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The paper deals with the Neumann spectral problem for a singularly perturbed
second-order elliptic operator with bounded lower order terms. The main goal is to
provide a refined description of the limit behaviour of the principal eigenvalue and
eigenfunction. Using the logarithmic transformation, we reduce the studied prob-
lem to an additive eigenvalue problem for a singularly perturbed Hamilton–Jacobi
equation. Then assuming that the Aubry set of the Hamiltonian consists of a finite
number of points or limit cycles situated in the domain or on its boundary, we
find the limit of the eigenvalue and formulate the selection criterion that allows
us to choose a solution of the limit Hamilton–Jacobi equation which gives the
logarithmic asymptotics of the principal eigenfunction.

Keywords: singularly perturbed operator; Neumann spectral problem; Hamilton-
Jacobi equation

AMS Subject Classifications: 35B27; 35B40

1. Introduction

This paper is devoted to the asymptotic analysis of the first eigenpair for singularly perturbed
spectral problem, depending on the small parameter ε > 0, for the elliptic equation

εai j (x)
∂2uε

∂xi∂x j
+ bi (x)

∂uε

∂xi
+ c(x)uε = λεu, (1.1)

in a smooth bounded domain � ⊂ R
N with the boundary condition

∂uε

∂ν
= 0, (1.2)

on ∂�, where ∂
∂ν

denotes derivative with respect to the external normal.

∗Corresponding author. Email: andrey@sci.lebedev.ru
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Complex Variables and Elliptic Equations 253

The bottom of the spectrum of elliptic operators plays a crucial role in many applica-
tions. In particular, the first eigenvalue and the corresponding eigenfunction of (1.1)–(1.2),
are important in understanding the large-time behaviour of the underlying non-stationary
convection–diffusion model with reflecting boundary. Due to the Krein–Rutman theorem,
the first eigenvalue λε of (1.1)–(1.2) (the eigenvalue with the maximal real part) is simple
and real, the corresponding eigenfunction uε can be chosen to satisfy uε(x) > 0 in �.

The goal of this work is to study the asymptotic behaviour of λε and uε as ε → 0. While
in the case of constant function c(x) in (1.1), the first eigenpair is (trivially) explicitly found,
the asymptotic behaviour of the first eigenpair is quite non-trivial when c(x) is a non-constant
function, in particular, the eigenfunction might exhibit an exponential localization.

Boundary value problems for singularly perturbed elliptic operators have been actively
studied starting from 1950s. We mention here a pioneering work,[1] where for a wide class
of operators (so-called regularly degenerated operators), the asymptotics of solutions were
obtained.

In the works [2–4] (see also [5]), the principal eigenvalue of singularly perturbed
convection–diffusion equations with the Dirichlet boundary condition was investigated by
means of large deviation techniques for diffusion processes with small diffusion. In [6], the
estimates for the principal eigenvalue were obtained by comparison arguments and elliptic
techniques.

The case when convection vector field has a finite number of hyperbolic equilibrium
points and cycles was studied in [7] where methods of dynamical systems are combined
with those of stochastic differential equations. These results were generalized in [8] to the
case when the boundary of domain is invariant with respect to convection vector field.
Similar problem in the presence of zero-order term was considered in [9].

In [10], the viscosity solution techniques for singularly perturbed Hamilton–Jacobi
equation were used in order to study the principal eigenfunction of the adjoint Neumann
convection–diffusion problem. The logarithmic asymptotics of the eigenfunction were
constructed.

The work [11] deals with the principal eigenpair of operators with a large zero-order
term on a compact Riemannian manifold. The approach developed in this work is based on
large deviation and variational techniques.

Dirichlet spectral problem for singularly perturbed operators with rapidly oscillating
locally periodic coefficients was studied in [12] and [13]. In [12] with the help of viscosity
solution method, the limit of the principal eigenvalue and the logarithmic asymptotics of
the principal eigenfunction were found. These asymptotics were improved in [12] and [13]
using the blow up analysis.

In the present work, when studying problem (1.1)–(1.2), we make use of the standard
viscosity solution techniques in order to obtain the logarithmic asymptotics of the principal
eigenfunction. However, the limit Hamilton–Jacobi equation in general is not uniquely
solvable and does not give information about the limit behaviour of λε. Therefore, we have
to consider higher order approximations in (1.1)–(1.2). Under rather general assumptions
on the structure of the Aubry set of the limit Hamiltonian, we find the limit of λε and can
choose the solution of the limit problem which determines the asymptotics of the principal
eigenfunction. Notice that we did not succeed to make the blow up analysis work in the case
under consideration. In this case, for components of the Aubry set located on the boundary,
the natural rescaling still leads to singularly perturbed operators . Instead, we study a refined
structure of solutions of the limit Hamilton–Jacobi equation in the vicinity of the Aubry set.
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254 A. Piatnitski et al.

This allows us to construct test functions that satisfy the perturbed equation up to higher
order.

We also would like to remark that, with obvious modifications, the results of this work
as well as the developed techniques remain valid for the boundary condition of the form

∂uε

∂β
= 0,

where β is a C2-smooth vector field on ∂� non-tangential at any point of ∂�. In particular,
conormal vector field βi = ai jν j can be considered.

2. Problem set-up and results

We study problem (1.1)–(1.2) under the following assumptions on the operator coefficients
and the domain:

(a1) � is a bounded domain in R
N , N ≥ 2, with a C2 boundary;

(a2) all the coefficients are C2-functions in �;
(a3) the matrix (ai j ) is symmetric and uniformly elliptic.

Further assumptions on the vector field b will be formulated later on.
Since uε > 0 in �, we can represent uε in the form

uε = e−Wε(x)/ε,

this results in the following non-linear PDE

−ai j (x)
∂2Wε

∂xi∂x j
+ 1

ε
H(∇Wε, x) + c(x) = λε in � (2.1)

or

−εai j (x)
∂2Wε

∂xi∂x j
+ H(∇Wε, x) + εc(x) = ελε in � (2.2)

with the boundary condition
∂Wε

∂ν
= 0 on ∂�, (2.3)

where
H(p, x) = ai j (x)pi p j − bi (x)pi (2.4)

is a function to be referred to as a Hamiltonian. Passing to the limit as ε → 0 in (2.2), with
the help of the standard approach based on the maximum principle, we can show that Wε

converges uniformly (up to extracting a subsequence) to a viscosity solution W (x) of the
Hamiltion–Jacobi equation

H(∇W (x), x) = 0 in � (2.5)

with the boundary condition
∂W

∂ν
= 0 on ∂�. (2.6)

Recall that a function W ∈ C(�) is called a viscosity solution of Equation (2.5) if for
every test function � ∈ C∞(�), the following holds:
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Complex Variables and Elliptic Equations 255

• if W − � attains a maximum at a point ξ ∈ �, then W (∇�(ξ), ξ) ≤ 0;
• if W − � attains a minimum at ξ ∈ �, then W (∇�(ξ), ξ) ≥ 0.

The boundary condition (2.6) is understood in the following sense, ∀� ∈ C∞(�)

• if W − � attains a maximum at ξ ∈ ∂�, then min
{

H(∇�(ξ), ξ), ∂�
∂ν

(ξ)
}

≤ 0;

• if W − � attains a minimum at ξ ∈ ∂�, then max
{

H(∇�(ξ), ξ), ∂�
∂ν

(ξ)
}

≥ 0.

It is known [14] that every solution of problem (2.5)–(2.6) has the representation

W (x) = inf
y∈AH

{
dH (x, y) + W (y)

}
, (2.7)

where AH is so-called Aubry set and dH (x, y) is a distance function. To define AH and
dH (x, y) consider solutions of the following Skorohod problem:⎧⎪⎨⎪⎩

η(t) ∈ �, t ≥ 0

η̇(t) + α(t)ν(η(t)) = v(t) with α(t) ≥ 0 and α(t) = 0 when η(t) /∈ ∂�

η(0) = x,

(2.8)

where v ∈ L1((0,∞); R
N ) is a given vector field and x ∈ � is a given initial point, while the

curve η ∈ W 1,1
loc ((0,∞); R

N ) and the function α ∈ L1((0,∞); R+) are unknowns. Under
our standing assumptions on � (∂� ∈ C2), the Skorohod problem (2.8) has a solution,
see [14].

