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The paper deals with a Dirichlet spectral problem for a singularly Received 29 April 2013
perturbed second order elliptic operator with rapidly oscillating locally Accepted 1 September 2015
periodic coefﬁcients..We study the limit b_ehavior.of the.ﬁ.rst eigen_pair KEYWORDS

(ground state) of this problem. The main tool in deriving the limit Dirichlet spectral problem;
(effective) problem is the viscosity solutions technique for Hamilton- homogenization; singularly
Jacobi equations. The effective problem need not have a unique perturbed operators
solution. We study the non-uniqueness issue in a particular case of
zero potential and construct the higher order term of the ground state
asymptotics.
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1. Introduction
Given a singularly perturbed elliptic operator of the form
y a2 ; 9
Lou = 2a¥(x,x/e%) " —l—sb’(x,x/s“)—u + c(x, x/e%)u (1.1)
ax,-axj 8xj

with a small parameter ¢ > 0, we consider a Dirichlet spectral problem
Leu=du, u=0 ondQ (1.2)

stated in a smooth bounded domain  C RN. We assume that the coefficients a’(x, y),
b/ (x, y) and c(x, y) are sufficiently regular functions periodic in y variable, and that a¥(x, y)
satisfy the uniform ellipticity condition. Finally, « > 0 is a fixed positive parameter. Let us
remark that in the underlying convection-diffusion model ¢ represents characteristic ratio
between the diffusion and convection coefficients, while €% refers to the microstructure
period.

As well known, the operator £, has a discrete spectrum, and the first eigenvalue A, (the
eigenvalue with the maximal real part) is real and simple; the corresponding eigenfunction u,
can be chosen to satisfy u, > 0in 2. The goal of this work is to study the asymptotic behavior
of ¢ and u, ase — 0.

The first eigenpair (ground state) of (1.1) plays a crucial role when studying the large
time behavior of solutions to the corresponding parabolic initial boundary problem. The first
eigenvalue characterizes an exponential growth or decay of a typical solution, as t — o0,
while the corresponding eigenfunction describes the limit profile of a normalized solution.

CONTACT A. Piatnitski 8 andrey@sci.lebedev.ru @ Narvik University College, Postboks 385, 8505 Narvik, Norway.
© 2016 Taylor & Francis


http://dx.doi.org/10.1080/03605302.2015.1091838
mailto:andrey@sci.lebedev.ru

Downloaded by [Penn State University] at 09:31 24 January 2016

2 A. PIATNITSKI AND V. RYBALKO

Also, since in a typical case the first eigenfunction shows a singular behavior, as ¢ — 0, in
many applications it is important to know the set of concentration points of u,, the so-called
hot spots. This concentration set might consist of one point, or finite number of points, or a
surface of positive codimension, or it might have more complicated structure. An interesting
discussion on hot spots can be found in [43].

Boundary value problems for singularly perturbed elliptic operators have been widely
studied in the existing literature. An important contribution to this topic has been done in the
classical work [47] that deals with singular perturbed operators with smooth non-oscillating
coefficients under the assumption that for ¢ = 0 the problem remains (in a certain sense)
well-posed.

The Dirichlet problem for a convection-diftusion operator with a small diffusion and with
a convection directed outward at the domain boundary was studied for the first time in [22].
The approach developed in that work relies on large deviation results for trajectories of a
diffusion process being a solution of the corresponding stochastic differential equation.

The probabilistic interpretation of solutions and the aforementioned large deviation prin-
ciple have also been used in [18, 26, 27], where the first eigenvalue is studied for a second
order elliptic operator being a singular perturbation of a first order operator.

There are two natural approaches that can be used for studying the logarithmic asymptotics
of the principal eigenfunction of a second order singularly perturbed operator. One of them
relies on the above mentioned large deviation results for diffusion processes with a small
diffusion coefficients. This method was used in [39] for studying operators with smooth
coefficients on a compact Riemannian manifolds.

We follow yet another (deterministic) approach based on the viscosity solution techniques
for nonlinear PDEs. In the context of linear singularly perturbed equations, these techniques
were originally developed in [21] and followed by [6, 10, 11, 24, 37] and other works (see also
areview in [5]). Since u; > 0 in 2, we can represent u, as u;(x) = e~ We@)/¢ to find that W,
satisfies

2
£

) 9
—ea¥(x,x/e%)

+ H(VWg,x,x/e%) = A (1.3)
8xi8xj

with H(p, x, y) = a¥(x, y) pipj — b (x,y) pj + c(x,y), and the Dirichlet boundary condition for
ue yields Wy, = +00 on 9€2. Using perturbed test functions we pass to the limit in (1.3) and
get the limit Hamilton-Jacobi equation of the form

H(VW(x),x) =% inQ. (1.4)

with an effective Hamiltonian H(p, x) whose definition depends on whether & > 1, = 1 or
0 < @ < 1. We show that in the limit ¢ — 0 the boundary condition W, = 400 on 92 in
conjunction with (1.3) yield

H(VW(x),x) > A ondS. (1.5)

The latter condition is known [14, 45] as the state constraint boundary condition. Both
equation (1.4) and boundary condition (1.5) are understood in viscosity sense.!

'When referring to the boundary condition (1.5) hereafter we always assume continuous in Q functions satisfying (1.5)
in viscosity sense which (in general) is stronger than simply pointwise inequality in (1.5). The latter fact is sometimes
a source of confusions.
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We recall that a continuous in €2 function W is a viscosity solution of equation (1.4) if for
any x € Q2 and any C* function ¢ such that W — ¢ has a maximum (minimum) at x one has

H(Vo(x),x) <1 (H(Vp(x),x) > ).

A function W € C(R) satisfies boundary condition (1.5) if for any x € 9 and any C*®
function ¢ such that the minimum of W — ¢ in 2 is attained at x; it holds

H(Vp(x),x) = A.

Equations of type (1.3) have been extensively studied in the existing literature. One can find
a short review of state of the art in [28, 33] and in more recent works [2, 8], see also references
therein.

Earlier, singularly perturbed KPP-type reaction-diffusion equations were studied in [35]
where, in particular, equations with rapidly oscillating coefficients were considered. It was
shown that the classical Huygens principle might fail to work in this case.

In the case when the equation coeflicients do not depend on “slow” variable, the homoge-
nization of singularly perturbed spectral problems have been studied in a number of works.
In [12] spectral problems for operators with periodic coefficients were considered, the study
relied on factorization principle. Similar periodic homogenization results for weakly coupled
systems were obtained in [1, 13]. The case of a weakly coupled elliptic system with statistically
homogeneous rapidly oscillating coefficients has been considered in the recent work [3].

In the present work, deriving the effective problem (1.4)-(1.5) relies on the idea of
perturbed test functions originally proposed in [19]. We strongly believe that with the help
of the techniques developed recently in [2, 29, 33, 34] this result can be extended to a more
general almost periodic setting as well as random stationary ergodic setting. In other words,
the periodicity assumption can be replaced with the assumption that the coefficients in (1.1)
are almost periodic or random statistically homogeneous and ergodic with respect to the fast
variable, at least in the case @ = 1. The case ¢ # 1 looks more difficult and might require
some extra assumptions. We refer to [2, 8,9, 29, 32, 44, 46] for (far not complete list of) various
results on almost periodic and random homogenization of nonlinear PDEs. However, the
essential novelty of this work comes in the (logically) second part of the paper devoted to the
improved ground state asymptotics and resolving the non-uniqueness issue for (1.4)-(1.5).
The generalization of this part to non-periodic settings is an open problem.

Problem (1.4)-(1.5) is known as ergodic or additive eigenvalue problem. Its solvability was
first proved in [32] in periodic setting, more recent results are contained, e.g., in [25] as well
as in [16], where stationary ergodic Hamiltonians were considered. There exists the unique
additive eigenvalue A of (1.4)-(1.5) while the eigenfunction W need not be unique even up
to an additive constant. This non-uniqueness issue is intimately related to the structure of the
so-called Aubry set of effective Hamiltonian which play the role of a hidden boundary for
(1.4)-(1.5). The non-uniqueness in (1.4)-(1.5) appears when the Aubry set is not connected.
By contrast, for every ¢ > 0 the eigenfunction u, is unique up to a normalization, and it
is natural to try to select the solution of (1.4)-(1.5) that coincides with the limit of W, =
—e&log u.. This challenging problem is addressed in a particular case of (1.1) with c(x,y) =
0, « > 1. Following [39] we introduce the effective drift (convection) and assume that it
has a finite number of hyperbolic fixed points in €2, and that the Aubry set of the effective
Hamiltonian coincides with this finite collection of points. Notice that any fixed point of the
effective drift in Q belongs to the Aubry set of the effective Hamiltonian. It follows from our
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results that in this case A, tends to zero as ¢ — 0. We show that A, /¢ has a finite limit that
can be determined in terms of eigenvalues of Ornstein-Uhlenbeck operators in RY obtained
via local analysis of (1.1) at the scale /¢ in the vicinity of aforementioned fixed points. This,
in turn, enables fine selection of the additive eigenfunction corresponding to lim,_,.o W.

2. Main results

We begin with standing hypotheses which are assumed to hold throughout this paper. We
assume that € is connected and has C? boundary d€2; the coefficients al(x, ¥), b (x, ), c(x,y) €
CH(Q x RN) are Y-periodic in y functions, where Y = (0, DN, The matrix (aij)i J=TN is
uniformly positive definite:

a’(x))8igj = mlg 2 > 0 V¢ #£0, 21
and, without loss of generality, we can assume the symmetry a’ = a/'.

The first eigenfunction u, of the operator (1.1) can be normalized to satisfy

1= mgg:lx us (ue > 0in Q), (2.2)

then its scaled logarithmic transformation
W, := —¢elogu,

is a nonnegative function vanishing at the points of maxima of u,.
The asymptotic behavior of A, and W, is described in

Theorem 1. The eigenvalues A, converge as ¢ — 0 to the limit A, which is the unique real
number for which problem (1.4), (1.5) has a continuous viscosity solution. The functions W,
converge (up to extracting a subsequence) to a limit W uniformly on compacts in Q2 (see Remark 2
below), and every limit function W, extended by continuity onto Q, is a viscosity solution of (1.4),
(1.5).

