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ABSTRACT

The paper deals with a Dirichlet spectral problem for a singularly
perturbed second order elliptic operator with rapidly oscillating locally
periodic coe�cients. We study the limit behavior of the �rst eigenpair
(ground state) of this problem. The main tool in deriving the limit
(e�ective) problem is the viscosity solutions technique for Hamilton-
Jacobi equations. The e�ective problem need not have a unique
solution. We study the non-uniqueness issue in a particular case of
zero potential and construct the higher order term of the ground state
asymptotics.
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1. Introduction

Given a singularly perturbed elliptic operator of the form

Lεu = ε2aij(x, x/εα)
∂2u

∂xi∂xj
+ εbj(x, x/εα)

∂u

∂xj
+ c(x, x/εα)u (1.1)

with a small parameter ε > 0, we consider a Dirichlet spectral problem

Lεu = λu, u = 0 on ∂� (1.2)

stated in a smooth bounded domain � ⊂ R
N . We assume that the coe�cients aij(x, y),

bj(x, y) and c(x, y) are su�ciently regular functions periodic in y variable, and that aij(x, y)
satisfy the uniform ellipticity condition. Finally, α > 0 is a �xed positive parameter. Let us

remark that in the underlying convection-di�usion model ε represents characteristic ratio

between the di�usion and convection coe�cients, while εα refers to the microstructure

period.

As well known, the operator Lε has a discrete spectrum, and the �rst eigenvalue λε (the

eigenvalue with themaximal real part) is real and simple; the corresponding eigenfunction uε

can be chosen to satisfy uε > 0 in�. The goal of this work is to study the asymptotic behavior

of λε and uε as ε → 0.

The �rst eigenpair (ground state) of (1.1) plays a crucial role when studying the large

time behavior of solutions to the corresponding parabolic initial boundary problem. The �rst

eigenvalue characterizes an exponential growth or decay of a typical solution, as t → ∞,

while the corresponding eigenfunction describes the limit pro�le of a normalized solution.

CONTACT A. Piatnitski andrey@sci.lebedev.ru Narvik University College, Postboks 385, 8505 Narvik, Norway.
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2 A. PIATNITSKI AND V. RYBALKO

Also, since in a typical case the �rst eigenfunction shows a singular behavior, as ε → 0, in

many applications it is important to know the set of concentration points of uε , the so-called

hot spots. This concentration set might consist of one point, or �nite number of points, or a

surface of positive codimension, or it might have more complicated structure. An interesting

discussion on hot spots can be found in [43].

Boundary value problems for singularly perturbed elliptic operators have been widely

studied in the existing literature. An important contribution to this topic has been done in the

classical work [47] that deals with singular perturbed operators with smooth non-oscillating

coe�cients under the assumption that for ε = 0 the problem remains (in a certain sense)

well-posed.

The Dirichlet problem for a convection-di�usion operator with a small di�usion and with

a convection directed outward at the domain boundary was studied for the �rst time in [22].

The approach developed in that work relies on large deviation results for trajectories of a

di�usion process being a solution of the corresponding stochastic di�erential equation.

The probabilistic interpretation of solutions and the aforementioned large deviation prin-

ciple have also been used in [18, 26, 27], where the �rst eigenvalue is studied for a second

order elliptic operator being a singular perturbation of a �rst order operator.

There are two natural approaches that can be used for studying the logarithmic asymptotics

of the principal eigenfunction of a second order singularly perturbed operator. One of them

relies on the above mentioned large deviation results for di�usion processes with a small

di�usion coe�cients. This method was used in [39] for studying operators with smooth

coe�cients on a compact Riemannian manifolds.

We follow yet another (deterministic) approach based on the viscosity solution techniques

for nonlinear PDEs. In the context of linear singularly perturbed equations, these techniques

were originally developed in [21] and followed by [6, 10, 11, 24, 37] and other works (see also

a review in [5]). Since uε > 0 in �, we can represent uε as uε(x) = e−Wε(x)/ε to �nd thatWε

satis�es

− εaij(x, x/εα)
∂2Wε

∂xi∂xj
+ H(∇Wε , x, x/ε

α) = λε (1.3)

withH(p, x, y) = aij(x, y)pipj − bj(x, y)pj + c(x, y), and the Dirichlet boundary condition for

uε yieldsWε = +∞ on ∂�. Using perturbed test functions we pass to the limit in (1.3) and

get the limit Hamilton-Jacobi equation of the form

H(∇W(x), x) = λ in �. (1.4)

with an e�ective HamiltonianH(p, x) whose de�nition depends on whether α > 1, α = 1 or