Consider now the Legendre transform L(v, x) = supp∈RN (v · p − H(p, x)) and define
the distance function

dH (x, y) = inf
{∫ t

0
L(−v(s), η(s)) ds, η solves (2.8), η(0) = x, η(t) = y, t > 0

}
.

(2.9)
Next, we recall the variational definition of the Aubry set

x ∈ AH ⇐⇒ ∀δ > 0 inf
{∫ t

0
L(−v(s), η(s)) ds, η solves (2.8), η(0) = η(t) = x, t > δ

}
= 0.

(2.10)
In this work, we assume that the Aubry set has a finite number of connected components

AH =
⋃
finite

Ak and each Ak is ei ther an isolated point

or a closed curve lying entirely ei ther in � or on ∂�. (2.11)

Additionally, we assume that

i f Ak ⊂ � then Ak is ei ther a hyperbolic f i xed point

or a hyperbolic limit cycle o f the O DE ẋ = b(x); (2.12)

i f Ak ⊂ ∂� then the normal component bν(x) of the f ield b(x) is str ictly posi tive on Ak

and Ak is ei ther a hyperbolic f i xed point or a hyperbolic limit cycle of the O DE

ẋ = bτ (x) on ∂�, where bτ (x) denotes the tangential component o f b(x) on ∂�. (2.13)
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256 A. Piatnitski et al.

Remark 1 Note that theAubry set AH does not depend on the coefficients ai j (x), it is com-
pletely defined by the drift field b(x). This fact follows from the variational definition (2.10)
of the Aubry set observing that the Lagrangian L(v, x) is given by L(v, x) = 1

4 ai j (x)(vi +
bi (x))(v j + b j (x)), where

(
ai j (x)

)
i, j=1,N is the matrix inverse to

(
ai j (x)

)
i, j=1,N . More

specifically, AH is determined by the dynamical system S corresponding to the Skorohod
problem (2.8) with v(t) = b(η(t)) and conditions (2.11)–(2.13) require that the ω-limit set
of S consists of a finite number of hyperbolic fixed points or limit cycles. One observes that
the ω-limit set of S is always non-empty. Furthermore, in the case of general position, the
Aubry set AH consists of a finite number of hyperbolic fixed points and limit cycles of S.

In order to state the main result of this work, we assign to each component Ak of AH

a number σ(Ak) as follows. If Ak is a fixed point {ξ} of the ODE ẋ = b(x) and ξ ∈ �,
linearizing the ODE near ξ to get ż = B(ξ)z we define σ(Ak) by

σ(Ak) = −
∑
θi >0

θi + c(ξ), (2.14)

where θi are the real parts of eigenvalues of the matrix B(ξ). Note that the hyperbolicity of
the fixed point means that the eigenvalues of B(ξ) cannot have zero real part. If Ak = {ξ}
and ξ ∈ ∂�, consider the ODE ẋ = bτ (x) on ∂� in a neighbourhood of the point ξ . Passing
to the linearized ODE ż = Bτ (ξ)z in the tangent plane to ∂� at the point ξ , we denote by
θ̃i the real parts of the eigenvalues of Bτ (ξ) and set

σ(Ak) = −
∑
θ̃i >0

θ̃i + c(ξ), (2.15)

Consider now the case when {Ak} ⊂ � is a limit cycle of ODE ẋ = b(x). Let P > 0
be the minimal period of the cycle and let �i be the absolute values of eigenvalues of
the linearized Poincaré map. (Recall that the limit cycle is said hyperbolic if there are no
eigenvalues of linearized Poincaré map with absolute value equal to 1.) We define now
σ(Ak) by setting

σ(Ak) = − 1

P

∑
�i >1

log �i + 1

P

∫ P

0
c(ξ(t))dt, (2.16)

where ξ(t) solves ξ̇ = b(ξ) and ξ(t) ∈ Ak .
Finally, in the case when bν > 0 on Ak and Ak is a limit cycle of the ODE ẋ = bτ (x)

on ∂�, we set

σ(Ak) = − 1

P

∑
�̃i >1

log �̃i + 1

P

∫ P

0
c(ξ(t))dt, (2.17)

where ξ̇ = bτ (ξ) and ξ(t) ∈ Ak , P is the minimal period and �̃i are the absolute values of
the eigenvalues of the linearized Poincaré map.

The main result of this work is

Theorem 2 Let conditions (a1)–(a3) be fulfilled, and assume that the Aubry set AH

satisfies (2.11), (2.12) and (2.13). Then the first eigenvalue λε of (1.1) converges as
ε → 0 to

lim
ε→0

λε = max
{
σ(Ak);Ak ⊂ AH

}
, (2.18)
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Complex Variables and Elliptic Equations 257

where σ(Ak) is given by (2.14) or (2.15) if Ak is a fixed point in � or on ∂�, and σ(Ak) is
defined by (2.16) or (2.17) if Ak is a limit cycle in � or on ∂�. Moreover, if the maximum
in (2.18) is attained at exactly one component M := Ak0 , then the scaled logarithmic
transform wε = −ε log uε of the first eigenfunction uε (normalized by max uε = 1)
converges uniformly in � to the maximal viscosity solution W of (2.5) and (2.6) vanishing
on M, i.e. W (x) = dH (x,M).

3. Passing to the limit by vanishing viscosity techniques

In this section, we pass to the limit, as ε → 0, in Equation (2.2) and boundary condition
(2.3) to get problem (2.5) and (2.6). We use the standard technique based on the maximum
principle and the a priori uniform W 1,∞ bounds for Wε obtained by Bernstein’s method
(originally proposed in [15,16] and further developed in, e.g. [17,18]).

First, considering (2.2) at the maximum and minimum points of Wε(x), we easily get

Lemma 3 The first eigenvalue λε satisfies the estimates min c(x) ≤ λε ≤ max c(x).

Next, we establish the W 1,∞ bound for Wε in

Lemma 4 Let uε be normalized by max uε = 1 (i.e. min Wε = 0). Then ‖Wε‖W 1,∞(�) ≤
C with a constant C independent of ε.

Proof Following [19] observe that the boundary condition ∂Wε

∂ν
= 0 yields the pointwise

bound
∂

∂ν
|∇Wε|2 ≤ C |∇Wε|2 on ∂�.

Therefore, for an appropriate positive function φ ∈ C2(�),

∂

∂ν

(
φ|∇Wε|2

)
≤ −

(
φ|∇Wε|2

)
on ∂�. (3.1)

Next ,we use Bernstein’s method to obtain a uniform bound for ωε(x) = φ(x)|∇Wε(x)|2,
following closely the line of [20], Lemma 1.2. In view of (3.1) either |∇Wε| ≡ 0 and we
have nothing to prove, or max wε is attained at a point ξ ∈ �. In the latter case, we have
∇ωε(ξ) = 0 and

ai j
∂2

∂xi∂x j

(
φ|∇Wε|2

)
≤ 0 at x = ξ.