The effective Hamiltonian H(p, x) in (1.4) is given by the following formulas, depending on
the parameter «.

(i) Ifa > 1 then

Hp,x) = /Y H(p,x,7)9 () dy (2.3)
where

H(p,x,y) = a’(x,y)pipj — b (x, y)pj + c(x, y),

()2

2 i B
yiay; (@ (6 9)0) =0

and ¥ (y) is the unique Y —periodic solution of the equation

normalized by [, ¥ (y)dy = 1.
(i) Ifoa = 1 then H(p, x) is the first eigenvalue (eigenvalue with the maximal real part)
of the problem
2

i 0°v
a’(x,y) By,
i)

U (y) is Y-periodic.

) y v —
+ V(% y) — 2a’f(x,y)pi)8—y + H(p,x,y)0 = H(p,x)?, (2.4)
j )

According to the Krein-Rutman theorem H(p, x) is real.
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(iii) If0 < o < 1 then H(p, x) is the unique number such that the problem
H(p+ V9 (y),xy) = H(p,x) (2.5)

has a Y —periodic viscosity solution © (y); here p € RN and x € Q are parameters.

Remark 2. Although, for each ¢ > 0, W, (x) tends to +00 as x approaches the boundary 92,
it can be shown (see Lemma 10 in Section 4) that for every B > 0 there exists a constant Cg,
independent of ¢, such that

|We (x) — We(2)| < Cglx — 2|

if x,z € Q and min{dist(x, 9€2), dist(z, 9Q)} > Be. This implies that, for a subsequence,
W, converges in €2 to a Lipschitz continuous function. The latter can be extended to € by
continuity.

We note that the effective Hamiltonian ﬁ(p,x) is continuous on RY x €, convex in p
and coercive, moreover H(p,x) > mi|p|> — C, m; > 0. The viscosity solutions theory for
such Hamiltonians is well established. Following [14, 25] and [36], we provide here various
representation formulas for the solutions of problem (1.4)—-(1.5).

Let us rewrite problem (1.4)-(1.5) in the form

H(VW(x),x) <A in (2.6)

H(VW(x),x) > 1 in%, (2.7)

i.e. (2.6) requires that W is a viscosity subsolution in € while (2.7) means that W is a
viscosity supersolution in €. It is known that there exists a unique number A = A (additive
eigenvalue), for which (1.4)-(1.5) has a solution W. For the reader convenience we formulate
here the first item of Theorem VIII.1 in [14].

Theorem 3 (see [14]). Let ﬁ(p, x) be continuous in RN x Q, and suppose that ﬁ(p, x) — 00,
as |p| — oo, uniformly inx € Q. Then there is a unique A = Az such that problem (2.6)-(2.7)

has a solution.

According to [36, Sect. 3] the number A is given by

Ag = Inf{A; (2.6) has a solution W € C(Q))}. (2.8)
It can also be expressed in terms of action minimization (see [14, Theorem X.1. item (3)]),
.1 t_
}“ﬁ = — tl—lpgo ? inf '/O L(T}, 7]) dT,

where the infimum is taken over absolutely continuous curves 7 : [0, {] — Q,and L(v, x) is
the Legendre transform of H(p, x),

L(v,x) = max{v -p— H(p, x)}.
Let us define now the distance function

dﬁ_kﬁ(x,y) =sup{Wx) — W(y); W e C(R) is a solution of (2.6) for A = Agh (2.9)
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It is known (see, e.g., [25, Theorem 1.4]) that dﬁfxﬁ(x’ x) = 0, dﬁfxﬁ(’@ y) is Lipschitz
continuous, dﬁ—xﬁ(x» y) < dﬁ—xﬁ(’“ z) + dﬁ_)\ﬁ(z, y). Besides, for every y € Q the
function dﬁ—xﬁ(’“ y) is a solution of (2.6) for A = Az and, according to [25, Lemma 6.3],
H (deﬁﬂ\ﬁ(x, ¥),x) = Ay in Q\{y}. The number Az is such that the Aubry set Ag_ hp

Aﬁ_kﬁ ={ye Q; dﬁ_kﬁ(x,y) is a solution of (2.7) for A = A}, (2.10)

is nonempty, see [36, Proposition 6.4]. Note also that, by [25, Proposition 1.6], the distance
function dg_ Aﬁ(x, y) admits the representation

t
dg_, (vy) = inf { /O @) + Ag)dt; n(0) = y,n(t) = x,t > o}, @2.11)

and the Aubry set can be characterized by

t

y € Ag_, < supinf {/ (LG m) + A dr s n(0) = n(t) =y, t > 5} =0. (2.12)
>0 0

The infimum in (2.11) and (2.12) is taken over absolutely continuous curves 7 : [0, f] — Q.

Since we did not succeed to find the proof of (2.12) in the existing literature, we prove it in

Appendix A.

According to the definition of d; _ Aﬁ(x, y), every solution W of (1.4)-(1.5) satisfies W (x) —
W(y) < dg_ Aﬁ(x, ); this inequality holds, in particular, for all x,y € Agz_ - Conversely,
given a function g(x) on Az_ - which satisfies the compatibility condition g(x) — g(y) <
dg_ )\ﬁ(x, y)Vx,y € Aﬁ_ hip by [25, Proposition 7.1 and Theorem 7.2], the function

W(x) = min{dﬁikﬁ(x,y) +g(); ye -Aﬁfxﬁ} (2.13)

is the unique solution of (1.4)-(1.5) for A = Ay that satisfies W(x) = g(x) on Agz_ - In
Appendix A we show the following simple uniqueness criterion for problem (1.4)-(1.5): a
solution W (for A = Az) is unique up to an additive constant if and only if S_ - (x,y) =0
Vx,y € Ag_ hip where Sg_ - (x,y) denotes the symmetrized distance, Sz_ - (x,y) =
dﬁ—xﬁ(x’)’) + dﬁ—xﬁ()” x).

Since an additive eigenfunction of the limit (homogenized) problem need not be unique,
an important issue, in the case of non-uniqueness, is to select a solution being responsible for
the first eigenpair asymptotics in (1.2). Under some additional conditions this problem can
be solved by studying the higher order terms in the asymptotic expansion of 1. This question
is rather delicate, and we mainly focus in this work on a particular case when c(x, ) = 0 and
o = 1, so that operator (1.1) takes the form

9%u

~ ou
+ el (x,x/e)—. (2.14)
iax]‘ ij
Moreover, we assume that A;; = 0 and that the corresponding Aubry set Az has a special
structure.

The analogous result for o > 1 is established in Section 8. In this case,

Lou = e2al(x, x/€)

9%u

Lou = e*al(x,x/e%)

. d
—}—sb’(x,x/s“)—u, o> 1. (2.15)
0% 9xj
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For a > 1 the effective Hamiltonian H(p, x) is a C* strictly convex function in p variable,

ie. (#;pjﬁ(p, x>>i,j=1W is positive definite for all p € RY and x € &, see [12], or [17] for
o = 1, while for & > 1 the Hamiltonian H(p, x) is a quadratic function in p. Note also that if
c(x,y) = 0 then H(0,x) = 0. Therefore, for @ > 1 and ¢(x, y) = 0, the Lagrangian L(v,x) is
strictly convex and L(v,x) = max{p - v — H(p,x)} > —H(0,x) = 0. Thus we have

_ _ oH
L(v,x) >0, andL(v,x) =0 <= v; = E(O,x).
j
On the other hand direct calculations show that
oH . _
- —(0,x) =V (x) = / Y (x,y)0" (x,y)dy, (2.16)
ap; Y

the functions b/ (x) being components of the so-called effective drift b(x) defined by the right
hand side of (2.16) via the Y-periodic solution 6* of

’ (aij(x,y)e*>

9 /.
— —(V(x,y)0*) =0 (2.17)
normalized by [, 6*dy = 1. (Note that * > 0 and it is a C* function.) Thus the Lagrangian

L(v, x) admits the following representation:

Lv,x) = KZ(VJ' + V(%) + Z(v,x), with 0 < Z(v,x) <K Z(Vj +P )% 0 <k <k.

(2.18)
This implies, in view of (2.12), that the Aubry set Aﬁ of the Hamiltonian H coincides with
that of the Hamiltonian ) pjz —b(x) pj whose corresponding Lagrangian is i Z(Vj +b(x))%
In particular, the additive eigenvalue Az is zero if and only if there is an orbit n : R — Q,
7 = —b(n) which in turn holds if and only if Ag # . We study the eigenvalue problem for
operator (2.14) under the following conditions:

Aﬁ#@and.AﬁC Q,

Aj; is a finite set of hyperbolic fixed points & of the ODE x = —b(x). (2.19)

Under these assumptions we first obtain the leading term of the asymptotic expansion of A,
which is vanishing as ¢ — 0, because A7 = 0. In fact, this term is of order &. This in turn
allows us to select, among solutions of homogenized problem (1.4)-(1.5), the solution that is
equal to limg_, o W-.
We introduce the matrices B(§) and Q(&) with entries

oy ey 10
E)xi(g)’ Q7(¢) = 2 3pop;
For fixed points & of the ODE x = b(x) the matrix —B(&) corresponds to the linearized
effective drift. Then, for & € Ay, we define o(£) as the sum of negative real parts of
the eigenvalues of —B(£). Since every fixed point £ is assumed to be hyperbolic, —B(£)
has no eigenvalues with zero real part. We also denote by Il and IT, the spectral pro-
jectors on the invariant subspaces of the matrix B that corresponds to the eigenvalues
with positive and negative real parts, respectively (stable and unstable subspaces of the
system z; = —Bijzj).

=

Bi(g) = (0,8).
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Theorem 4. Let @ = 1 and c(x, y) = 0. Then, under conditions (2.19) we have
Le = €0 +o0(e), whered = max{o(§); & € A} (2.20)
Moreover, if the maximum in (2.20) is attained at exactly one £ = &, then
(i) the scaled logarithmic transformations W, = —e logu, of eigenfunctions u,
normalized by (2.2) converge to W(x) = dg(x, &) uniformly on compacts in Q, i.e. W
is the maximal viscosity solution of HVW (x),x) = 0in Q, HIVW(x),x) > 0 on
0%, such that W() =0;
(ii) ue(E + /22)/ue(§) — u(z) in C(K) and weakly in H'(K) for every compact
K C RN, and the limit u is the unique positive eigenfunction of the
Ornstain-Uhlenbeck operator,
0%u 20

+ ziB]’—u =ou inRN, (2.21)

i
Q aZj

321‘32]'

normalized by u(0) = 1 and satisfying the following condition: u(z)e Mz —viMuzl? g

bounded in RN for some ;> 0 and every v > 0; the existence and the uniqueness of
such a positive eigenfunction are granted by Lemma 16 proved in Section 7. The
coefficients in (2.21) are given by B' = B'(§), Q' = Q' (§).