0 < α < 1. We show that in the limit ε → 0 the boundary condition Wε = +∞ on ∂� in

conjunction with (1.3) yield

H(∇W(x), x) ≥ λ on ∂�. (1.5)

The latter condition is known [14, 45] as the state constraint boundary condition. Both

equation (1.4) and boundary condition (1.5) are understood in viscosity sense.1

1When referring to the boundary condition (1.5) hereafterwe always assume continuous in� functions satisfying (1.5)
in viscosity sense which (in general) is stronger than simply pointwise inequality in (1.5). The latter fact is sometimes
a source of confusions.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 3

We recall that a continuous in � functionW is a viscosity solution of equation (1.4) if for

any x ∈ � and any C∞ function ϕ such thatW − ϕ has a maximum (minimum) at x one has

H(∇ϕ(x), x) ≤ λ (H(∇ϕ(x), x) ≥ λ).

A function W ∈ C(�) satis�es boundary condition (1.5) if for any x ∈ ∂� and any C∞

function ϕ such that the minimum ofW − ϕ in � is attained at x, it holds

H(∇ϕ(x), x) ≥ λ.

Equations of type (1.3) have been extensively studied in the existing literature. One can �nd

a short review of state of the art in [28, 33] and in more recent works [2, 8], see also references

therein.

Earlier, singularly perturbed KPP-type reaction-di�usion equations were studied in [35]

where, in particular, equations with rapidly oscillating coe�cients were considered. It was

shown that the classical Huygens principle might fail to work in this case.

In the case when the equation coe�cients do not depend on “slow” variable, the homoge-

nization of singularly perturbed spectral problems have been studied in a number of works.

In [12] spectral problems for operators with periodic coe�cients were considered, the study

relied on factorization principle. Similar periodic homogenization results for weakly coupled

systems were obtained in [1, 13]. The case of a weakly coupled elliptic systemwith statistically

homogeneous rapidly oscillating coe�cients has been considered in the recent work [3].

In the present work, deriving the e�ective problem (1.4)–(1.5) relies on the idea of

perturbed test functions originally proposed in [19]. We strongly believe that with the help

of the techniques developed recently in [2, 29, 33, 34] this result can be extended to a more

general almost periodic setting as well as random stationary ergodic setting. In other words,

the periodicity assumption can be replaced with the assumption that the coe�cients in (1.1)

are almost periodic or random statistically homogeneous and ergodic with respect to the fast

variable, at least in the case α = 1. The case α 6= 1 looks more di�cult and might require

some extra assumptions.We refer to [2, 8, 9, 29, 32, 44, 46] for (far not complete list of) various

results on almost periodic and random homogenization of nonlinear PDEs. However, the

essential novelty of this work comes in the (logically) second part of the paper devoted to the

improved ground state asymptotics and resolving the non-uniqueness issue for (1.4)–(1.5).

The generalization of this part to non-periodic settings is an open problem.

Problem (1.4)–(1.5) is known as ergodic or additive eigenvalue problem. Its solvability was

�rst proved in [32] in periodic setting, more recent results are contained, e.g., in [25] as well

as in [16], where stationary ergodic Hamiltonians were considered. There exists the unique

additive eigenvalue λ of (1.4)–(1.5) while the eigenfunction W need not be unique even up

to an additive constant. This non-uniqueness issue is intimately related to the structure of the

so-called Aubry set of e�ective Hamiltonian which play the role of a hidden boundary for

(1.4)–(1.5). The non-uniqueness in (1.4)–(1.5) appears when the Aubry set is not connected.

By contrast, for every ε > 0 the eigenfunction uε is unique up to a normalization, and it

is natural to try to select the solution of (1.4)–(1.5) that coincides with the limit of Wε =
−ε log uε . This challenging problem is addressed in a particular case of (1.1) with c(x, y) =
0, α ≥ 1. Following [39] we introduce the e�ective dri� (convection) and assume that it

has a �nite number of hyperbolic �xed points in �, and that the Aubry set of the e�ective

Hamiltonian coincides with this �nite collection of points. Notice that any �xed point of the

e�ective dri� in � belongs to the Aubry set of the e�ective Hamiltonian. It follows from our
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4 A. PIATNITSKI AND V. RYBALKO

results that in this case λε tends to zero as ε → 0. We show that λε/ε has a �nite limit that

can be determined in terms of eigenvalues of Ornstein-Uhlenbeck operators in R
N obtained

via local analysis of (1.1) at the scale
√

ε in the vicinity of aforementioned �xed points. This,

in turn, enables �ne selection of the additive eigenfunction corresponding to limε→0Wε .

