition 1. Let the multiplicity of the eigenvalue
λ0 = λ0, j of the boundary value problem (2) be equal
to n; i.e., λ0, j = … = λ0, j + n – 1. Then the boundary value

problem (1) has exactly n eigenvalues  = λε, j + l – 1,

l = 1, 2, …, n, converging to λ0 as ε → 0.

Let  be the L2(Ωε)�orthonormalized eigenfunc�

tions of problem (1) corresponding to . Then any
sequence εq  0 contains a subsequence such that

on it

(3)

where  are the L2(Ω)�orthonormalized eigenfunc�
tions of problem (2) corresponding to λ0 (which, gener�
ally speaking, depend on the choice of the sequence
εq  0 and its subsequence).

Remark 1. In what follows, the index j will be omit�
ted whenever possible; i.e., we will use the notation λ0

and , l = 1, 2, …, n.

Below, the cases of a simple and a multiple eigen�
value λ0 are considered. We construct two�term
asymptotic expansions of eigenvalues of problem (1)
and the leading terms of asymptotic expansions of the
corresponding eigenfunctions.
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3. FORMULATION OF THE MAIN RESULT

Let Π = ξ ∈ �2: –  < ξ1 <  and Πah =

Π\ , –  ∪ ,  × , . Define ϒ =

ϒ+ ∪ ϒ–, ϒ± = ξ ∈ R2: ξ1 ∈ – 1, –  ∪ , 1 , ξ2 =

± , and Γ± = {ξ ∈ R2: ξ1 = ± , ξ2 ∈ , . The

rest of the boundary of the strip is denoted by Σ, i.e.,
Σ = ∂Πah\(ϒ ∪ Γ+ ∪ Γ–) (see figure).

Lemma 1. The problems

have solutions with asymptotics

Let
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Let  be the eigenfunctions of problem (2) that cor�
respond to the eigenvalue λ0 of multiplicity n and sat�
isfy the conditions

(5)

Define

(6)

where �ah and �ah are the constants given by (4). If

 =  = … = , while the other  are

other than , then the eigenvalue  is said to be of
multiplicity nl. The linear subspace spanned by the

corresponding eigenfunctions , , …,

 is called the eigenspace of .

By Proposition 1, problem (1) has n eigenvalues

 (counting multiplicity) that converge to λ0. The

corresponding L2(Γε)�orthonormalized eigenfunc�

tions are denoted by . The functions  are
extended to Ω so that

with a constant C independent of ε. This extension is
possible according to [7] and by the above assumptions
on the structure of Ωε. The same notation is retained
for the extended functions.

Theorem 1. Let λ0 be an eigenvalue of problem (2) of

multiplicity n, and let  be the corresponding eigen�
functions normalized by conditions (5). Then the asymp�

totics of the eigenvalues  of problem (1) converging to
λ0 as ε → 0 have the form

(7)

where  is given by (6) and μ is an arbitrarily small
positive number.
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asymptotics (7) is also nl and the subspace spanned by

the corresponding eigenfunctions  converges to the

eigenspace of  in L2(Γ1).

4. CONSTRUCTION OF ASYMPTOTICS

The asymptotics are constructed by applying the
method of matched asymptotic expansions (see [8, 9]
and also [10–13] for a multiple eigenvalue).

Before proceeding to the construction procedure,
we note that the convergence in (3) is equivalent to the
convergence

where  is an element of the eigenspace in L2(Γ1)

generated by , …, .

Let u0 denote the vector function with components

, …, .

By the properties of solutions to problem (2), for
the function u0(x), we have

(8)

where

(9)

Making the substitution x2 = εξ2 in (8) yields

Following the method of matched asymptotic expan�
sions, we conclude that the leading terms of the inner
expansion near Γ1 have the form

(10)

where ξ =  and

(11)

(12)

(13)

Here, x1 is a slow variable and ξ = (ξ1, ξ2) is a fast vari�
able.

Written in terms of (ξ; x1), the Laplacian and the
boundary operator become
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Remark 2. Since the boundary Ωε is ε�periodic, the
functions vj(ξ; x1) near the interface Γ1 are sought in
the form of 1�periodic functions of ξ1.
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where Λ1 is a diagonal n × n matrix with as yet arbitrary

elements , …,  and E is the identity matrix.

The diagonal elements of the matrix  are denoted

by , l = 1, 2, …, n1. Then, in view of Remark 2,
substituting (10), (15), and (14) into (1) and equating
the coefficients of like powers of ε in the resulting
equations and boundary conditions, we obtain the fol�
lowing boundary value problems for vj:
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It turns out that this problem has a solution with
asymptotics

(19)

where �ah is a constant. This asymptotics is more
accurate than (12).