Expanding the left-hand side of this inequality, we get

2εφai j
∂2Wε

∂xi∂xk

∂2Wε

∂x j∂xk
≤ − 2εφai j

∂3Wε

∂xi∂x j∂xk

∂Wε

∂xk

− 4εai j
∂φ

∂x j

∂2Wε

∂xi∂xk

∂Wε

∂xk
− εai j

∂2φ

∂xi∂x j
|∇Wε|2. (3.2)

Using (2.2) we obtain

−εφai j
∂3Wε

∂xi∂x j∂xk

∂Wε

∂xk
≤ εφ

∂ai j

∂xk

∂2Wε

∂xi∂x j

∂Wε

∂xk
+ C

(
ω3/2

ε +ωε+ω1/2
ε +1

)
, at x = ξ,

(3.3)
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258 A. Piatnitski et al.

where we have also exploited the fact that ∇ωε(ξ) = 0. Substitute now (3.3) into (3.2) to
derive

ε
∂2Wε

∂xi∂xk

∂2Wε

∂xi∂xk
≤ C

(
ω3/2

ε + 1

)
, at x = ξ. (3.4)

On the other hand, it follows from (2.2) that

ωε ≤ C

(
ε
∑∣∣∣∣ ∂2Wε

∂xi∂x j

∣∣∣∣ + 1

)
. (3.5)

Combining (3.4) and (3.5), we obtain ωε ≤ C and the required uniform bound follows. �

With a priori bounds from Lemma 3 and 4, it is quite standard to pass to the limit in (2.2).
Indeed, up to extracting a subsequence, Wε → W uniformly in � and λε → λ. Consider
a test function � ∈ C∞(�) and assume that W − � attains strict maximum at a point ξ .
Then, Wε − � attains local maximum at ξε such that ξε → ξ as ε → 0. If ξε ∈ �, then
∇Wε(ξε) = ∇�(ξε) and

ai j
∂2Wε

∂xi∂x j
(ξε) ≤ ai j

∂2�

∂xi∂x j
(ξε) if ξε ∈ �

and ∂�
∂ν

(ξε) ≤ 0 if ξε ∈ ∂�. Passing to the limit as ε → 0 and using (2.2) and Lemma 3,
we get

H(∇�(ξ), ξ) ≤ 0 if ξ ∈ �, and min

{
H(∇�(ξ), ξ),

∂�

∂ν
(ξ)

}
≤ 0 if ξ ∈ ∂�.

Arguing similarly in the case when ξ is a strict minimum of W − �, we conclude that W
is a viscosity solution of (2.5) and (2.6).

4. Matching lower and upper bounds for eigenvalues and selection of the solution of
(2.5)–(2.6)

Due to the results of Section 3, we can assume, passing to a subsequence if necessary, that
eigenvalues λε converge to a finite limit λ and functions Wε converge uniformly in � to a
solution W of problem (2.5) and (2.6) as ε → 0. In the following four steps, we prove that
λ and W (x) are described by Theorem 2.

Step I: Significant component(s) of AH . Recall the definition of the partial order relation �
on AH introduced in [12] as follows:

A′ � A′′ ⇐⇒ W (A′′) = dH (A′′,A′) + W (A′). (4.1)

Note that since W is a solution of (2.5) and (2.6), then it is constant on each connected
component of AH. That is why hereafter we write W (A) := W (ξ), ξ ∈ A, for a connected
component A of AH. Since the distance function dH (x, y) satisfies the triangle inequality
and dH (A′′,A′)+ dH (A′,A′′) > 0 for different components A′,A′′ of the Aubry set AH ,
(4.1) indeed defines a partial order relation.

Condition (2.11) assumes that there are finitely many different components of the Aubry
set. It follows that there exists at least one minimal component M := Ak0 (such that,
∀Ak �= M, either M � Ak or M and Ak are not comparable).
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Complex Variables and Elliptic Equations 259

Now show that

W (x) = dH (x,M) + W (M) in U ∩ �, where U is a neighbourhood of M. (4.2)

Indeed, otherwise, there is a sequence xi → M and a component Ak �= M such that
W (xi ) = dH (xi ,Ak)+ W (Ak). Then taking the limit, we derive W (M) = dH (M,Ak)+
W (Ak), that is, Ak � M which contradicts the minimality of M.

In what follows a component M such that (4.2) is satisfied will be called a significant
component. We have shown that under condition (2.11) there is at least one significant
component in the Aubry set AH .
Step II: Upper bound for eigenvalues. The crucial technical result in the proof of Theorem 2
is the following Lemma whose proof is presented in subsequent four Sections dealing
separately with four possible cases of the structure of M.

Lemma 5 Let M be a significant component of the Aubry set AH satisfying either (2.12)
or (2.13). Then for sufficiently small δ > 0, there are continuous functions W ±

δ (x), W ±
δ,ε(x)

and neighbourhoods Uδ of M such that

W ±
δ (x) = 0 on M, and W −

δ (x) < W (x) − W (M) < W +
δ (x) in Uδ ∩ � \ M,

(4.3)
W ±

δ,ε ∈ C2(Uδ ∩ �), W ±
δ,ε → W ±

δ uniformly in Uδ ∩ � as ε → 0, and

lim inf
δ→0

lim inf
ε→0, ξε→M

(
−ai j (ξε)

∂2W +
δ,ε

∂xi∂x j
(ξε) + 1

ε
H(∇W +

δ,ε(ξε), ξε) + c(ξε)
)

≥ σ(M).

(4.4)

lim sup
δ→0

lim sup
ε→0, ξε→M

(
−ai j (ξε)

∂2W −
δ,ε

∂xi∂x j
(ξε) + 1

ε
H(∇W −

δ,ε(ξε), ξε) + c(ξε)
)

≤ σ(M).

(4.5)

Moreover, if Uδ ∩ ∂� �= ∅ then the functions W ±
δ,ε also satisfy

∂W +
δ,ε

∂ν
> 0 on Uδ ∩ ∂�, and

∂W −
δ,ε

∂ν
< 0 on Uδ ∩ ∂�.

Now, assuming that we know a minimal component M of the Aubry set AH , we can
identify the limit λ of eigenvalues λε. Consider the difference Wε − W −

δ,ε, where W −
δ,ε are

test functions described in Lemma 5. By (4.3) the function W − W −
δ − W (M) vanishes on

M while it is strictly positive in a punctured neighbourhood of M. Then, since Wε − W −
δ,ε

converge uniformly to W −W −
δ as ε → 0 in a neighbourhood of M, there exists a sequence

of local minima ξε of Wε − W −
δ,ε such that ξε → M. Moreover, if M ∩ ∂� �= ∅, then

∂W −
δ,ε

∂ν
< ∂Wε

∂ν
= 0 on ∂� (locally near M) and therefore, ξε ∈ � for sufficiently small ε.

For such ε, we have

∇Wε = ∇W −
δ,ε and − ai j

∂2Wε

∂xi∂x j
≤ −ai j

∂2W −
δ,ε

∂xi∂x j
at x = ξε.
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260 A. Piatnitski et al.

Therefore,

λε = −ai j (ξε)
∂2Wε

∂xi∂x j
(ξε) + 1

ε
H(∇Wε(ξε), ξε) + c(ξε)

≤ −ai j (ξε)
∂2W −

δ,ε

∂xi∂x j
(ξε) + 1

ε
H(∇W −

δ,ε(ξε), ξε) + c(ξε).

Thus, we can use (4.5) here to pass first to the lim sup as ε → 0 and then as δ → 0, this
yields lim supε→0 λε ≤ σ(M). Similarly one obtains the matching upper bound so that

lim
ε→0

λε = σ(M). (4.6)

However, since at this point M is unknown (it depends on W and thus on the particular
choice of a subsequence made in the beginning of the Section) equality (4.6) guarantees
only the upper bound

lim sup
ε→0

λε ≤ max
{
σ(Ak); Ak ⊂ AH

}
, (4.7)

where the lim supε→0 is taken over the whole family {λε, ε > 0}.
Step III: Lower bound for eigenvalues. Consider a component A of the Aubry set AH such
that σ(A) = max{σ(Ak); Ak ⊂ AH }. Introduce a smooth function ρ(x) such that

ρ(x) ≥ 0 in �, ρ(x) = 0 in a neighbourhood of A, and ρ(x) > 0, when x ∈ AH \ A

and consider the first eigenvalue λε of the following auxiliary eigenvalue problem:

εai j (x)
∂2uε

∂xi∂x j
+ bi (x)

∂uε

∂xi
+

(
c(x) − 1

ε
ρ(x)

)
uε = λεuε in �, (4.8)

with the Neumann condition ∂uε

∂ν
= 0 on ∂�. By the Krein–Rutman theorem, the eigenvalue

λε is real and of multiplicity one, and uε being normalized by max� uε = 1 satisfies uε > 0
in �. Note that the adjoint problem also has a sign preserving eigenfunction.