2. Main results

We begin with standing hypotheses which are assumed to hold throughout this paper. We

assume that� is connected andhasC2 boundary ∂�; the coe�cients aij(x, y), bj(x, y), c(x, y) ∈
C1(� × R

N) are Y-periodic in y functions, where Y = (0, 1)N . The matrix (aij)i,j=1,N is

uniformly positive de�nite:

aij(x, y)ζiζj ≥ m|ζ |2 > 0 ∀ζ 6= 0, (2.1)

and, without loss of generality, we can assume the symmetry aij = aji.
The �rst eigenfunction uε of the operator (1.1) can be normalized to satisfy

1 = max
�

uε (uε > 0 in �), (2.2)

then its scaled logarithmic transformation

Wε := −ε log uε

is a nonnegative function vanishing at the points of maxima of uε .

The asymptotic behavior of λε andWε is described in

Theorem 1. The eigenvalues λε converge as ε → 0 to the limit λ, which is the unique real
number for which problem (1.4), (1.5) has a continuous viscosity solution. The functions Wε

converge (up to extracting a subsequence) to a limitW uniformly on compacts in� (see Remark 2
below), and every limit functionW, extended by continuity onto�, is a viscosity solution of (1.4),
(1.5).

The e�ective Hamiltonian H(p, x) in (1.4) is given by the following formulas, depending on
the parameter α.

(i) If α > 1 then

H(p, x) =
∫

Y
H(p, x, y)ϑ(y) dy (2.3)

where

H(p, x, y) = aij(x, y)pipj − bj(x, y)pj + c(x, y),

and ϑ(y) is the unique Y−periodic solution of the equation ∂2

∂yi∂yj
(aij(x, y)ϑ) = 0

normalized by
∫
Y ϑ(y) dy = 1.

(ii) If α = 1 then H(p, x) is the �rst eigenvalue (eigenvalue with the maximal real part)
of the problem

aij(x, y)
∂2ϑ

∂yi∂yj
+ (bj(x, y) − 2aij(x, y)pi)

∂ϑ

∂yj
+ H(p, x, y)ϑ = H(p, x)ϑ ,

ϑ(y) is Y-periodic.
(2.4)

According to the Krein-Rutman theorem H(p, x) is real.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 5

(iii) If 0 < α < 1 then H(p, x) is the unique number such that the problem

H(p + ∇ϑ(y), x, y) = H(p, x) (2.5)

has a Y−periodic viscosity solution ϑ(y); here p ∈ R
N and x ∈ � are parameters.

Remark 2. Although, for each ε > 0,Wε(x) tends to+∞ as x approaches the boundary ∂�,

it can be shown (see Lemma 10 in Section 4) that for every β > 0 there exists a constant Cβ ,

independent of ε, such that

|Wε(x) − Wε(z)| ≤ Cβ |x − z|
if x, z ∈ � and min{dist(x, ∂�), dist(z, ∂�)} ≥ βε. This implies that, for a subsequence,

Wε converges in � to a Lipschitz continuous function. The latter can be extended to � by

continuity.

We note that the e�ective Hamiltonian H(p, x) is continuous on R
N × �, convex in p

and coercive, moreover H(p, x) ≥ m1|p|2 − C, m1 > 0. The viscosity solutions theory for

such Hamiltonians is well established. Following [14, 25] and [36], we provide here various

representation formulas for the solutions of problem (1.4)–(1.5).

Let us rewrite problem (1.4)–(1.5) in the form

H(∇W(x), x) ≤ λ in � (2.6)

H(∇W(x), x) ≥ λ in �, (2.7)

i.e. (2.6) requires that W is a viscosity subsolution in � while (2.7) means that W is a

viscosity supersolution in �. It is known that there exists a unique number λ = λH (additive

eigenvalue), for which (1.4)–(1.5) has a solutionW. For the reader convenience we formulate

here the �rst item of Theorem VIII.1 in [14].

Theorem 3 (see [14]). Let H(p, x) be continuous in R
N × �, and suppose that H(p, x) → ∞,

as |p| → ∞, uniformly in x ∈ �. Then there is a unique λ = λH such that problem (2.6)–(2.7)
has a solution.