Remark 5. I. Condition (2.19) is satisfied, in particular, when the vector field b(x, y) is
a C!-small perturbation of a gradient field VP(x) with C? potential P(x) having the
following properties:

— the set {x € Q; VP(x) = 0} is formed by a finite collection of points in £,

- the Hessian matrix (iP(x)>

7305 at every such a point is nonsingular

ij=1,N
(for the proof see Appendix B). !
II. Condition (2.19) is satisfied if and only if the vector field b possesses the following
properties:
« b has a finite number of fixed points in Q, say gl ... &" All of them are
hyperbolic, and none of them is situated on 9€2.
e Vye Q, either sup{t < 0 : ¥(t) & Q} > —o0, or lim;_, _oo ¥ (t) = &/ for
somej € {1,...,n}, where ¥’ is a solution of the ODE ¥ = —b(¥), ¥ (0) = y.
« there is no any closed path gh gl gk = g with k > 2 such that for any
two consecutive points &5 and £/s+1 there is a solution of the equation
% = —b(x) with lim;_, _s x(¢) = £ and lim;_ 400 x(t) = E/+1, Note that £/1
might coincide with &72.

Remark 6. It is not hard to show that under condition (2.19) we have S7(£,&") > 0 for all
£,8' € Ag, & # &'. This means that problem (1.4), (1.5) does have many solutions unless
Ag is a single point.

Note that condition (2.19) of Theorem 4 assumes, in particular, that all w(and «)-limit
points of the ODE % = —b(x) are fixed points. Another important case, when the ODE x =
—b(x) has limit cycles in € (which is also the case of general position) is considered in the
companion paper [40].
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3. Singularly perturbed operators on the periodicity cell
In this section we deal with an auxiliary cell spectral problem for singularly perturbed elliptic
operators of the form

£y, — ’J(x) + b’(x)— + c(x)u, (3.1)

18 Xj 9%j

with Y-periodic coefficients a¥, b/, c € C}(RN), u also being Y-periodic. This problem plays
a crucial role in the proof of Theorem 1 in the case @ < 1. We assume the uniform ellipticity
condition a¥ (x) ¢igj > m|¢ |2 > 0forany¢ € RN\{0},and the symmetry a’ = . Similarly to
the case of the Dirichlet boundary condition, the first eigenvalue yi, of £§p ) (eigenvalue with
the maximal real part) is real and simple, the corresponding eigenfunction u, can be chosen
to satisfy 0 < u.(x) < maxu, = 1. The asymptotic behavior of 1, and u,, as ¢ — 0, was
studied in [39] using a combination of large deviation and variational techniques. We recover
hereafter the results of [39] by means of vanishing viscosity approach and establish as a bi-
product some bounds for derivatives of functions W, (x) = —e log u, (x) that are essential in
the proof of Theorem 1.
First we derive the a priori bounds for the eigenvalues.

Lemma 7. For every ¢ > 0 the eigenvalue (i, of Lgper) satisfies the inequalities

minc(x) < pe < mMaxc(x). (3.2)
Proof. Let x’ be a maximum point of ., we have
Vg (x) =0, ¢ a”(x) ( )y <o,

therefore c(x)ug (x') > peus(x),ie. e < maxc(x). Slmllarly, if ¥ is a minimum point of

ug then peug (x”) > c(x”)ug (x”") and therefore e > minc(x). O
Since u, = e~ We®/¢ we have
LW, AW, dW,
—eal () —= +al () —— - V(x )— +c(x) = (3.3)
0x 8 0X; Bx] xJ

The bounds for the first and second derivatives of W, (x) are obtained in the following

Lemma 8. There is a constant C, independent of ¢, such that

max [VW,| < C, max |d*W,/dx;dxj| < C/e. (3.4)

Proof. The proof of the first bound in (3.4) is borrowed from [21]. Let Dy (x) := |V W, (x) k
and Dy(x) == ) |92 W, (x)/axic’)xj|2 From (3.3) in conjunction with (3.2) we get mD; <

C(e Dl/2 1/2 + 1), this in turn implies that

D, < C(eDY? +1). (3.5)
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Assume that D; attains its maximum at a point x, then we have VDi(x') = 0 and
’J(x)aax (x) <O0or

2w, AW,
8() 5()—0 (3.6)
0X;0Xk
and
W, 32w, S BW,. AW,
SZ j_ £ ¢ <—£Zalf—8 £ oatx. (3.7)

0X;0Xk ijaxk 0x;0x0x, 0xx

In order to bound the right hand side of (3.7) we take derivatives of (3.3), this yields
> W, dal *W, L 02W, OW, L *W,  9b OW. @

—eal ———f  —e— — 24" + b + — % (39
0x;0x;0x dxy 0x;0x; dx;0x 0x; 0x;0xy  0xp 0X; Xy

Then we multiply (3.8) by d W, /dxk, sum up the resulting relations in k and insert the result
into (3.7) to obtain

PW, . 9*W, /
()=—L ) = C(eD 2D, 2 ) +D1 () +D 2 ().

emDy(xX) <& Y al(x
2(6) = Zk: ( )Bx,'axk 0xj0xk

Next we use (3.5) to get that D, (x") < C/¢, and exploiting once more (3.5) we obtain the first
bound in (3.4).
To show the second bound in (3.4) we use the following interpolation inequality

IVul? < C([la¥ ;20 gt oo+ luallzoo) oo, (3.9)

which holds for every Y-periodic u with a constant C independent of u. The proof of this
inequality follows the lines of one in the Appendix of [7] (here it is important that the
coefficients a¥ are Lipschitz continuous). We apply (3.9) to (3.8) to obtain

2w, 2w,
| e = 5 (Z e |-

0x10xy Il L>®
here we have also used the first bound in (3.4). From (3.10) one easily derives the second
bound in (3.4). O

1) Vi k, (3.10)

It follows from Lemma 7 that u, — u, up to extracting a subsequence. Due to
Lemma 8 the family of functions W, (x) is equicontinuous, moreover min W(x) = 0
therefore passing to a further subsequence (if necessary) we have W,(x) — W(x) uni-
formly. The standard arguments (see, e.g., [15]) show that the pair © and W satisfies
the equation

i OWOW
al(x)—— — V(x )—+C(x) (3.11)
dx; 0x; ax;
in the viscosity sense.
The number p for which (3.11) has a periodic viscosity solution is unique (see [20, 32]),

therefore the entire sequence 1, converges to u as & — 0.
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4, Apriori bounds

In this section we show that the eigenvalues A, of (1.1) are uniformly bounded and the
functions W, (given by (2)) uniformly converge on compacts in £ as ¢ — 0, up to extracting
a subsequence. We also establish existence of continuous up to the boundary relaxed semi-
limits, which is important for deriving the homogenized boundary condition (1.5).

Because of the Dirichlet boundary condition on the boundary 92 and fast oscillations of
the coefficients the arguments here are more involved than those in the periodic case.

Lemma 9. There is a constant A independent of ¢ and such that

— A < e S 8Upc(x, ). (4.1)

Proof. The proof of the upper bound follows by the maximum principle as in Lemma 7.
To derive a lower bound for A, we construct a function v, and choose a number A > 0
such that v, = 0 on %2, and

Leve —Ave >0 inQ (4.2)

for every A < —A, 0 < & < 1. There is a function V € C?(Q) satisfying the following
conditions, V. > 0in Q and V = 0 on 9%, |[VV| > 1 in a neighborhood of 9€2. Set
Vve(x) == eV®/e _ 1, where « is a positive parameter to be chosen later. We assume that
—A < minc(x, y) so that A < minc(x, y). Then we have

Leve—Avg > (m/cz—K(Ml—|—8M2)—|—(c(x,x/8a)—k))e"v(x)/g—(c(x,x/s")—k) >0 inQ
when k > k1 := (M} + Mp)/m. Here Q' = {x € Q; |[VV| > 1}, M] = max}bi(x,y)%(x) ,
M, = max |a"j(x,y)%(x)|. On the other hand, § := inf{V(x); x € Q\Q'} > 0. Therefore,

#V@/e 5 2in Q\Q', when k > Kk, := (10g2)/8. Assuming additionally that minc(x, y) —
A > 2k (M; + M5), we have

Leve—Ave > (—k(M1+eMy)+(c(x, x/e¥)—L)) eXp(ky /&) —(c(x, x/e¥)—A) > 0 inQ\Q'.

Thus, setting « := maxX{x, k2} and A := 2k (M1 + M) — minc(x, y), we get (4.2).
Now note that A is also the first eigenvalue (the eigenvalue with the maximal real part)

of the adjoint operator Liu = g2 3 x‘?g 5 (au) — sa%i(biu) + cu, and the corresponding
eigenfunction u} can be chosen positive in Q. Therefore, if A\, < —A then (Love —Aeve)u) >
0 in Q. This contradicts the Fredholm theorem. O

The following two results show that, up to extracting a subsequence, functions W,
converge uniformly on compacts in 2. For brevity introduce the notation d(x) = dist(x, 9€2).
Lemma 10. For every B > 0 there is a constant Cg, independent of ¢, such that

IVWellLo(@p) < Cps (4.3)
where Qg = {x € ; d(x) > Be}.