Then it follows that
λε ≤ λε. (4.9)

Indeed, otherwise, we have

εai j (x)
∂2uε

∂xi ∂x j
+ bi (x)

∂uε

∂xi
+

(
c(x) − 1

ε
ρ(x)

)
uε − λεuε = −

(
λε − λε + 1

ε
ρ(x)

)
uε < 0 in �.

(4.10)
On the other hand, by Fredholm’s theorem the right-hand side in (4.10) must be orthogonal
(in L2(�)) to any eigenfunction of the problem adjoint to (4.8). Since the latter problem
has a sign preserving eigenfunction, we arrive at a contradiction which proves (4.9).

Let W ε := −ε log uε be the scaled logarithmic transform of uε, i.e. uε = e−W ε/ε.
Following the line of Section 3 one can show that, up to extracting a subsequence, functions
W ε converge (uniformly in �) to a viscosity solution W of the problem

H(∇W (x), x) − ρ(x) = � in � (4.11)

with the boundary condition ∂W
∂ν

= 0, where � = limε→0 ελε. Note that the argument in
Lemma 3 yields now bounds of the form −C

ε
≤ λε ≤ C with some C > 0 independent
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Complex Variables and Elliptic Equations 261

of ε. Nevertheless, these bounds are sufficient to derive problem (4.11) with the Neumann
boundary condition.

Moreover, since ρ = 0 in a neighbourhood of A one can show that � = 0 using
testing curves η from (2.10) in the variational representation for the additive eigenvalue �

(see [14]),

� = − lim
T →∞ inf

{ 1

T

∫ T

0
(L(−v, η) + ρ(η)) dt; η solves (2.8) with η(0) = x ∈ �

}
.

This implies, in particular, that

W (x) = dH (x,A) in a neighbourhood of A,

where dH (x, y) is the distance function given by (2.9). Then arguing as in second step we
obtain

λε → σ(A).

Thanks to (4.9) this yields the lower bound lim inf λε ≥ max
{
σ(Ak); Ak ∈ AH

}
comple-

mentary to (4.7). Thus formula (2.18) is proved.
Step IV: Selection of the solution of (2.5)–(2.6). Let us assume now that the maximum
in (2.18) is attained at exactly one component M. Then comparing (2.18) with (4.6) we
see that M is the unique significant component in AH ; therefore, it is the only minimal
component of AH with respect to the order relation �. Thus M is the least component of
AH . It follows that W (Ak) − W (M) = dH (Ak,M) for every Ak ⊂ AH . Then by (2.7),
the representation W (x) = dH (x,M) + W (M) holds in �. Finally, since min� W (x) =
limε→0 min� Wε(x) = 0, we have W (M) = 0, i.e. W (x) = dH (x,M). Theorem 2 is
proved. �

5. Construction of test functions: case of fixed points in �

The central part in the proof of Theorem 2 is the construction of test functions satisfying the
conditions of Lemma 5 for different types of components of the Aubry set AH . Consider
first the case when a fixed point ξ ∈ � of the ODE ẋ = b(x) is a significant component of
AH . We can assume that W (ξ) = 0, subtracting an appropriate constant if necessary. Then
W (x) is given by

W (x) = dH (x, ξ) in a neighbourhood U (ξ) of ξ. (5.1)

We begin by studying the local behaviour of W (x) near ξ . Consider for sufficiently small
z the ansatz

W (z + ξ) = �i j zi z j + o(|z|2) (5.2)

with a symmetric N ×N matrix �.After substituting (5.2) into (2.5) and collecting quadratic
terms in the resulting relation, we are led to the Riccati matrix equation

4�Q� − �B − B∗� = 0, (5.3)

where Q =
(

ai j (ξ)
)

i, j=1,N
, B =

(
∂bi
∂x j

(ξ)
)

i, j=1,N
.

Next, we show that (5.2) holds with � being the maximal symmetric solution of (5.3);
for existence of such a solution see, e.g. [21] or [22] . To this end,
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262 A. Piatnitski et al.

consider the solution D of the Lyapunov matrix equation

D(4�Q − B) + (4�Q − B)∗ D = 2I (5.4)

given by

D = 2
∫ 0

−∞
e(4�Q−B)∗t e(4Q�−B)t dt. (5.5)

By Theorem 9.1.3 in [21], all the eigenvalues of the matrix 4Q� − B have positive real
parts, so that the integral in (5.5) does converge. Set

�±
δ = � ± δD.

Then �−
δ satisfies

4�−
δ Q�−

δ − �−
δ B − B∗�−

δ ≤ −δ I (5.6)

for sufficiently small δ > 0.
Introduce the quadratic function W −

δ (x) := �−
δ (x − ξ) · (x − ξ). Thanks to (5.6) this

function satisfies

H(∇W −
δ (x), x) ≤ − δ

2
|x − ξ |2 in a neighbourhood of ξ. (5.7)

This yields the following result whose proof is identical to the proof of Lemma 16 in [12]
(see also the arguments in the proof of Lemma 8 below).

Lemma 6 The strict pointwise inequality W −
δ (x) < W (x) holds in a punctured neigh-

bourhood of ξ for sufficiently small δ > 0.

Next consider the function W +
δ (x) := �+

δ (x − ξ) · (x − ξ).

Lemma 7 The strict pointwise inequality W +
δ (x) > W (x) holds in a punctured neigh-

bourhood of ξ for sufficiently small δ > 0.

Proof According to (5.1), the following inequality holds

W (x) ≤
∫ t

0
L(−v(τ), ξ + η(τ))dτ

for every control v(τ) such that the solution of the ODE

η̇(τ ) = v(τ), η(0) = z := x − ξ

vanishes at the final time t and remains in a small neighbourhood of 0 for any 0 ≤ τ ≤ t .
We can take the final time t = +∞ and construct v(τ) by setting v(τ) = −(4Q�− B)η(τ ),
where η(τ) in the solution of the ODE

η̇ = −(4Q� − B)η, η(0) = z.

As already mentioned (see Theorem 9.1.3. in [21]), all the eigenvalues of the matrix 4Q�−B
have positive real parts, therefore |η(τ)| ≤ C |z| and η(τ) → 0 as τ → +∞. Moreover,
the latter convergence is exponentially fast.
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Complex Variables and Elliptic Equations 263

Thus we have

L(−v(τ), η(τ ) + ξ) = 1

4
ai j (ξ + η)(−η̇i + bi (η))(−η̇i + bi (η))

= 1

4
ai j (ξ)(−η̇i + Bikηk)(−η̇ j + B jlηl) + O(|η|3),

where
(
ai j (x)

)
i, j=1,N denotes the matrix inverse to

(
ai j (x)

)
i, j=1,N . Next, recall that Qi j =

ai j (ξ) and that � solves (5.3). Taking this into account we obtain∫ ∞

0
L(η + ξ,−v(τ)) = 1

4

∫ ∞

0
ai j (ξ)(−η̇i + Bikηk)(−η̇ j + B jlηl) + O(|z|3)

= −2
∫ ∞

0
�η · η̇dτ +

∫ ∞

0
�η · (η̇ + Bη)dτ + O(|z|3)

= �z · z +
∫ ∞

0
η · (−4�Q� + �B + B∗�)ηdτ + O(|z|3)

= �i j zi z j + O(|z|3).
Finally, since �+

δ = � + δD with D > 0, then for sufficiently small z �= 0 we have

W (z + ξ) ≤ �z · z + O(|z|3) < �+
δ z · z.

�

Lemmas 6 and 7 show that functions W ±
δ do satisfy conditions of Lemma 5. To complete

the proof of Lemma 5 in the case of M being a fixed point in �, we define functions W ±
δ,ε

simply by setting W ±
δ,ε := W ±

δ . Thanks to (5.7) we have

lim sup
ε→0

(
ai j (ξε)

∂2W −
δ,ε

∂xi∂x j
(ξε)+ 1

ε
H(∇W −

δ,ε(ξε), ξε)+c(ξε)
)

≤ −2ai j (ξ)(�i j −δDi j )+c(ξ),

(5.8)
as soon as ξε → ξ when ε → 0. According to Proposition 20 in [12], −2ai j (ξ)�i j +c(ξ) =
σ({ξ}), thus (5.8) yields (4.5). Similarly one verifies that W +

δ,ε satisfies (4.4).