According to [36, Sect. 3] the number λH is given by

λH = inf{λ; (2.6) has a solutionW ∈ C(�)}. (2.8)

It can also be expressed in terms of action minimization (see [14, Theorem X.1. item (3)]),

λH = − lim
t→∞

1

t
inf

∫ t

0
L(η̇, η) dτ ,

where the in�mum is taken over absolutely continuous curves η : [0, t] → �, and L(v, x) is
the Legendre transform of H(p, x),

L(v, x) = max{v · p − H(p, x)}.
Let us de�ne now the distance function

dH−λH
(x, y) = sup{W(x) − W(y); W ∈ C(�) is a solution of (2.6) for λ = λH}. (2.9)
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6 A. PIATNITSKI AND V. RYBALKO

It is known (see, e.g., [25, Theorem 1.4]) that dH−λH
(x, x) = 0, dH−λH

(x, y) is Lipschitz

continuous, dH−λH
(x, y) ≤ dH−λH

(x, z) + dH−λH
(z, y). Besides, for every y ∈ � the

function dH−λH
(x, y) is a solution of (2.6) for λ = λH and, according to [25, Lemma 6.3],

H(∇xdH−λH
(x, y), x) ≥ λH in �\{y}. The number λH is such that the Aubry setAH−λH

,

AH−λH
= {y ∈ �; dH−λH

(x, y) is a solution of (2.7) for λ = λH}, (2.10)

is nonempty, see [36, Proposition 6.4]. Note also that, by [25, Proposition 1.6], the distance

function dH−λH
(x, y) admits the representation

dH−λH
(x, y) = inf

{ ∫ t

0
(L(η̇, η) + λH)dτ ; η(0) = y, η(t) = x, t > 0

}
, (2.11)

and the Aubry set can be characterized by

y ∈ AH−λH
⇐⇒ sup

δ>0
inf

{ ∫ t

0
(L(η̇, η) + λH) dτ ; η(0) = η(t) = y, t > δ

}
= 0. (2.12)

The in�mum in (2.11) and (2.12) is taken over absolutely continuous curves η : [0, t] → �.

Since we did not succeed to �nd the proof of (2.12) in the existing literature, we prove it in

Appendix A.

According to the de�nition of dH−λH
(x, y), every solutionW of (1.4)–(1.5) satis�esW(x)−

W(y) ≤ dH−λH
(x, y); this inequality holds, in particular, for all x, y ∈ AH−λH

. Conversely,

given a function g(x) on AH−λH
which satis�es the compatibility condition g(x) − g(y) ≤

dH−λH
(x, y) ∀x, y ∈ AH−λH

, by [25, Proposition 7.1 and Theorem 7.2], the function

W(x) = min{dH−λH
(x, y) + g(y); y ∈ AH−λH

} (2.13)

is the unique solution of (1.4)–(1.5) for λ = λH that satis�es W(x) = g(x) on AH−λH
. In

Appendix A we show the following simple uniqueness criterion for problem (1.4)–(1.5): a

solutionW (for λ = λH) is unique up to an additive constant if and only if SH−λH
(x, y) = 0

∀x, y ∈ AH−λH
, where SH−λH

(x, y) denotes the symmetrized distance, SH−λH
(x, y) =

dH−λH
(x, y) + dH−λH

(y, x).

Since an additive eigenfunction of the limit (homogenized) problem need not be unique,

an important issue, in the case of non-uniqueness, is to select a solution being responsible for

the �rst eigenpair asymptotics in (1.2). Under some additional conditions this problem can

be solved by studying the higher order terms in the asymptotic expansion of λε . This question

is rather delicate, and we mainly focus in this work on a particular case when c(x, y) = 0 and

α = 1, so that operator (1.1) takes the form

Lεu = ε2aij(x, x/ε)
∂2u

∂xi∂xj
+ εbj(x, x/ε)

∂u

∂xj
. (2.14)

Moreover, we assume that λH = 0 and that the corresponding Aubry set AH has a special

structure.