Proof. Asin Lemma 8 we use the Bernstein method, but its local version because W, (x) tends
to +00 as x — 9%2. For more details see for example [2]. Let £ be an arbitrary point in Qg,.
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Introduce a smooth cutoff function ¢ > 0 compactly supported in the ball Bg = {x; |x| < B}

and such that ¢ = 1 in Bg/,. Consider the functions
W, 2

8x,~8x]~

D) = ¢ ((x = ©)/OIVW. and Dyx) =) |

Following the line of Lemma 8 one can show that if D; attains its nonzero maximum at a point
/
x' then

C 1/2
0iD2 = S5 (14 GAVWLl +602D) VWl + 82 VW.P),  9e() = p((x = £)/e)

where C is independent of ¢ and &. This bound in conjunction with the pointwise inequality
IVW,[? < Ci(eDy/+1) yields o* (' —£) /) D2(x') < Cs/e?. Thus max{|V W (x)|s |x—&| <
Be/2} < Cy with Cy = Cy(B, m, [la”llct, [Pl llcll ot €2). O

Lemma 10 shows that if we renormalize W, by subtracting a proper constant (e.g. W (xo)
for a fixed xp € 2) then functions W, converge locally uniformly to a function W (x) along
a subsequence &, — 0. The latter function can be extended by continuity to a Lipschitz
continuous function on 2, moreover we have

sup W, (x) —W(x)| -0 asn—o00 VB >D0. (4.4)
x€Qpe,

Now for x € Q we define a function W by

W(x) = liminf We, (x,). (4.5)

X, €Q

It follows from the definition of W that this function coincides with W in 2. The following
important result shows that Ectually W = W on Q (it is clear that W < W, but even
boundedness from below of W (x) on 92 is not obvious).

Lemma 11. Let ¢ € C*(Q), then every global minimum point x, of W, — ¢ satisfies d(x) > Be
with some B > 0 independent of ¢. It follows that the functions W (x) defined via (4.4) and W
given by (4.5) coincide everywhere in Q.

Proof. Consider the function Ve (x) = ¢ (x) — pe (x), where p, = 2d(x) — Kd*(x)/e and K is
a positive parameter to be chosen later. We claim that V satisfies
ij o 82V€ o .
—ea’(x,x/") ——— + H(VV,x,x/e%) < —Ag in Q\Q/k, (4.6)
Bxiaxj

where Q¢ /x = {x € Q; d(x) > ¢/K}, and Ak is a positive constant which can be chosen as
large as we want by choosing an appropriate K > 0. Indeed, |[Vp.| < 4 when d(x) < ¢/K
while
8% pe 0d(x) 0d(x)

< —2Ka¥ (x,x/e%) ——=
8x,'8xj 3x,‘ ij

8aij(x,x/8"‘) +&C < —2mK+ C in Q\Q/k,

where C is independent of ¢ and K. Thus taking sufficiently large K we get (4.6) with a
constant Ax > —A, (by Lemma 9 we have —A, < A with A independent of ¢). Then it
follows from (1.3) and (4.6) that the function W, — V, cannot attain its local minimum at any
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interior point of 2\ €2, /k, otherwise at such a point — —eal(x,x/e%) gx +H(V We,x,x/e%) <

—eal(x,x/e%) 3‘)x

7 + H(VV,x,x/e%) leading to the inequality Ax < —A, that contradicts
the 1nequa11ty Ak > —X¢. Thus, for x € Q\Q/k we have
— ¢+ o Zamln(Ws Qs + pe) = mln(Ws ¢) +¢/K

E‘/K s/K

along with the inequality p, < ¢/K in the interior of 2\ /k, which easily follows from the
definition of p.. This implies, in particular, that the minimum of W, — ¢ over 2 is never
attained at a point x, such that d(x;) < /K.
To prove the inequality W > W approximate W by functions ws € C2(Q) so that
maXg |W — ws| < 8,8 > 0. Then
W) —ws(x) = liminf (W, (x,) — ws(x)) = liminf min(W,, — ws)
n—00, 3x,—>x n—>o00 q

= liminf inf{W,, (x) — ws(x); x € Qge¢, }» (4.7)
n— oo

for some > 0 which depends on 6 but independent of . By (4.4) the right hand side of (4.7)
is ming (W (x) — ws), thus passing to the limit § — 0in (4.7) yields W(x) > W(x). O

Corollary 12. There is a constant k > 0 such that every maximum point x. of u. satisfies
d(xg) > ke.

Proof. We simply apply Lemma 11 with ¢ = 0. 0

5. Vanishing viscosity limit

This section is devoted to the proof of Theorem 1. According to the results of the previous
section we can assume that,

Ag, — A (5.1)

and (4.4) holds with a Lipschitz continuous on € function W. According to Corollary 12 and
Lemma 10 we can return to the normalization (2.2). We are going to show that the pair A and
W is a solution of problem (1.4), (1.5).

For brevity we will write ¢ in place of ¢,. We follow the same scheme foro > 1, = 1 and
o < 1. We construct test functions ¢, converging to ¢ uniformly in £, and such that

¢
dx;0x;

— ea¥ (xg, x¢ /€) (xe) + H(Vpe (xe), xe, Xe /%) = H(Vg(x0), x0)  (5.2)
for every sequence of points x; € 2 such that x; — x¢. The existence of such functions ¢,
will be established later on.

Consider an arbitrary function ¢ € C?(2), and assume that W — ¢ attains strict minimum
atapointxg € . Since W canbe equivalently defined as the relaxed semi-limit (4.5) (W = W
on 2 by Lemma 11) there exists a sequence x, € 2 of minimum points of W, —¢,, converging
to x9. We have
2W, . 3% pe

(x¢) = a”(xg, xs/ga)

Ve (x:) = VWe(xe) and  a¥(xe, x/6%) >
8xian 8x,’an

(xe).
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Using (1.3) to get —wij(xg,xg/s"‘)%(xg) + H(Vq&g(xg),xg,xg/s“) — Le > 0, and then

%
passing to to the limit as ¢ — 0 with the help of (5.2) we obtain H(V¢(xg),x0) > A.
If W — ¢ attains strict maximum at a point xo € € we argue similarly to derive
H(V$(x0),x0) < A. Thus W(x) is a viscosity solution of (1.4), (1.5).
It remains to construct functions ¢, that satisfy (5.2), and converge to ¢ uniformly in Q.
Case o > 1. We set

s (1) = ¢ (x) + > 710 (x/e%),
where (y) is a Y-periodic solution of
%0
9yidy;j

— al(x0,y) = H(V¢ (x0), %0) — H(V(x0), %0, 3)- (.3)
Thanks to (2.3) such a solution does exist. Indeed, (2.3) is nothing but the solvability condition
for (5.3). Moreover, since the coefficients and the right hand side in (5.3) are Lipschitz
continuous, 8 € C>! (see, e.g., [23]). Therefore if x, — x as & — 0, then we have

’ 3¢,
_ gl « a
ea’ (xe, x: /&%) axiaxj(xg)+H(V<f>s<x6),x8,x8/8 )
ij o 829 o
= —a¥ (xg, x /%) (xe/€%) + OC(e)
9yidy;
2
+ H(Ve(xs) + O™, xe, x5 /6%) = —a (xo, % /€%) (xe /&%)
0yidy;

+ H(V (x0), X0, X /&%) + O(Ix — xe| + & + €%~ 1) = H(Ve (x0), x0) + 0(1).

Casex = 1. Set . (x) = ¢ (x) + €0(x/¢), where 6(y) = —log ¥ (y) and ¥ () is the unique
(up to multiplication by a positive constant) Y —periodic positive solution of
i L2 1 —
a’(xo,y) + 0 () — + ()Y = H(p,x0)?, (5.4)
3yidyj 9y;j

where p = Vo (x0), b/ (y) = b (x0,y) —2a7 (x0, y)pi> C(y) = a¥(x0, y)pipj— b (x0, y)pj+c(x0, ).
By a standard elliptic regularity result we have 6 € C>! (see [23]), and one can easily verify
that
2

&

—ea’ (xg, x:/8) (xe) + H(Ve (xe), xe, xe /€) = H(Vep(x0), x0) + 0(1),

8xi8xj
as soon as X — Xo when ¢ — 0.

Casea < 1.Set e (x) = ¢ (x)+£%0:(x/e%), where 6 is a Y-periodic solution of the equation

2 08

0y;dy;

— G (g, )~ + H(p + VOe (), x0,y) = He(poxo) withp = Vo(x).  (5.5)
Such a solution exists if H.(p,xp) coincides the first eigenvalue 1. (eigenvalue with the
maximal real part) of the spectral problem

e g 0D
+ & T () — + ()T = ues,
8}’1‘ v y 3)/] Y)Usg HeVUeg
U is Y-periodic,

82(1—0{)

a’(xo, y)
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where b/ , ¢ are as in (5.4). According to the Krein-Rutman theorem i, is a real and simple
eigenvalue, and the corresponding eigenfunction ¥, can be chosen positive. Then a solution
of (5.5) is given by 6, = —&!~%log ;. We invoke now the results obtained in Section 3,

H,(p, x0) — H(p,x0) = H(V(x0), X0) (5.6)
(where the limit ﬁ(p, Xp) is described in (2.5)),
1879 /3yidyjli < C/e'™ (5.7)
This allows us to obtain (5.2) similarly to other cases considered above,

e

Ty 50+ H(V o) e 0/5%)

2

— ea’(xg, xs/ga)

Oc

— _l-a i o
£ a’(xg,x: /€ )3)/1'3)/]'

(xe /%)

296

y d
+ H(VP (xe) + VOe (xe /6%), xe, xe /%) + Ole) = —&' ¥ (x0, x: /%) Ty
5]

+ H(V (x0) + VOe(xe /%), x0, X /6%) + O(lx — xe| + &) = H(V¢ (x0), X0) + 0(1).

Theorem 1 is completely proved.

(x¢/€%)

6. Case of zero potential. lower bound for eigenvalues via blow up analysis

The goal of this and the next sections is to prove Theorem 4. Here we consider in details the
special case when « = 1 and c(x, y) = 0, the corresponding convection-diffusion operator is
given by (2.14). Under assumptions (2.19) the eigenvalues A, of (1.1) converge to zero as & —
0. It is then natural to study the first non-trivial term of the asymptotic expansion for A.. We
show that, under our standing assumptions, this term is of order ¢, and its limit behavior can
be characterized by local analysis near points of the Aubry set Az of the effective Hamiltonian.

The main result of this section which establishes a refined lower bound for eigenvalues is
given by

Theorem 13. Let c(x,y) = 0 and a = 1, and assume that (2.19) is fulfilled. Then
Iimi(r)1f re/e > 0 =max{o(§); & € Ay, (6.1)
£—

where quantities o (§) are defined in Theorem 4.