Rewriting the asymptotics of sum (10) as ξ2 → ±∞
in terms of x2 and taking into account (19), we con�
clude that the leading terms of the outer expansion of
eigenfunctions have to be sought in the form
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where

Obviously, these conditions are equivalent to
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Rewriting the asymptotics of function (20) as x2 → 0
in terms of the internal variables ξ, we improve asymp�
totics (13) of v2(ξ; x1) at infinity:
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For any function ϕ(x1), problem (18) has a solution
with asymptotics

Comparing this equality with (23) and taking into
account (4), we obtain
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In turn, combining these relations with (9) and (22)
yields

(24)

Substituting (20) into (1), we obtain the following
equation and boundary conditions for u1:

The solvability condition for problem (2) and rela�
tions (21) and (24) imply that the elements of the
diagonal matrix Λ1 are defined by (6). This completes
the formal derivation of formulas (6) and (7).

The constructed asymptotics of the eigenvalues
and the convergence of the corresponding eigenfunc�
tions to those of the homogenized problem with nor�
malization conditions (5) can be rigorously proved
relying on standard arguments (see, e.g., [13]).

ACKNOWLEDGMENTS

Gadyl’shin’s work was supported by the Ministry of
Education and Science of the Russian Federation
within the framework of the base part of a state task in
research activities, and Chechkin acknowledges the
support of the Russian Foundation for Basic
Research, project no. 15�01�07920.

REFERENCES

1. M. Vanninathan, Proc. Indian Acad. Sci. Math. Sci.
90, 239–271 (1981).

2. S. Kesavan, Appl. Math. Optim 5, 153–167, 197–216
(1979).

3. A. G. Chechkina, Probl. Mat. Anal. 42, 129–143
(2009).

4. V. Chiado Piat, S. A. Nazarov, and A. L. Piatnitski,
Networks Heter. Media 7 (1), 151–178 (2012).

5. Y. Amirat, O. Bodart, G. A. Chechkin, and A. L. Piat�
nitski, J. Math. Anal. Appl. 435, 1652–1671 (2016).

∂u1

∂x2

������ x1( )

=  h 1 a–( ) α0'' x1( ) 3�ah 1–( ) λ0
2
α0 x1( )�ah+( )

– 2h Λ1α0 x1( ) λ0β x1( )+( ),

∂u1

∂x2

������ x2( ) ϕ x1( ).=

∂u1

∂x2

������ x1( ) 2hλ0 u1〈 〉– 2hΛ1u0 x1 0,( )–=

+ h 1 a–( )
∂2u0

∂x1
2

�������� x1 0,( ) 3�ah 1–( ) λ0
2u0 x1 0,( )�ah+

⎝ ⎠
⎜ ⎟
⎛ ⎞

.

Δu1– 0 in Ω\Γ1,=

u1 0 on Γ2,=

∂u1

∂ν
������ 0 on Γ3.=



DOKLADY MATHEMATICS  Vol. 93  No. 1  2016

SPECTRAL PROBLEM WITH STEKLOV CONDITION 57

6. W. Stekloff, Ann. Sci. Ecole Norm. Super. 19, 455–490
(1902).

7. E. Acerbi, V. Chiado Piat, G. Dal Maso, and D. Per�
civale, Nonlin. Anal. 18, 481–496 (1992).

8. A. M. Il’in, Matching of Asymptotic Expansions of Solu�
tions of Boundary Value Problems (Nauka, Moscow,
1989; Am. Math. Soc., RI, Providence, 1992).

9. V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic
Theory of Elliptic Boundary Value Problems in Singularly
Perturbed Domains (Birkhäuser, Basel, 2000), Vols. 1, 2.

10. R. R. Gadyl’shin, Differ. Uravn. 35 (4), 540–551
(1999).

11. D. I. Borisov, Vestn. Molod. Uchen., Ser. Prikl. Mat.
Mekh., No. 1, 36–52 (2002).

12. Y. Amirat, G. A. Chechkin, and R. R. Gadyl’shin,
Math. Methods Appl. Sci. (M2AS) 33 (7), 811–830
(2010).

13. R. R. Gadyl’shin, D. V. Kozhevnikov, and G. A. Che�
chkin, Probl. Mat. Anal. 73, 31–45 (2013).

Translated by I. Ruzanova


		2016-03-16T14:36:54+0300
	Preflight Ticket Signature