The analogous result for α > 1 is established in Section 8. In this case,

Lεu = ε2aij(x, x/εα)
∂2u

∂xi∂xj
+ εbj(x, x/εα)

∂u

∂xj
, α > 1. (2.15)
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 7

For α ≥ 1 the e�ective HamiltonianH(p, x) is a C∞ strictly convex function in p variable,

i.e.
(

∂2

∂pi∂pj
H(p, x)

)
i,j=1,N

is positive de�nite for all p ∈ R
N and x ∈ �, see [12], or [17] for

α = 1, while for α > 1 the Hamiltonian H(p, x) is a quadratic function in p. Note also that if
c(x, y) = 0 then H(0, x) = 0. Therefore, for α ≥ 1 and c(x, y) = 0, the Lagrangian L(v, x) is
strictly convex and L(v, x) = max{p · v − H(p, x)} ≥ −H(0, x) = 0. Thus we have

L(v, x) ≥ 0, and L(v, x) = 0 ⇐⇒ vj = ∂H

∂pj
(0, x).

On the other hand direct calculations show that

− ∂H

∂pj
(0, x) = b̄j(x) :=

∫

Y
bj(x, y)θ∗(x, y)dy, (2.16)

the functions b̄j(x) being components of the so-called e�ective dri� b̄(x) de�ned by the right
hand side of (2.16) via the Y-periodic solution θ∗ of

∂2

∂yi∂yj

(
aij(x, y)θ∗

)
− ∂

∂yj

(
bj(x, y)θ∗

)
= 0 (2.17)

normalized by
∫
Y θ∗dy = 1. (Note that θ∗ > 0 and it is a C2 function.) Thus the Lagrangian

L(v, x) admits the following representation:

L(v, x) = κ
∑

(vj + b̄j(x))2 + L̃(v, x), with 0 ≤ L̃(v, x) ≤ κ̃
∑

(vj + b̄j(x))2, 0 < κ < κ̃ .

(2.18)

This implies, in view of (2.12), that the Aubry set AH of the Hamiltonian H coincides with

that of the Hamiltonian
∑

p2j − b̄j(x)pj whose corresponding Lagrangian is
1
4

∑
(vj+ b̄j(x))2.

In particular, the additive eigenvalue λH is zero if and only if there is an orbit η : R → �,

η̇ = −b̄(η) which in turn holds if and only ifAH 6= ∅. We study the eigenvalue problem for

operator (2.14) under the following conditions:

AH 6= ∅ andAH ⊂ �,

AH is a �nite set of hyperbolic �xed points ξ of the ODE ẋ = −b̄(x).
(2.19)

Under these assumptions we �rst obtain the leading term of the asymptotic expansion of λε

which is vanishing as ε → 0, because λH = 0. In fact, this term is of order ε. This in turn

allows us to select, among solutions of homogenized problem (1.4)–(1.5), the solution that is

equal to limε→0Wε .

We introduce the matrices B(ξ) and Q(ξ) with entries

Bji(ξ) = ∂ b̄j

∂xi
(ξ), Qij(ξ) = 1

2

∂2H

∂pi∂pj
(0, ξ).

For �xed points ξ of the ODE ẋ = b̄(x) the matrix −B(ξ) corresponds to the linearized

e�ective dri�. Then, for ξ ∈ AH , we de�ne σ(ξ) as the sum of negative real parts of

the eigenvalues of −B(ξ). Since every �xed point ξ is assumed to be hyperbolic, −B(ξ)

has no eigenvalues with zero real part. We also denote by 5s and 5u the spectral pro-

jectors on the invariant subspaces of the matrix B that corresponds to the eigenvalues

with positive and negative real parts, respectively (stable and unstable subspaces of the

system żi = −Bijzj).
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8 A. PIATNITSKI AND V. RYBALKO

Theorem 4. Let α = 1 and c(x, y) = 0. Then, under conditions (2.19) we have

λε = εσ̄ + ō(ε), where σ̄ = max{σ(ξ); ξ ∈ AH}. (2.20)

Moreover, if the maximum in (2.20) is attained at exactly one ξ = ξ , then
(i) the scaled logarithmic transformations Wε = −ε log uε of eigenfunctions uε

normalized by (2.2) converge to W(x) = dH(x, ξ) uniformly on compacts in �, i.e. W
is the maximal viscosity solution of H(∇W(x), x) = 0 in �, H(∇W(x), x) ≥ 0 on
∂�, such that W(ξ̄ ) = 0;

(ii) uε(ξ + √
εz)/uε(ξ̄ ) → u(z) in C(K) and weakly in H1(K) for every compact

K ⊂ R
N , and the limit u is the unique positive eigenfunction of the

Ornstain-Uhlenbeck operator,

Qij ∂2u

∂zi∂zj
+ ziB

ji ∂u

∂zj
= σu in R

N , (2.21)

normalized by u(0) = 1 and satisfying the following condition: u(z)eµ|5sz|2−ν|5uz|2 is
bounded in R

N for some µ > 0 and every ν > 0; the existence and the uniqueness of
such a positive eigenfunction are granted by Lemma 16 proved in Section 7. The
coe�cients in (2.21) are given by Bji = Bji(ξ̄ ), Qji = Qji(ξ̄ ).