6. Construction of test functions: case of fixed points on ∂�

Consider now the case of significant component of the Aubry set AH being a hyperbolic
fixed point ξ of the ODE ẋ = bτ (x) on ∂�, where bτ (x) denotes the tangential component of
the vector field b(x) on ∂�. As above, without loss of generality, we assume that W (ξ) = 0.

It is convenient to introduce local coordinates near ∂� so that x = X (z1, . . . , zN ) with
zN = zN (x) being the distance from x to ∂� (zN (x) > 0 if x ∈ �) and z′ = (z1, . . . , zN−1)

representing coordinates on ∂� in a neighbourhood of the point ξ . The latter coordinates
are chosen so that the map X (z′, zN ) is C2-smooth and z′(ξ) = 0. Moreover, the matrix(

∂ Xi
∂z j

)
i, j=1,N

is orthogonal when z′ = 0 and zN = 0 (at the point ξ ). In these new variables,

Equations (2.5) and (2.2) read

S(∇z W, z) = 0 (6.1)
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264 A. Piatnitski et al.

and

−εai j (X (z)) T −1
ki (z)

∂

∂zk

(
T −1

l j (z)
∂Wε

∂zl

)
+ S(∇z Wε, z) = ε

(
λε − c(X (z))

)
, (6.2)

where
S(p, z) = ai j (X (z))T −1

ki (z)T −1
l j (z)pk pl − bi (X (z))T −1

ki (z)pk

and
(
T −1

i j (z)
)

i, j=1,N
is the inverse matrix to

(
∂ Xi
∂z j

(z)
)

i, j=1,N
. Note that according to

hypothesis (2.13)

bi (X (z))T −1
Ni (z) < 0 for sufficiently small |z|. (6.3)

Like in Section 5 we construct the leading term of the asymptotic expansion of W near
the fixed point ξ in the form of a quadratic function. Taking into account the boundary
condition ∂W

∂zN
= 0 (that is (2.6) rewritten in aforementioned local coordinates), we write

down the following ansatz

W (X (z′, zN )) = �̃i j z
′
i z

′
j + o(|z|2 + z2

N ).

with a symmetric (N − 1) × (N − 1) matrix �̃ satisfying the Riccati equation

4�̃ Q̃�̃ − �̃ B̃ − B̃∗�̃ = 0, (6.4)

where Q̃ =
(

ai j (ξ)T −1
ki (0)T −1

l j (0)
)

k,l=1,N−1
and B̃ =

(
T −1

ki (0)
∂bi
∂x j

(
ξ
) ∂ X j

∂zl
(0)

)
k,l=1,N−1

.

Note that B̃ is nothing but the matrix in the ODE ż′ = B̃z′ obtained by linearizing the ODE
ẋ = bτ (x) near ξ in the local coordinates z′ = (z′

1, . . . , z′
N−1) on ∂�.

Let �̃ be the maximal symmetric solution of (6.4), and let D̃ be a solution of the Lyapunov
matrix equation

D̃(4�̃ Q̃ − B̃) + (4�̃ Q̃ − B̃)∗ D̃ = 2I. (6.5)

By Theorem 9.1.3 in [21], all the eigenvalues of the matrix 4�̃ Q̃ − B̃ have positive real
parts, therefore (6.5) has the unique solution D̃ given by

D̃ = 2
∫ 0

−∞
e(4�̃ Q̃−B̃)∗t e(4�̃ Q̃−B̃)t dt,

which is a symmetric positive definite matrix. Now introduce functions

W ±
δ (z′, zN ) = (�̃ ± δ D̃)i j z

′
i z

′
j ± δz2

N (6.6)

depending on the parameter δ > 0.

Lemma 8 Let δ > 0 be sufficiently small. Then, for small |z| �= 0 such that X (z) ∈ �,
we have

W −
δ (z) < W (X (z)) < W +

δ (z). (6.7)

Proof By virtue of the definition of W ±
δ , it suffices to prove (6.7) with non-strict inequal-

ities in place of strict ones and then pass to slightly bigger δ.
The proof of the inequality W −

δ ≤ W is based on the following two facts. First, we use
the fact that W (x) = dH (x, ξ) in a neighbourhood of ξ . Moreover, for a given δ′ > 0, there
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Complex Variables and Elliptic Equations 265

exists δ > 0 such that if |x − ξ | < δ, then the minimization in (2.9) is actually restricted to
testing curves η(τ) which do not leave the set {|η − ξ | < δ′} (otherwise, arguing as in [12,
Lemma 19], one can show that ξ is not an isolated point of the Aubry set AH , contradicting
(2.11)). Second, considering, with a little abuse of notation, W −

δ (x) = W −
δ (X−1(x)), we

have for sufficiently small δ > 0

H(∇W −
δ , x) ≤ −δ|x − ξ |2 in �, and

∂W −
δ

∂ν
= 0 on ∂�, (6.8)

when |x − ξ | < δ′ with some δ′ > 0 independent of δ. This follows from the construction
(6.6) of W ±

δ and (6.4), (6.5), also taking into account (6.3).
Assume that |x −ξ | < δ, and let η(τ) be a solution of (2.8) satisfying η(0) = x , η(t) = ξ

with a control v(τ) such that |η(τ) − ξ | < δ′ for all 0 ≤ τ ≤ t . Then

W −
δ (x) = −

∫ t

0
∇W −

δ (η) · η̇ dτ =
∫ t

0
∇W −

δ (η) · (−v(τ)) dτ,

where we have used the fact that
∂W −

δ

∂ν
= 0 on ∂�. It follows by Fenchel’s inequality

p · (−v) ≤ L(−v, η) + H(p, η) that

W −
δ (x) ≤

∫ t

0
L(−v, η) dτ +

∫ t

0
H(∇W −

δ , η)dτ ≤
∫ t

0
L(−v, η) dτ.

Therefore by (2.9), we obtain W −
δ (x) ≤ W (x).

In order to prove the second inequality in (6.7) for a given x = X (z′, zN ), we construct
a test curve η(τ) first on a small interval (0,�t) by setting η(τ) = X (z′, ζN (τ )), ζN (τ )

being the solution of ODE ζ̇N (τ ) = bi (X (z′, ζN ))T −1
Ni (z′, ζN ) with the initial condition

ζN (0) = zN , and choosing �t from the conditions ζN (�t) = 0, ζN (τ ) > 0 for τ < �t .
Thanks to (6.3) we have �t = O(zN ). Then, since

η̇i = ∂ Xi

∂zN
(z′, ζN )bk(η)T −1

Nk (z′, ζN )

= ∂ Xi

∂z j
(z′, ζN )bk(η)T −1

jk (z′, ζN ) − ∂ Xi

∂z′
j
(z′, ζN )bk(η)T −1

jk (z′, ζN ) = bi (η) + O(|z|)

(recall that the tangential component bτ on ∂� vanishes at the point ξ ), we obtain∫ �t

0
L(−η̇, η)dτ = O(|z|3). (6.9)

Next, we construct η(τ) for τ > �t which connects point X (z′, 0) to ξ . Following closely
the line of Lemma 7 we introduce ζ ′(τ ) by solving the equation ζ̇ ′(τ ) = −(4Q̃�̃ − B̃)ζ ′
with the initial condition ζ ′(�t) = z′ and set η(τ) = X (ζ ′(τ ), 0). Then η(τ) solves (2.8)
for τ > �t with

v(τ) := η̇(τ ) + ν(η)bν(η) − 4
∂ X

∂zN
(ζ ′, 0)T −1

Ni (0)ai j (ξ)T −1
l j (0)�̃lmζ ′

m
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266 A. Piatnitski et al.