Proof. Fixapoint§ € Ag.
Applying the maximum principle we see that A, < 0. In order to obtain a lower bound, we

introduce, for any § > 0, an auxiliary spectral problem L.v, — §|x — & |2V, = €6,vg, OF

3%, Ive  Slx— &

V(x,x/e)—
Bxiaxj+ (x X/S) ij &

saij(x, x/¢) Ve = 0gVe INQ (6.2)
with the Dirichlet condition v. = 0 on 92. According to [42] the eigenvalues A, and €6, are
given by
. Lo —8|x —E?
}, €6, = inf { sup e¢ —dlx — & ¢},
xeQ ¢

Ae = inf { sup ﬁ:f
xeQ
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where in both expressions the infimum is taken over the set
{p e CHEONCN), ¢ >0in 2, ¢ = 0on Q).
Therefore, for any given § > 0, we have
Ae > £0%.

We assume hereafter that the first eigenfunction v, of (6.2) is normalized by v, (¢) = 1.
Let us transform (6.2) to a form more convenient for the analysis. First, after changing
variables z = (x — &)/4/¢ and setting w, (z) = v¢ (£ + \/€z) equation (6.2) becomes

92 we , V. o e (VE2 2/ V/E) D, 3 .
“ssm(f“/ﬂ ,z] il NG a_zj — 8lz]Pwe = Gewe  in (2 — £)/+/e.
(6.3)

Here and in what follows the subscript “€,&/e” denotes the shift (translation) by £ in x and

by &£/¢ in y, i.e., for instance, algj,g/s (x,y) = al(x + &,y + &/¢). Next we multiply (6.3) by
0 ¢ /e (Vez,2/+/€), 6* (x, y) being given by (2.17). After simple rearrangements this yields

e S,/ (VE2.2/ VE) o,
Zj

0 ij
<0§’€/8(ﬁz,z/ Ve)ag . (Vezz/Ve) ) NG 9z

9z

N (y(ff;g+ £) L Ve )>

= (0¢ + 4|z )Qgg/g(\/_z>z/\/—)ws, (6.4)
where

) . 9 /. _
S (xy) = b (x,)0%(x,y) — a—y(aﬂ(x,y)9*<x, ») =V

W in (6.4) are uniformly bounded functions whose structure is not important. Since 6*
solves (2.17), the Y-periodic vector field S(x, y) = (SY(x, Pseeos SN (x, ¥)) is divergence free,
for every fixed x, and, due to the definition of b, this field has zero mean over the period.
Therefore, S(x, y) admits the representation (see, for instance, [12])

d ,
(x,y) = —T’J (x, y) with Y-periodic in y skew-symmetric Th(x,y) (TT = =T,
ayi

Moreover, functions T are continuous with bounded derivatives dT%/dx;. We can thus
rewrite (6.4) as

(%s/e(x/_ 22/VE )aws) (y(ﬁj;é) NG h’())aW]‘s

= (Gc + 8121)67 ¢ /o (Vez, 2/ VE) W, (6.5)
where qg’é/e(x,y) = qij(x +&y+E&/e), qij(x,y) = 9*(x,y)aij(x,y) + Tij(x,y), and il]g are
uniformly bounded functions. Note that on every fixed compact we have

VJez+6)  VJez+6)-VE  oF
NG NG ox;i

®)

uniformlyinzas e — 0.
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In the following statement we do not suppose condition (2.19) to hold, however we still
assume that c(x,y) = 0and o = 1.

Lemma 14. Ifb(§) = 0 for some & € S then the first eigenvalue ) of operator (2.14) satisfies
the bound —Ae < Ay < 0 with some A > 0 independent of ¢.

Proof. We know that 1, < 0 and in the proof of the lower bound we assume first that £ € Q.
Then (6.5) holds in B, = {z; |z| < 2} for sufficiently small €. Letting

wy (B (Jez
Egaux)w_ oz, <q55/8<\/_z \/_) gzj> +( («/:/_‘f‘%—) +\/_]’I/ (Z))

R (ﬁz, ﬁ>w

one can rewrite (6.5) in the operator form ES’“") We = 589;‘,5 /e («/EZ, z/ «/E) w, and consider

the parabolic equation for the operator £

o
at

subject to the initial condition w, (0, z) = w,(z) and the boundary condition w,(t,z) = 0 on
(0, +00) x 9B,. The solution w, of this problem satisfies the pointwise bound

E(aux) =0 in (0,400) x By,

We(t,2) < exp (6. (MiNO*)t) we(z). (6.6)

This follows by the maximum principle applied to
<8t £899) ((exp (Ge(min6™)t) we (2) — W (1,2) )
= Go(mine* — 67 . (Vez 2/ VE) Jwe (@) = 0.

On the other hand, since the coefficients of the operator L5 are uniformly bounded

on B, and the uniform ellipticity bound 6] . (Vez, z/ﬁ)ag’é/s (Vez z//E) ' =
(min6*)m |¢ | holds, by the Aronson estimate (see [4]) we have

min{w,(1,2); z € B;} > Mmin{w,(0,z); z € B;}
with M > 0 independent of ¢, where B; is the unit ball B; = {z; |z| < 1}. Combining this
with (6.6) yields

e(MiN6™)e rginwg > min{ive(1,2); z € B1} > Mmin{w:(0,2); z € B} = Mrrgin We»
1 1

ie.6, > logM/ min6* =: —A. Thus 6, > —A and A, > —Ae.
Finally, in the case £ € 92 we can repeat the above argument taking & € € in place of &,
with |&; — &| = dist(§., 9Q2) = 2./e. O

In the proof of Lemma 14 we have got a uniform lower bound for &, which (in conjunction
with the obvious inequality 6, < 0) allows one to obtain uniform bounds for the norm of w,
in C*?(K) (with 8 > 0 depending only on bounds for coefficients in (6.5)) and H 1(K), for
every compact K (see, e.g., [23, Section 8.9]). Thus, up to extracting a subsequence, w, — w
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in Coc(RN) and 6, — &. Moreover, using the standard homogenization techniques based
on the div-curl Lemma, one can show that w solves

i 32w S OW

Q +ziB'— — §|zPw=6w inRV, (6.7)
3Z,’32j 3Zj
where Q7 = Q' are homogenized constant coefficients satisfying the ellipticity condition
(actually, one has QY = %%(Q §)) and

3 3 ob/
B'=PB'¢) = g(é)-

Since we assumed the normalization w,(0) = 1, we see that w(z) is a nontrivial solution of
(6.7). Moreover, if z, is a maximum point of w, (z) we get from (6.3) |z, |> < —6,/8. Therefore,
thanks to Lemma 14, |z;| < C. It follows that w(z) is a bounded positive solution of (6.7).

b ..
Let us now construct an eigenpair (o, w') of (6.7) with w’ of the form w/(z) = e~ '5%% and
a symmetric positive definite matrix (F(lsj)i j=1n- To this end, consider the following matrix
Riccati equation

4I'sQl's — I'sB— B*I's — 61 = 0,

where I denotes the unit matrix. It is well-known (see, for instance, [31, Theorem 9.1.5]) that
for positive definite Q and § > 0 this equation has a maximal solution I's, and, moreover,
I's being positive definite. Then w/(z) = e—ng,-z]' is a positive bounded solution of (6.7)
corresponding to the eigenvalue o’ = —2tr(QI's). Next observe that, by means of the

- 2 . . .
transformation w(z) = e~ w(z) with r > 0, equation (6.7) is reduced to

9w

) . oW y ) L
+ (B + 4rQ’])z,-8—W + (4r2Q’Jz,-zj + 2rtrQ 4 2rB'z;zj — SlzHw=26w inRN.

Qij
0z;0z; zj

For sufficiently small » > 0 we have ((4r2Q’7zz~zj + 2rtrQ + 2rBjizz~zj — 8|z|*) - —o0, and,
due to the boundedness of w, w(z) — 0 as |z] — oo. Then, according to [41, Theorem
1], the eigenvalue ¢ that corresponds to such a positive eigenfunction w vanishing as |z| —
oo is unique. Thus 6 = o’ = —2tr(Ql's), and summarizing the above analysis we have
liminf,_oAs/e > —2tr(Ql's). Finally note that I's converges to the maximal positive semi-

definite solution of the Bernoulli equation (see, e.g., [31, Theorem 11.2.1])
4TQr —I'B—B*T' =0, (6.8)

as § — +0. Calculations presented in Appendix C show that —2tr(Q') = o () with
o (£) being the sum of negative real parts of the eigenvalues of —B(). Thus, after taking the
maximum in § € Ag, we get the desired lower bound

Iigl)i(r}wf re/e =0 =max{o(§); & € Ag). O

7. Case of zero potential. upper bound for eigenvalues and selection of the
additive eigenfunction

In this section we derive an upper bound for the principal eigenvalue which completes the
proof of formula (2.20). Similarly to the previous section we make use of the blow up analysis
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near points of the Aubry set. We consider here only special (so-called significant) points of
the Aubry set, where we can control the asymptotic behavior of rescaled eigenfunctions at
infinity. We will show that only these special points have an influence on the leading term of
the principal eigenvalue and eigenfunction.

To define a significant point we recall that, due to Theorem 1, up to extracting a subse-
quence, the functions W, = —¢ l0g u, converge uniformly on compacts to a viscosity solution
W of problem (1.4)-(1.5) with A = 0. It follows from (2.13) that W has the representation
W(x) = min{dg(x,§) + W(§); € € Agh

We say that a point & € Ay is significant if

W(x) = dg(x,§) + W(§) in aneighborhood of £.

Otherwise we call £ negligible. For every negligible point § € Ay there are sequences
x" — £and " € Ag\{£} such that dz(x",&) + W(§) > dg(x",£") + W(E™). Since
the Aubry set consists of a finite number of points, the sequence £” converges (possibly
along a subsequence) to £’ € Az, & # £. Passing to the limit n — oo and using the
continuity of the distance function, we get d(£,£") = W(§) — W(£') (we always have
dg(£,&") = W(§) — W(£")). Now we introduce a (partial) order relation < on A by setting

g <& — dgE.&)=WE) — WE). (7.1)

This relation is clearly reflexive, its transitivity is a consequence of the triangle inequality
dg(§,8") < dg(§, &) + dg(&',£") while the antisymmetry follows from the inequality
Si(€,€") > Oheld for all §,&" € Ag with & # &'. Then we see that every minimal element
& € Ag is asignificant point. Since Az is finite there exists a minimal element, i.e. there is at
least one significant point § € Az.