(note that ∂ X
∂zN

(ζ ′, 0) = −ν(η) and bν(η) + 4T −1
Ni (0)ai j (ξ)T −1

l j (0)�lmζ ′
m > 0 as soon as

|z′| is sufficiently small) and using (6.4), we obtain∫ ∞
�t

L( − v(τ), η(τ )) dτ = 1

4

∫ ∞
�t

ai j (ξ)(−vi + bi )(−v j + b j ) dτ + O(|z|3)

= 4
∫ ∞
�t

ai j (ξ)
(∂ Xi

∂z′
k

(0)Q̃kl �̃lmζ ′
m + ∂ Xi

∂zN
(0)T −1

Nk (0)akl (ξ)T −1
ml (0)�̃mnζ ′

n

)
×

(∂ X j

∂z′
k

(0)Q̃kl �̃lmζ ′
m + ∂ X j

∂zN
(0)T −1

Nk (0)akl (ξ)T −1
ml (0)�̃mnζ ′

n

)
dτ + O(|z|3)

= 4
∫ ∞
�t

�̃ζ ′ · Q̃�̃ζ ′ dτ + O(|z|3)

= −2
∫ ∞
�t

�̃ζ ′ · ζ̇ ′ dτ +
∫ ∞
�t

�̃ζ ′ · (
ζ̇ ′ + B̃ζ ′) dτ + O(|z|3) = �̃i j z′

i z′
j + O(|z|3).

(6.10)

The required upper bound W ≤ W +
δ now follows from (6.9) to (6.10). �

Thus functions W ±
δ satisfy conditions of Lemma 5; moreover, it follows from (6.6) in

conjunction with (6.4), (6.5), taking also into account (6.3), that

S(∇z W +
δ (z), z) ≥ 0 and S(∇z W −

δ (z), z) ≤ 0 when |z| is sufficiently small.

Then we set

W ±
δ,ε(z

′, zN ) = W ±
δ (z′, zN ) ∓ ε2zN ,

and verify (similarly to the case of interior fixed points) that conditions (4.4) and (4.5) are

satisfied. Additionally, we have ∓ ∂W ±
δ,ε

∂zN
(z′, 0) > 0, i.e. ± ∂W ±

δ,ε

∂ν
> 0 on ∂�.

7. Construction of test functions: case of limit cycles in �

We proceed with the case when a significant component of theAubry set AH is a limit cycle,
assuming first that it is situated entirely inside �. Namely, let ξ(t) be a periodic solution
of the ODE ξ̇ = b(ξ) whose minimal period is P > 0. We assume that C = {ξ(t) : t ∈
[0, P)} ⊂ �, b(x) �= 0 on C and C is a hyperbolic limit cycle, i.e. the linearized Poincaré
map associated to this cycle has no eigenvalues on the unit circle. In order to study the local
behaviour of

W near the cycle C, perform a C2-smooth change of coordinates x = X (z1, . . . , zN−1,

zN ) with zN representing the arc length along the cycle and z′ = (z1, . . . , zN−1) being some
fixed Cartesian coordinates in the hyperplanes orthogonal to the cycle. Also, we assume
that C is oriented by the tangent vector b(ξ)/|b(ξ)|, and z′ = 0 on C. With this change of
coordinates, Equations (2.5) and (2.2) take the form similar to (6.1) and (6.2).

Assuming as above that W (C) = 0, we postulate in the vicinity of the cycle (for
sufficiently small |z′|) the following ansatz for W :

W (X (z′, zN )) = �i j (t)z
′
i z

′
j + o(|z′|2), (7.1)

where t refers to the parametrization of the cycle determined by the equation ξ̇ = b(ξ),
t ∈ [0, P).
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Complex Variables and Elliptic Equations 267

Substitute W in (6.1) to find, after collecting quadratic terms and neglecting higher order
terms,

�̇ = 4� Q � − � B − B
∗
�, (7.2)

where Q(t) and B(t) are P-periodic (N − 1) × (N − 1) matrices whose entries are
given by

Qkl(t) = ai j (ξ(t))T −1
ki

(
0, zN (ξ(t))

)
T −1

l j

(
0, zN (ξ(t))

)
, (7.3)

Bkl(t) = T −1
ki

(
0, zN (ξ(t))

) ∂bi

∂x j

(
ξ(t)

)∂ X j

∂zl

(
0, zN (ξ(t))

)
− T −1

k j

(
0, zN (ξ(t))

) d

dt

(
∂ X j

∂zl

(
0, zN (ξ(t))

))
. (7.4)

Recall that T −1
i j

(
z′, zN ) denote the entries of the matrix inverse to

(
∂ Xi
∂z j

(z′, zN )
)

i, j=1,N and
for brevity, abusing slightly the notation, we set

T −1
i j (t) := T −1

i j (0, zN (ξ(t)), Ti j (t) = ∂ Xi

∂z j

(
0, zN (ξ(t))

)
. (7.5)

The matrix Q(t) being positive definite, it is known [22] that Riccati Equation (7.2) has
a maximal symmetric P-periodic solution �(t). We next show that (7.1) does hold with the
mentioned maximal solution �(t) under our standing hyperbolicity assumption on C. Note
that the ODE ż′ = Bz′ corresponds to the linearization of ẋ = b(x) on the cycle C written
in local coordinates; thus assuming the hyperbolicity of C, we require that the fundamental
solution of the ODE

∂�

∂t
(t, τ ) = B(t)�(t, τ ), �(τ, τ ) = I,

evaluated at t = τ + P , has no eigenvalues with absolute value equal to 1.

Lemma 9 The following bound holds uniformly in t ∈ [0, P) for sufficiently small |z′|,

W (X (z′, zN (ξ(t))) ≤ �i j (t)z
′
i z

′
j + C |z′|3 log

1

|z′| . (7.6)

Proof We make use of variational representation (2.9). A natural guess about optimal test
curve in (2.9) is that its first N − 1 local coordinates are given by (cf. Sections 5 and 6)

ζ̇ ′(τ ) = (B − 4Q �)ζ ′(τ ), τ > t, ζ ′(t) = z′. (7.7)

Thanks to Theorem 5.4.15 in [22] the solutions of (7.7) are exponentially stable, i. e.
|ζ ′(τ )| ≤ Ce−δτ |z′| for some δ > 0. The choice of the last local coordinate is a little
bit involved. We set η(τ) := X (ζ ′(τ ), zN (ξ(τ )) + ζN (τ )) and want to choose ζN (τ ) in
such a way that |ζN (τ )| < C |z′|, and

bi (η(τ )) − η̇i (τ ) = 4ai j (ξ(τ ))T −1
l j

(
0, ξ(τ )

)
�lm(τ )ζ ′

m(τ ) + O(|z′|2). (7.8)

We skip for a moment the proof of the existence of such ζN . It will be given later on.
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268 A. Piatnitski et al.

Considering (7.8) we obtain

T∫
t

L(−η̇, η)dτ = 1

4

T∫
t

ai j (η(τ ))(−η̇i (τ ) + bi (η(τ )))(−η̇ j (τ ) + b j (η(τ )))dτ

≤ 4

T∫
t

(�(τ)ζ ′(τ )) · (Q(τ )�(τ)ζ ′(τ ))dτ + CT |z′|3.

In view of (7.7) and (7.2), we have

T∫
t

L(−η̇, η)dτ ≤
T∫

t

(�ζ ′) · (Bζ ′ − ζ̇ ′)dτ + CT |z′|3

= −
T∫

t

d

dτ
(�ζ ′ · ζ ′)dτ +

T∫
t

(�ζ ′ · (Bζ ′ + ζ̇ ′) + �̇ζ ′ · ζ ′)dτ + CT |z′|3

≤ �(t)z′ · z′ +
T∫

t

(�̇ − 4� Q � + � B + B
∗
�)ζ ′ · ζ ′)dτ + CT |z′|3

= �(t)z′ · z′ + CT |z′|3.
If we choose T := 1

δ
log 1

|z′| , then dist(η(T ), C) = O(|z′|2) and

T∫
t

L(−η̇, η)dτ ≤ �(t)z′ · z′ + C |z′|3 log
1

|z′| . (7.9)

For constructing ζN , we will need the following facts. From the definition of Ti j in (7.5),
it follows that Ti N (τ ) = ξ̇i (τ )/|ξ̇ (τ )|. Then, since ξ̈i (τ ) = ∂bi

∂x j
(ξ(τ ))ξ̇ j (τ ), we have

∂bi

∂x j
(ξ(τ ))T j N (τ ) − Ṫi N (τ ) = ξ̇i (τ )ξ̇ j (τ )ξ̈ j (τ )

|ξ̇ (τ )|3 = Ti N (τ )
ξ̇ j (τ )ξ̈ j (τ )

|ξ̇ (τ )|2 , ∀i = 1, . . . , N .