Theorem 15. Let assumptions of Theorem 4 be satisfied, and let € be a significant point of Ag;,
associated to a converging (sub)sequence W, — W. Then lim._.o L:/e = 0(§) and functions
ug (& + /€2)/ue (&) converge weakly in HY(K) for every compact set K C RN to the limit
function w(z) which is the unique positive eigenfunction of
02 0
Q'J—w + Z,-B”—W =ow inRN (7.2)
32,‘32]' 32]'

corresponding to the eigenvalue 0 = o (§), normalized by w(§) = 1 and satisfying the
additional condition

w(z)e““_ISZ'Z_”“_[“Z‘2 is bounded on RY for some ju > 0 and every v > 0, (7.3)

where Tls and I, denote spectral projectors on the invariant subspaces of the matrix B
corresponding to the eigenvalues with positive and negative real parts (stable and unstable
subspaces of the system z; = —B"z;). Here coefficients Q" and BY are as in Theorem 4.

Proof. From now on we will assume that u, is normalized by u,(§) = 1, unless otherwise
is specified; the W will also refer to the limit of scaled logarithmic transformations of u,
normalized in this way. Thanks to the upper and lower bounds for the eigenvalue A, the ratio
Ag/€ converges, as ¢ — 0, along a subsequence, to a finite limit, denoted by . Then we
argue exactly as in the proof of the lower bound for A.. We consider rescaled eigenfunctions
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we(2) = ue(§ + 4/€2) that are solutions of

a
aZ,‘

oWe
aZj

(4] (Vema/ve) ) + (@ + Vel(2) 88”; = t—gegé(ﬁz, 2/ VE)we

Q-¢

Je

Up to extracting a further subsequence, w, converge in C(K) and weakly in H!(K), for every
compact K, to a positive solution wy of (7.2) with ¢ = oy. Eigenvalue problem (7.2) has, in
general, many solutions even in the class of positive eigenfunctions w(z). We will show that
the above defined eigenfunction wy also satisfies (7.3). Under condition (7.3) the following
uniqueness result holds.

in

Lemma 16. Spectral problem (7.2) has a unique eigenpair (o', w) with a positive eigenfunction
w satisfying (7.3) and normalized by w(0) = 1. Furthermore, w(z) = e %% where T is the
maximal positive semi-definite solution of (6.8), and o = —2tr(I'Q).

Proof. First observe that w(z) = e 174% gsatisfies (7.3). This follows from the relation I' =
ITiT; > yIIIII; with y > 0, see Proposition 25 in Appendix C. It is also clear that w(z)
does solve (7.2) with o = —2tr(I’'Q).

To justify the uniqueness of  and w(z) we make use of a transformation w(z) = e? @Dw(z),
with a quadratic function ¢ (z) to be constructed later on, which leads to the equation of the
form

5~ -
07w + Ziﬁia—vv

Cxyw=ow inRV. 7.4
9202 sz+ (2)w=0ow in (7.4)

Qij

We will choose ¢ (z) so that E(Z) — —00, W(z) — 0as |z| — oo. Then, by [41], there is
a unique o such that (7.4) has a positive solution w(z) vanishing as |z| — oo (w(z) is also
unique up to multiplication by a positive constant).

We proceed with constructing ¢ (z). By setting ¢ = rAijz,-zj — rAZz,-zj, with symmetric
matrices A and A, we get in (7.4)
B = B+ 4rQl (Al — AT
and
C@) = 47 (A — ADQ™ (AT — APz
+r((B Al — D) + (4] - ADB)zi; + 2tr( QAL — A)) ).

Define As and A, as particular solutions of the Lyapunov matrix equations

AB+ B*A, = T*Tl,, A,B+ B*A, = —IT*I1,, (7.5)
which are given by
0 y 0
A = / P dr, A, = / BT e dt, (7.6)
—00 0

and choose sufficiently small ry > 0 in such a way that the matrix

4r(Au _As) Q(Au _As) + (Au _AS)B+B* (Au _As) = 4r(Au _As) Q(Au _As) - H? Hs - HZ Hu
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is negative definite for 0 < r < ry. Then 6(2) — —00 as |z| — oo. It remains to see that if
w(z) satisfies (7.3) then choosing small enough r > 0 we have w(z) — 0 as |z| — oo. Here
we have used the fact that the inequalities A; < y,IT}TI; and A, > y»IT}I1, hold for some
Y1, 72 > 0. O]

So far we know that A, /¢ — 09 and w(2) = u. (& +4/€2z) converge uniformly on compacts
to a positive solution wy of (7.2) with 0 = 0y. In order to apply Lemma 16 we need only to
show (7.3). To this end we first construct a quadratic function @), (x) satistying

H(VCDZ (x),x) < —=8lx —&]* ina neighborhood U(€) of & (7.7)

for some § > 0.

Lemma 17. Let us set ¢5(x) := A?xixj and ¢, (x) := Ainxj, where A and A, are solutions of
the Lyapunov matrix equation (7.5) given by (7.6). Then the function

D), (%) = puds(x — §) — vou(x — &) (7.8)
satisfies (7.7) for some & > 0, provided that 0 < p, v < r and r > 0 is sufficiently small.

Proof. We have, as x — &,
. _ oH AP}, 2
H(V®Y (x),x) < H(0,x) + —(0,x) (x) + CIVP), (x)]
H apj BXJ' "

b 0D,
= —(6i = &) —(E) 7= + CAVELW* +6(x — &1
Xi 3Xj

—2(x; — £)BH (A — vAD) () — &)
+ CLATTE (x — ©)12 + VT (x — £)1) +o(Ix — €3, (7.9)

Note that (uA; — vA,)B + B*(uAs — vA,) = pIliTI; + vIT:T1,, therefore the first term in
the right hand side of (7.9) can be written as —u|IT5(x — £)|> — v|I,(x — £)|?. Thus (7.7)
doesholdif0 < 4 < 1/Cyand 0 < v < 1/C. O

IA

Next we prove

Lemma 18. IfCDZ (x) and , v are as in Lemma 17, then W(x) > <I>l‘i(x) in U'(§)\{&}, where
U'(&) C U(&) is a neighborhood of &.

Proof. Since & is a significant point, we have W(x) = dg(x,&) in some neighborhood U (£)
of £. Due to the representation formula (2.11), there exists a sequence of positive numbers
{t" > 0}°, and absolutely continuous curves " : [0,#"] — < satisfying the initial and the
terminal conditions " (0) = & and n"(t") = x such that

tn
d6) = im [ T dr.
—Jo

We claim that there is a neighborhood U’(§) C U(§) such that for all sufficiently large n
and any x € U'(§) we have {n"(7); t € [0,t"]} C U(§). Indeed, if we assume that such
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a neighborhood does not exist then there are sequences of points x* — & and curves n"(¢)
such that

e 1" connects & to x", that is " (0) = &, " (") = x™;

o n"(t") € AU(&) for some t" € (0, t");

o lim, oo fotn L™, n™ dr = 0.
Letting y" := n"(t") € dU(£) and considering the continuity of the distance function, we
obtain lim,_, oo S5(y", &) = 0, where Sz(y", &) = dg(y", &) + dg(§,y") is the symmetrized
distance. After extracting a subsequence y" — y € dU(&) we obtain S;(y,£) = 0. Therefore
y € Ap. Repeating this reasoning we conclude that there is a point of Aubry set on the
boundary of any open neighborhood of &£. Therefore, £ cannot be an isolated point of Agz.
This contradicts (2.19).

Now using (7.7) we get, for every x € U’(&)

t" "
Y (x) = /0 Vo (" - it dr = /0 (VoL - " — HVOL ("), ™) de
" "
+ [ Ao < [Tt
0 0
when 7 is sufficiently large. It follows that @) < W in U’(§). On the other hand if @), = W
ata point xo € U’(§) then xp is a local minimum of W — ¢, and ﬁ(V@;(xo), xp) > 0 since
W is a viscosity solution of H(V W (x), x) = 0 in Q. Therefore, xo = & by (7.7), i.e. CID;’L < W
in U'(&)\{¢} and choosing, if necessary, a smaller neighborhood U’ (&), we obtain the desired
statement. O

The following step is crucial in establishing (7.3). We want to construct a test function
W, (x) of the form W, (x) = CIJ;’L(x) + &6, (x, x/€) such that

Z‘PS

8xi8xj

— eal(x,x/€) + H(VW¥(x),x,x/¢) < H(Vfbl‘i(x),x) +Ce inU'(§). (7.10)
To this end we first assume that the solution ¢ (p, x, y) of (2.4), normalized by [} 9 (p, x, y)dy =
1, is sufficiently smooth, and set 0, (x, y) =20 (V CIDfL(x), x,y), where 0(p, x,y) = 1099 (p, x, y).
Then, since

9%60(p, x,y)

—a¥(x,y) By,
157

+ H(p+ V,0(p, x, ), x,y) = H(p,x),

(7.10) is straightforward. Note that in this case O, (x, y) does not depend on ¢. In the general
case, thanks to Cl—regularity of the coefficients a”(x, y) and b(x, y), all the first and second
order partial derivatives of & (p, x, y) exist and continuous on RN x Q xRN, except (possibly)
929 (p> x, y)/0x;0x;. To obtain sufficient regularity of 0; (x, y) we set

O (x,y) = / Qe (x — x/)G(VQJI‘i (x),x,y)dx/,

where ¢, (x) = e No(x/¢), with ¢ (x) being a Cg° (RM) nonnegative function, f p(x)dx = 1.
Then we have

2 2

; %0
a (x,x/s)(ay‘ay‘ (V) (0, x/¢) = ———
i0)j ()

and |V,0(V®!, (x), x, x/¢) — V(0 (x, x/¢))| < C. This yields (7.10).

SHNQ)

(6: (0 x/0)) ) <
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It follows from (7.10) and (7.7) that

2
€

—eal(x,x/€) + H(VW,(x),x,x/¢) < —8|x — &>+ Ce in U'(). (7.11)

Xi XJ'
Consider now the function W, — W,. By Lemma 18 we have W, > W, on dU'(§) for
sufficiently small ¢, therefore either W, > W, in U'(§) or W, — W, attains its negative
minimum in U’(§) at a point x,. In the latter case we have VW (x;) = VW, (x,) and
2 W, RV

xe) > al(xe, x0 /€
xiaxj( e) > al(xe, Xe/ )axl_axj

aij(xs;xa/g) (xe).
Therefore,

i W,
he = —ea’(xg, X /&) . (xe) + H(vws(x€)>x£’x€/8)
8x,~8xj

2
£

8x,'8xj
Thus either W, > W, in U'(§) or W, > W, + W, (x.) — We(x.) in U'(§) and x, satisfies
|xe — &| < C\/s. Both cases lead to the bound W, (x) > @), (x) + We(xe) — Be, where X,

is either & or x, (recall that u, is normalized by u.(§) = 1, ie. Wy(§) = 0). Then, setting
z = (x — §)/4/€ and recalling the definition of ®,, in (7.8), we get

IA

—Saij(Xe>xs/8) (xe) + H(Vq}s(xs)>x€’x€/8) < —dlxe — §|2 + Ce.

We(2) < Cwe(zg)e H@T0u@ 0 (U(E) — £)/4/e,

where z; = (X, — &)/+/¢, and hence |z;| < C. Observe that since z, stay in a fixed compact
as ¢ — 0, then wg(z,) < C and in the limit ¢ — 0 we therefore obtain

w(z) < Ce M¢s@+tvdu(@ i RN,

It remains to note that ¢¢(z) > y3|ITz|* and ¢, (z) < y4|T1,z|? for some y3,ys > 0. Hence
w(z) does satisfy (7.3), and applying Lemma 16 in conjunction with claim (iii) of Proposition
25 (see Appendix C) we complete the proof of Theorem 15. O

Proof of Theorem 4. Theorem 13 and Theorem 15 along with the fact that the set of significant
points is nonempty yield formula (2.20). Moreover they imply the uniqueness of the limiting
additive eigenfunction W(x), provided that the maximum in (2.20) is attained at exactly
one point & = & of the Aubry set. Indeed, we know that, up to extracting a subsequence,
functions W, converge uniformly (on compacts in ) to an additive eigenfunction W(x);
here W, = —elogu, and u, are referred to the eigenfunctions normalized by (2.2).
By Theorem 15 the unique significant point (associated to the chosen subsequence) is
£. Therefore £ is the only minimal element in Az with respect to the order relation <
defined in (7.1); hence it is the least element of Az, ie. € < & for every § € Agm.
This means that W(§) = W(E) + dg(& JE) forall € € Az, and consequently W(x) =
dﬁ(x,é ) + W(&). Thus, taking into account Corollary 12, we have W(E) = 0, and claim
(i) of Theorem 4 is now completely proved. Finally, claim (ii) of Theorem 4 is addressed in
Theorem 15. O
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8. Case of zero potential. Other scalings

The statement of Theorem 4 remains valid in the case of €*-scaling in (1.1) with & > 1. This
section focuses on this scaling. As in Theorem 4 we suppose that c(x,y) = 0. In this case
the effective drift is still given by formula (2.16), however the function 6* is now defined as a
Y-periodic solution of the equation

2

0yi0y;

(a7 (x, )0* (x,)) = 0, /Y@*dyz 1.

It should be noted that the discontinuous dependence of the effective drift on the parameter
o > 1ata = 1 might lead to a significant shift of the concentration set of the eigenfunction
ue from the fixed points & of the vector field b, if & > 1 is sufficiently close to 1.

In order to define more precisely the location of concentration points of u,, let us introduce
the approximate effective Hamiltonian H, (p, x) as the (additive) eigenvalue corresponding to
a Y-periodic eigenfunction of

y 920, (p, x, . —
_al](x,y)M +H(p+€ lv},eg(p,x,y),x,y) :Hé‘(p)x)) (8'1)
dyidy;
and the approximate effective drift b, (x) by
= H
b, (x) = —88 =(0,).

J

The eigenvalue H, is unique and 6, is unique up to an additive constant, moreover 6, can be
found as the scaled logarithmic transformation 6, = — Sz(a;_l) log ¥, of a positive Y-periodic
eigenfunction of the linear eigenvalue problem

av

3 929 ) .. _
219 gl (x, y) ——— + 174V (x, y) — 247 (x, y)pi)) — + H(p, %, 1)V = He (p, %) 0.
dyidy; 9y

Similarly to the case @ = 1, the drift b (x) is defined by

be(x) = / b(x, )0 (x,y) dy, (8.2)
Y
via the Y-periodic solution 8 of the equation
2
) 9 .
al(x,)07F) — 71— (¥ (x,9)07) = 0 (8.3)

normalized by [}, 6 dy = 1. From the smallness of the second term in the last equation, it
follows that, under our assumptions on the coefficients, b, — b in C'(2) topology, moreover
bs — bl @ = O(¢*~1). Therefore, if b has a finite number of zeros in €2, and all of them
are hyperbolic fixed points of the ODE X = —b(x), then, for sufficiently small & > 0, b, has
the same number of zeros, and the distance of these zeros from the corresponding zeros of b
is at most O(e*~1).

Theorem 19. Let o > 1, and c(x,y) = 0. Then, under conditions (2.19), all the statements of

Theorem 4 remain valid except for claim (ii), where & should be replaced with the nearest to &
zero of the vector field b, (x).
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Proof. Since the proof is quite similar to that of Theorem 4, we just outline main changes to
be made in order to adapt the arguments of Sections 6 and 7 to the case o > 1.

In order to obtain the lower bound for the eigenvalues A., one can follow the lines of
Section 6. However, the arguments of Section 6 should apply to the zeros & of b in place
of the corresponding zeros & of b. Also 6 should be used in place of 6*. Note that although
£ — £ ase — 0, the distance between this two points might be of order £*~1, so that in the
local scale /¢ this distance might tend to infinity. Nevertheless, up to the shift from & to &,
the local analysis is exactly the same as in Section 6. Let us emphasize that for € (1,3/2)
the statement of Lemma 14 remains valid only if at least one of zeros of b is an interior point
of Q. Clearly, this condition is satisfied if (2.19) holds.

The argument of Section 7 can also be adapted to the case @ > 1. As in the proof of
the lower bound one obtains equation (7.2) for the limit of rescaled functions w,(z) =
ue (€. + /ez), while the construction of the functions CID;L and W, is to be modified. One

can linearize the drift b, at & and construct the quadratic function CIDI‘i (which now depends

on ¢) following Section 7 with B]; = g—z(ég) in place of B%; also, in the construction of the
function W, one makes use of the eigenfunction 6, (cf. (8.1)) and sets W, (x) = dDI‘i(x) +
g2~lg (v @I‘i (%), x, x/€%). The details are left to the reader. O

Finally note that the case « < 1 remains completely open. The strategy used in the case
o > 1 fails to work for ¢ < 1. In particular, we cannot define in a natural way the effective
drift because the corresponding periodic cell problem (8.3) becomes singular for o < 1.

9. Example

Here we consider an example of an operator of the form (2.14) for which conditions (2.19)
are fulfilled. Let ¥’ (¢) be a solution of the ODE %’ = —b(x’), ¥'(0) = y. We assume that
« The vector field b(x) has exactly three zeros £1, £2, £% in Q. All of them are interior points
of Q. N
« &' and &7 are stable hyperbolic points, that is the eigenvalues of (— g—Z(Sl))ij:m
and ( — g—Z(S 3)),.j:m have negative real parts; £2 is a hyperbolic point and o (§2) >
max{o (§'),0 (£)}.
« The ODE x = —b(x) does not have a solution with lim;_, ; o x(t) = lim;_, _ x(t) =£2.
« For every y € Q\ U].Szl{“;‘f}, either lim,_ _oo #(t) = &2 orinf{t < 0;x'(t) €

Q) > — 0.
Proposition 20. Under the above assumptions the Aubry set A coincides with Uj3:1 =240

Proof. According to (2.18), »; (v — b(x))? < L(v,x) < 3(v— b(x))? with some 0 < »; < x,.
One can easily check that the desired statement follows from variational representation (2.12)
of the Aubry set and the assumptions on b. O

Hence, by Theorem 4, W(x) = dﬁ(x,éz) and A, = 0 (%) + o(e).
It is interesting to trace in this example the possible structure of the set Z = {x €
Q; W(x) = 0}. Observe that this set can also be defined as the set of points at which the
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eigenfunction u, does not show an exponential decay, as ¢ — 0. Its structure depends on

whether there are trajectories of the equation x = —b(x) going from &' or £ to &2, or not.
Let Z! be the set of all points y € Q such that lim,_, ;oo ¥ (t) = £} and lim,_, oo X (t) =
£2, and let Z* be the set of all points y € Q such that lim, 0¥ (t) = &> and

lim,_ _ oo #(t) = £2. Notice that the sets Z! and Z3 might be empty.
Proposition 21. We have Z = {2} U Zly 23,

Proof. The desired statement easily follows from (2.11) and the fact that W(x) = dg(x,& 2).
O
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Appendices

A. Uniqueness of additive eigenfunction and variational representation of the Aubry
set

The following simple result provides a uniqueness criterion for problem (1.4)-(1.5).

Proposition 22. Let A = Ay so that (1.4)-(1.5) has a solution W. Then W is unique (up to
an additive constant) if and only if Sg_, (x,y) = 0 for all x,y € Ag_,, where Sg_; (x,y) =
dﬁ,k(x,)’) + dﬁ*}\,(y’ x).

Proof. 1f Sg_, (x,y) = 0then W(x) — W(y) = dg_, (x,y); this follows from the fact that
for any x,y we have W(x) — W(y) < dg_, (x,»). In particular, if Sz_, (x,y) = 0 for all
x,y € Ag_,,then taking & € Az_,, weget W(x) = dg_, (x,&) + W(§) on Az_,. Thus,
according to the representation formula (2.13), W(x) = dg_, (x,§) + W(§) in Q,ie W is
unique up to an additive constant.

If there are two points £, £ € Ag_, such that Sg_, (£,£") > 0, then Wy(x) = dg_, (x, &)
and Wi(x) = dp_, (x,&") — dg_, (§,&’) are two solutions of (1.4)-(1.5) and 0 = Wy(§) =
W1(), while Wo(§)) — Wi(€)) = Sg_, (£,&") > 0. 0

The following statement justifies the variational definition of Aubry set given by (2.12).