Multiplying this by T −1(τ ), we conclude that

T −1
ki (τ )

( ∂bi

∂x j
(ξ(τ ))T j N (τ ) − Ṫi N (τ )

)
=

{
ξ̇ j (τ )ξ̈ j (τ )/|ξ̇ (τ )|2, if k = N ,

0 if k < N .
(7.10)

We proceed with constructing ζN . By the definition of η, we have

η̇i (τ ) − bi (η(τ )) = d

dt

(
ξi (τ ) + Tik(τ )ζ ′

k(τ ) + Ti N (τ )ζN (τ )
)

− bi (η(τ )) + O(|z′|2)

=
(
Ṫik(τ ) − ∂bi

∂x j
(ξ(τ ))T jk(τ )

)
ζ ′

k(τ ) +
(
Ṫi N (τ ) − ∂bi

∂x j
(ξ(τ ))T j N (τ )

)
ζN (τ )

+ Tik(τ )ζ̇ ′
k(τ ) + Ti N (τ )ζ̇N (τ ) + O(|z′|2)

= Tik(τ )T −1
kr (τ )

{(
Ṫrk(τ ) − ∂br

∂x j
(ξ(τ ))T jk(τ )

)
ζ ′

k(τ )
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Complex Variables and Elliptic Equations 269

+
(
Ṫr N (τ ) − ∂br

∂x j
(ξ(τ ))T j N (τ )

)
ζN (τ )

}
+ Tik(τ )ζ̇ ′

k(τ ) + Ti N (τ )ζ̇N (τ ) + O(|z′|2). (7.11)

Substituting for ζ̇ ′ the expression on the right-hand side of (7.7) and considering (7.10)
yields

bi (η(τ ))−η̇i (τ ) = 4ai j (ξ(τ ))T −1
l j

(
0, ξ(τ )

)
�lm(τ )ζ ′

m(τ )+O(|z′|2)−Ti N (τ )ζ̇N (τ )+Ti N (τ )R(τ ),

where

R(τ ) = T −1
Ni (τ )

∂bi

∂x j
(ξ(τ ))

(
T j N (τ )ζN (τ ) + T jl(τ )ζ ′

l (τ )

)
− T −1

Ni (τ )

(
Ṫi N (τ )ζN (τ ) + Ṫil(τ )ζ ′

l (τ )

)
− 4T −1

Ni (τ )ai j (ξ(τ ))T −1
l j (τ )�lm(τ )ζ ′

m(τ )

Thus, in order to make (7.8) hold, we choose ζN (τ ) as a solution of the following equation

ζ̇N (τ ) = R(τ ) (7.12)

with the initial condition ζN (t) = 0.
From (7.10) it follows that |ξ̇ (τ )| solves

d

dt
|ξ̇ (τ )| = (

T −1
Ni (τ )

∂bi

∂x j
(ξ(τ ))T j N (τ ) − T −1

Ni (τ )Ṫi N (τ )
)|ξ̇ (τ )|,

and we can write the solution ζN (τ ) of (7.12) as

ζN (τ ) = |ξ̇ (τ )|
τ∫

0

(
T −1

Ni (s)
∂bi

∂x j
(ξ(s))T jl(s)ζ

′
l (s) − T −1

Ni (s)Ṫil(s)ζ
′
l (s)

)
ds

|ξ̇ (s)|

− 4|ξ̇ (τ )|
τ∫

0

T −1
Ni (s)ai j (ξ(s))T −1

l j (s)�lm(s)ζ ′
m(s)

ds

|ξ̇ (s)| . (7.13)

From (7.13) we derive the uniform bound |ζN (τ )| ≤ C |z′|.
It remains to construct η(·) for τ > T in such a way that it reaches the cycle in a finite

time. To this end, we set

η(τ) = X
(
ζ ′(T )(T +1−τ), zN (ξ(τ ))+ζN (T )|ξ̇ (τ )|/|ξ̇ (T )|), T ≤ τ ≤ T +1. (7.14)

Then for every i = 1, . . . , N ,

η̇i (τ ) = d

dτ

(
ξi (τ ) + Ti N (τ )ζN (T )|ξ̇ (τ )|/|ξ̇ (T )|) + O(|z′|2)

= ξ̇i (τ ) + ξ̈i (τ )ζN (T )/|ξ̇ (T )| + O(|z′|2)
= bi (ξ(τ )) + ∂bi

∂x j
(ξ(τ ))ξ̇ j (τ )ζN (T )/|ξ̇ (T )| + O(|z′|2) = bi (η(τ )) + O(|z′|2).

Therefore, the following bound holds

T +1∫
T

ai j (η(τ ))(−η̇i + bi (η))(−η̇ j + b j (η))dτ ≤ C |z′|4. (7.15)
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270 A. Piatnitski et al.

Combining the last relation with (7.9) yields (7.6). �

In order to construct sub- and super-solution of (6.1), we consider the solution D(t) of
the matrix equation

Ḋ + D(B − 4Q �) + (B − 4Q �)∗ D = −2I, (7.16)

given by

D(t) = 2

∞∫
t

�
∗
(τ, t)�(τ, t)dτ, (7.17)

where �(τ, t) is the fundamental matrix solution of

∂�

∂τ
= (B(τ ) − 4Q(τ )�(τ))�, �(t, t) = I.

As already mentioned in the proof of Lemma 9, this solution �(τ, t) decays exponentially
as τ → +∞ and therefore the integral in (7.17) converges. Then it defines a P-periodic
positive symmetric solution of (7.16). It follows from (7.2) and (7.16) that �

±
δ := � ± δD

satisfy for sufficiently small δ > 0

4�
+
δ Q �

+
δ − d

dt
�

+
δ − �

+
δ B − B

∗
�

+
δ ≥ δ I and 4�

−
δ Q �

−
δ − d

dt
�

−
δ − �

+
δ B − B

∗
�

−
δ ≤ −δ I.

Now define the functions W ±
δ (z) by

W ±
δ (z) = (�

±
δ (t))i j z

′
i z

′
j where zN = zN (ξ(t)),

these functions satisfy

S(∇z W −
δ (z), z) ≤ − δ

2
|z′|2 and S(∇z W +

δ (z), z) ≥ δ

2
|z′|2 for sufficiently small |z′|.

(7.18)
The latter inequalities follow directly form the definitions of W −

δ (z) and W +
δ (z).

Lemma 10 For sufficiently small δ > 0, the strict pointwise inequalities W −
δ (z) <

W (X (z)) < W +
δ (z) hold for z′ from a punctured neighbourhood of zero.

Proof The first inequality W −
δ (z) < W (X (z)) can be proved similarly to Lemma 19 in [12]

(see also the proof of Lemma 8), using (7.18). The second inequality W (X (z)) < W +
δ (z)

follows immediately from Lemma 9. �

At this point, we have constructed functions W ±
δ satisfying conditions of Lemma 5.

Next, we define the test functions W ±
δ,ε by

W ±
δ,ε := W ±

δ − ε�
±
δ (t),
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Complex Variables and Elliptic Equations 271

where zN and t are related by zN = zN (ξ(t)), and �
±
δ (t) are periodic solutions of the ODEs

d

dt
�

±
δ (t) = −2tr(Q(t)�

±
δ (t)) + c(ξ(t)) + 2

P

P∫
0

tr(Q(τ )�
±
δ (τ ))dτ − 1

P

P∫
0

c(ξ(τ ))dτ.