Proposition 23. Let ﬁ(p,x) € CMRYN x Q) be a convex in p Hamiltonian such that
min{H (p,x)/|pl; x € Q) — 400 as [p| — oo. Assume that Ay is the additive eigenvalue
of problem (2.6)-(2.7). Then the Aubry set Ag_ - defined by (2.10) can be equivalently given

by

t
yEAH—AH‘:’?JE’i”f[/O (f(ﬁ,n)+kﬁ)dr;n(0)=17(t)=y,t>8}=0; (A1)

the infimum here is taken over absolutely continuous curves n : [0,t] — Q.

Proof. Let y € Aﬁ—xg- Then u(t,x) = dﬁ_kﬁ(x,y), being a solution of (2.6)-(2.7), is
a stationary viscosity subsolution of % + H(Vu,x) — A = 0in (0,+00) x Q and a
supersolution of this equation in (0, +-00) x 2. According to [14, item (5) of Theorem X.1],
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u(t, x) is given by the Lax-Oleinik formula
t
u(t,x) = inf {/ (L(,n) + Ag) dT + dgfxﬁ(z,y); n0)=znlt)=x2z¢€ Q} (A.2)
0

The minimization here (and below) is taken over absolutely continuous curves 7 in . Then,
using the representation formula (2.11) for d_ Aﬁ(n, y) we have, for every § > 0,

0 - dﬁ_kﬁ()/,)’) = “(5’)’)
s t
= inf { /0 LG, n) + A dr + /0 L@ n") + A drs 7' 0) =n(t) =y, ')

t
— inf {/0 @@ ")+ 2 drs ") = 0" () =y, t > 5}.

Conversely, let {t"}7° | be a sequence of positive real numbers such that t* — oo, and

tn
A, = inf {/; (L1, 1) + A dr; n(0) = n(t") =y} — 0, asn— oQ.

Consider u(t,x) given by (A.2). In view of (2.11) we have u(t,x) > inf{dﬁ_kﬁ(x, z) +
dﬁ—xﬁ(z’ y); zZ € Q) > dﬁ_,\ﬁ(x, ¥) . Since (2.6)-(2.7) has a solution W, after adding a
constant to W (if necessary) we obtain u(t,x) < W(x) + C < C; by the comparison
principle (see [14, Section III]). According to [14, item (5) of Theorem X.1], the functions
vs(t,x) = u(t+s, x) are uniformly Lipschitz continuous on [0, +-00) x €2 for s > 1. Therefore,

w(x) = I|m|nf u(t,x) = lim inf u(s,x) = lim inf u(t + s, x)

r—>00 $=>r r—>00 $>r

is a Lipschitz continuous supersolution of

ow  — _
=+ HYw) —dg =0 in (0,+00) x &,

Since w does not depend on ¢, it is also a supersolution of the equation H(Vw,x) — A = 0
in Q. On the other hand

w(x) < Ilmsuplnf u(t" + t, x)

n—oco >0

A

n—oo

inf / (f(iy,n) + A dr; n() =xn0) =y, t > 0} +limsup A, =dg_ kﬁ(x,y).
0
Thus dﬁ—xﬁ(’@ y) = w(x), and, therefore, d_ Aﬁ(x, y) satisfies (2.7). O

B. Aubry set for small perturbations of a gradient field

We outline here the proof of the claim stated in Remark 5.

Lemma 24. Let the vector field b(x, y) is a C'-small perturbation of a gradient field V P(x) with
C? potential P(x), and assume that
— the set {x € Q; VP(x) = 0} is formed by a finite collection of points in 2,

- the Hessian matrix (0 e P(x)) ___at every such a point is nonsingular.

ij=1N
Then condition (2.19) is satisfied.
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Proof. Consider a vector field b(x, y) whichisa C _small perturbation of VP(x), i.e. || b(x, y)—
VP(x)|l c1 @xY) = 8, and § is sufficiently small. Let us show that the Aubry set Az of the
Hamiltonian ﬁ(p, x) given by (2.4) (with c(x, y) = 0) is exactly the set of zeros of b(x) in €,
provided that 6 is sufficiently smalland P € C?(<2) satisfies the conditions specified in Remark
5. Since the Aubry set of this Hamiltonian coincides with that of the effective Hamiltonian

given by (2.4), we can assume without loss of generality that H(p, x)=> pl.2 — Ei(x)p,-. Let
us first find the Aubry set Ao of the Hamiltonian
0P(x)

8.76,' '

H(p,x) = Y _p} — pi

We calculate the corresponding Lagrangian L° (v, x) = }L |v+VP(x)|? and use criterion (2.12).
Let & € App, then there exist a sequence of absolutely continuous curves " : [0, "] — Q,
n"(0) = n"(t") = &, such that t* — oo and

ti’l
lim / 17" + VP(n™)|*dt = 0.

n—oo 0

This yields

t" i
0= ”m/ (5" + 2VP5 (™) - i + [VP() P)dr = Iimf (5" + [VPG™ P)dr.
n—oo 0 n—>oo 0

Therefore, n"(t) — & uniformly on every fixed interval [0, T]. It follows that £ belongs to
the set K = {x € ©; VP(x) = 0}. Clearly, we also have K C .Ago. Now note that the
effective drift b(x) given by (2.16), can be written as b(x) = VP(x) + l~75 (x) with C'-small
53 (%), ||Z?3 et = O(8) as § — 0. The latter bound readily follows from the regularity of 6*
and perturbation arguments. Thanks to the assumption on the critical points of P(x), by the
implicit function theorem, zeros of b(x) are isolated and are close to K when § is sufficiently
small. Moreover, if  is a small neighborhood of & € K then b(x) vanishes at exactly one point
£s € wand |&€ —&s| = O(8). Therefore, we can define a C? function Ps such that |VPs(x)| > 0
in Q\Kj, where Kj is the set of zeros of b(x), and |l_7(x) — VPs(x)| = gs(x)|VPs(x)| with
maX,. g gs(x) = 0O(8) as 8 — 0. This yields the following bound (for small §)

N -
v+ b(x)| ZE|V| +2VPs(x) - v+ Vs(x), YveRY, xe &,

where V5 > 0in Q\Kjs. Then, arguing as abov_e we see that Az; = Ks. Moreover, every & € K
is a hyperbolic fixed point of the ODE x = —b(x), as § is sufficiently small. O

C. Properties of solutions of Bernoulli matrix equation

We provide here some results on Bernoulli equation (6.8), used in Sections 6 and 7. Recall
that the matrix Q in (6.8) is positive definite, Il and IT, denote spectral projectors on the
invariant subspaces of the matrix B corresponding to eigenvalues with positive and negative
real parts.

Proposition 25. The maximal positive semi-definite solution I of (6.8) possesses the following
properties: (i) I' = ITiT'I1;, (i) I' > y 1} 11 (in the sense of quadratic forms) for some y > 0,
(iii) 2tr(QI') = tr(BIl), i.e. 2tr(QT) is the sum of positive real parts of eigenvalues of B.
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Proof. It follows from (6.8) that X = IT'I'I1,, satisfies
AITATQI'II, — X(BI1,) — (BI1,)*X = 0. (C.1)

Consider the symmetric solution of (C.1) given by
oo
X = / Y () dt, (C2)
0

where Y(f) = —4e®1  [T* QI IT,eM+ (note that Y(t) = Y()(BI,) + (BI1,)*Y(t) and
Y() - O0ast — +oo, therefore integrating we get X(Bl'[u) + (BII, )*X —Y(0) =
4ITIT'QI'M, ie. X does solve (C.1)). We claim that X = X. Otherwise Z := X — X is a
nonzero solution of equation Z(BIl,) 4+ (BI1,)*Z = 0 and Z = IT}ZI1,. Then Z(t) = Z
is a stationary solution of the differential equation Z(t) = Z()(BIl,) + (BI1,)*Z(#). The
latter equation has the solut1on Z(t) = ¢BMW" TZ1, B tWthh vanishes as t — +o00 and
satisfies the 1n1t1al condition Z (0) =Z.Thus Z =0, ie. X = X. On the other hand it follows
from (C.2) that X < 0 while X > 0, this yields X = X = 0. Since I' is positive semi-definite
we also have I'T1,, = IT;I" = 0 and the calculation I' = (IT,, 4 IT,)*I'(IT,, + I1,) = IT{T'TI;
completes the proof of (i). As a byproduct we also have established that I" is the maximal
positive semi-definite solution of

4T QT — I'(BII,) — (BI,)*T = 0. (C.3)

Indeed, assuming that r is another positive semi- deﬁmte solutlon of (C 3) we get
H*FQFHu = 0. This yields FHu —0sothatT = T} FHS, therefore I'B = IT* F(HS)ZB =
F(BHS) and T thus solves (6.8). _
To show (ii) and (iii) consider the maximal positive definite solution I's of
4TsQT's — T's(BI1, + 81) — (BII; + 81)*T's = 0 (C.4)
for § > 0. The existence of the unique positive definite solution follows from the fact that f‘gl
is the unique solution of the Lyapunov matrix equation
4Q — (BT 4 8DTy 1 — Ty Y(BI, + 81)* = 0 (C.5)

given by
0
Il = 4/ e(BTL+8Dt 0 (B8t g
—00

It is known (see [31, Theorem 11.2.1]) that Fg converges to the (maximal positive semi-
definite) solution I of (C.3) as § — +-0. This allows to establish (iii) easily,

2tr(Ql) =2 I|m 2tr(QF5) =— I|m tr( 5 (BT + 8D)* T's + (BII, + 81)) = tr(BIIy).

Finally, if we assume that (ii) is false, then there is 7 € RN such that 'y = 0 whlle Hsn # 0.
On the other hand, " (Ilm,;_H_O Fa I Hsn) [T} T1,n, where the limit lim;s_, .o Fa H*Hsn
exists, for eBTls+0Dt QeBIAD™ IT* [Ty decays exponentially fast as t — —o0, uniformly in
8 > 0. According to the Fredholm alternative IT}TI;n and n must be orthogonal, yielding
|TT1sn| = 0. We obtained a contradiction showing that (ii) does hold. O
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