(7.19)
The first two terms on the right-hand side here are introduced in order to compensate the
discrepancy of order ε in Equation (6.2). Indeed, the test functions W ±

δ,ε constructed in this
way satisfy for sufficiently small |z′|

±ai j (X (z)) αki (z)
∂

∂zk

(
αl j (z)

∂W ±
δ,ε

∂zl

)
∓ 1

ε
S(∇z W ±

δ,ε, z) ∓ c(X (z))

≤ 1

P

P∫
0

c(ξ(τ ))dτ − 2

P

P∫
0

tr(Q(τ )�
±
δ (τ ))dτ + O(ε + |z′|).

In order to complete the proof of the fact that W ±
δ,ε satisfy (4.4) and (4.5), it remains to

observe that
∫ P

0 tr(Q(τ )�
±
δ (τ ))dτ → ∫ P

0 tr(Q(τ )�(τ))dτ as δ → 0 and use the identity

2
∫ P

0
tr(Q(τ )�(τ))dτ =

∑
�i >1

log �i

(see Proposition 5.1 in [13]), where �i are absolute values of eigenvalues of the linearized
Poincaré map (corresponding to the ODE ẋ = b(x) near C).

8. Construction of test functions: case of limit cycles on ∂�

In the case when ODE ẋ = bτ (x) on ∂� has a limit cycle C which is significant component
of the Aubry set, the analysis combines the ideas of Sections 6 and 7. We pass to the
local coordinates in a neighbourhood of C via a map x = X (z1, . . . , zN−1, zN ), where
zN = zN (x) is the distance from x to ∂� (positive for x ∈ �) and (z1, . . . , zN−1) are
coordinates on ∂�. The coordinate zN−1(x) represents the arc length parametrization on
C and other coordinates z′ = (z1, . . . , zN−2) are chosen so that the map X (z′, zN−1, zN )

is C2-smooth; moreover, z′ = 0 when x ∈ C, and
(

∂ Xi
∂z j

(z)
)

i, j=1,N is an orthogonal matrix
when zN = 0 and z′ = 0 (on the cycle). This change of coordinates leads to equations of
the form (6.1) and (6.2) for W (X (z)) and Wε(X (z)).

We use the following ansatz for W ,

W (X (z)) = �̂i j (t)z
′
i z

′
j + o(|z′|2), (8.1)

where �̂ is now (N − 2) × (N − 2) symmetric P-periodic matrix (P being the period of
the cycle C), and t refers to the parametrization t → ξ(t) of C such that ξ̇ (t) = bτ (ξ(t)).
Moreover, �̂ is chosen to be the maximal P-periodic solution of the Riccati matrix equation

d

dt
�̂ = 4�̂ Q̂�̂ − �̂ B̂ − B̂∗�̂,

with (N − 2) × (N − 2) matrices Q̂(t) and B̂(t) whose entries are given by the same
formulas as (7.3) and (7.4).
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272 A. Piatnitski et al.

Lemma 11 For sufficiently small |z′| and |zN | the following bound holds uniformly in
t ∈ [0, P)

W (X (z′, zN−1(ξ(t)), zN ) ≤ �̂i j (t)z
′
i z

′
j + C(|z′|2 log

1

|z′| + |zN ||z′|2 + |zN |3). (8.2)

Proof First consider the case zN = 0. As in Lemma 9, we use representation (2.9) and
consider the solution ζ ′(τ ) of the ODE ζ̇ ′(τ ) = (B̂ − 4Q̂�̂)ζ(τ ) for τ > t with the initial
condition ζ ′(t) = z′. It decays exponentially as τ → ∞, |ζ ′| ≤ Ce−δτ |z′| for some δ > 0.
Next we introduce ζN−1 analogously to ζN introduced in Lemma 9, i.e. ζN−1 solves

ζ̇N−1(τ ) = T −1
(N−1)i

(
0, zN−1(ξ(τ ), 0

) ∂bi

∂x j
(ξ(τ ))

(
T j (N−1)(τ )ζN−1(τ ) + T jl (τ )ζ ′

l (τ )

)
− T −1

(N−1)i

(
0, zN−1(ξ(τ )), 0

)(
Ṫi(N−1)(τ )ζN−1(τ ) + Ṫil (τ )ζ ′

l (τ )

)
− 4T −1

(N−1)i

(
0, zN−1(ξ(τ )), 0

)
ai j (ξ(τ ))T −1

l j

(
0, zN−1(ξ(τ )), 0

)
�̂lm(τ )ζ ′

m(τ ), τ > t,

where (T −1
i j (z))i, j=1,N is the matrix inverse to (

∂ Xi
∂z j

(z))i, j=1,N and Ti j (τ ) =
∂ Xi
∂z j

(0, zN−1(ξ(τ )), 0).
Finally, we define η(τ) by

η(τ) =
{

X (ζ ′(τ ), zN−1(ξ(τ )) + ζN−1(τ ), 0), t ≤ τ < T

X (ζ ′(T )(T + 1 − τ), zN−1(ξ(τ )) + ζN−1(T )|ξ̇ (τ )|/|ξ̇ (T )|, 0), T ≤ τ < T + 1,

with T := 1
δ

log 1
|z′| , and the control v(τ) by

v(τ) =
{

η̇ + ν(η)
(
bν(η) + R1(τ )

)
, t ≤ τ < T

η̇ + ν(η)bν(η), T ≤ τ ≤ T + 1,

where zN−1 = zN−1(ξ(τ )), and

R1(τ ) = − T −1
(N−1)i

(
0, zN−1, 0

)(
Ṫi(N−1)(τ )ζN−1(τ ) + Ṫil(τ )ζ ′

l (τ )

+ 4ai j (ξ(τ ))T −1
l j (0, zN−1, 0)�̂lmζ ′

m

)
.

Letting

α(τ) :=
{

bν(η) + R1(τ ), t ≤ τ < T

bν(η), T ≤ τ ≤ T + 1,

observe that for this control v(τ), the pair (η(τ ), α(τ )) solves (2.8) on (t, T + 1) with the
initial value η(t) = x(= X (z′, ξ(t), 0)), as far as α(τ) ≥ 0 for all τ ∈ (t, T + 1). Since
bν(ξ(τ )) > 0, the latter condition is satisfied, provided that |z′| is sufficiently small. Then
the proof of (8.2) follows exactly the line of Lemma 9.

In the case when zN (x) > 0, we construct a curve η(τ) connecting x with a point y on
∂� by setting

η(τ) = X (z′, zN−1(ξ(t)), zN + bν(ξ(t))(t − τ)) for all τ ≥ t such that zN + bν(ξ(t))(t − τ) ≥ 0.
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Complex Variables and Elliptic Equations 273

Let t +�t be the time when η(τ) reaches ∂� (at the point y = η(t +�t)) then �t = O(zN ).
It follows from the construction of η(τ) that∫ t+�t

t
ai j (η(τ ))(−η̇i + bi (τ ))(−η̇ j + b j (η)) dτ ≤ C(|z′|2 + z2

N )zN .

Then extending η(τ) along ∂� as described above we complete the proof of the
Lemma. �

Now, we construct test functions W ±
δ (z′, zN−1(ξ(t)), zN ) := (�̂ ± δ D̂)i j (t)z′

i z
′
j ± δz2

N

for (sufficiently small) δ > 0, where the P-periodic symmetric matrix D̂(t) > 0 is defined
analogously to (7.17). Then

S(∇z W −
δ , z) ≤ −δ(|z′|2 + bν(ξ(t))zN )

for sufficiently small |z′| and zN ≥ 0. This yields the following bound

W −
δ < W (X (z)) for sufficiently small |z′| and zN (when |z′| + zN > 0)

whose proof is analogous to that of the lower bound in Lemma 8. Thus functions W ±
δ satisfy

the conditions of Lemma 5. Finally, we define the test functions W ±
δ,ε by

W ±
δ,ε := W ±

δ ± ε�̂±
δ ∓ ε2zN , where zN−1 = zN−1(ξ(t)),

with �̂±
δ being solutions of

d

dt
�̂±

δ (t) = −2tr(Q̂(t)�̂±
δ (t)) + c(ξ(t)) + 2

P

P∫
0

tr(Q̂(τ )�̂±
δ (τ ))dτ − 1

P

P∫
0

c(ξ(τ ))dτ.

These functions W ±
δ,ε satisfy the conditions of Lemma 5.
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