Remark 5. I. Condition (2.19) is satis�ed, in particular, when the vector �eld b(x, y) is
a C1-small perturbation of a gradient �eld ∇P(x) with C2 potential P(x) having the
following properties:

– the set {x ∈ �; ∇P(x) = 0} is formed by a �nite collection of points in �,

– the Hessian matrix
(

∂2

∂xi∂xj
P(x)

)
i,j=1,N

at every such a point is nonsingular

(for the proof see Appendix B).

II. Condition (2.19) is satis�ed if and only if the vector �eld b̄ possesses the following
properties:

• b̄ has a �nite number of �xed points in �, say ξ 1, . . . ξn. All of them are

hyperbolic, and none of them is situated on ∂�.

• ∀ y ∈ �, either sup{t < 0 : xy(t) 6∈ �} > −∞, or limt→−∞ xy(t) = ξ j for

some j ∈ {1, . . . , n}, where xy is a solution of the ODE ẋy = −b̄(xy), xy(0) = y.
• there is no any closed path ξ j1 , ξ j2 , . . . , ξ jk = ξ j1 with k ≥ 2 such that for any

two consecutive points ξ js and ξ js+1 there is a solution of the equation

ẋ = −b̄(x) with limt→−∞ x(t) = ξ js and limt→+∞ x(t) = ξ js+1 . Note that ξ j1

might coincide with ξ j2 .

Remark 6. It is not hard to show that under condition (2.19) we have SH(ξ , ξ ′) > 0 for all

ξ , ξ ′ ∈ AH , ξ 6= ξ ′. This means that problem (1.4), (1.5) does have many solutions unless

AH is a single point.

Note that condition (2.19) of Theorem 4 assumes, in particular, that all ω(and α)-limit

points of the ODE ẋ = −b(x) are �xed points. Another important case, when the ODE ẋ =
−b(x) has limit cycles in � (which is also the case of general position) is considered in the

companion paper [40].
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 9

3. Singularly perturbed operators on the periodicity cell

In this section we deal with an auxiliary cell spectral problem for singularly perturbed elliptic

operators of the form

L
(per)
ε u = ε2aij(x)

∂2u

∂xi∂xj
+ εbj(x)

∂u

∂xj
+ c(x)u, (3.1)

with Y-periodic coe�cients aij, bj, c ∈ C1(RN), u also being Y-periodic. This problem plays

a crucial role in the proof of Theorem 1 in the case α < 1. We assume the uniform ellipticity

condition aij(x)ζiζj ≥ m|ζ |2 > 0 for any ζ ∈ R
N\{0}, and the symmetry aij = aji. Similarly to

the case of the Dirichlet boundary condition, the �rst eigenvalueµε ofL
(per)
ε (eigenvalue with

the maximal real part) is real and simple, the corresponding eigenfunction uε can be chosen

to satisfy 0 < uε(x) ≤ max uε = 1. The asymptotic behavior of µε and uε , as ε → 0, was

studied in [39] using a combination of large deviation and variational techniques. We recover

herea�er the results of [39] by means of vanishing viscosity approach and establish as a bi-

product some bounds for derivatives of functionsWε(x) = −ε log uε(x) that are essential in
the proof of Theorem 1.

First we derive the a priori bounds for the eigenvalues.

Lemma 7. For every ε > 0 the eigenvalue µε of L
(per)
ε satis�es the inequalities

min c(x) ≤ µε ≤ max c(x). (3.2)

Proof. Let x′ be a maximum point of uε , we have

∇uε(x
′) = 0, ε2aij(x′)

∂2uε

∂xi∂xj
(x′) ≤ 0,

therefore c(x′)uε(x′) ≥ µεuε(x′), i.e. µε ≤ max c(x). Similarly, if x′′ is a minimum point of

uε then µεuε(x′′) ≥ c(x′′)uε(x′′) and therefore µε ≥ min c(x).

Since uε = e−Wε(x)/ε , we have

− εaij(x)
∂2Wε

∂xi∂xj
+ aij(x)

∂Wε

∂xi

∂Wε

∂xj
− bj(x)

∂Wε

∂xj
+ c(x) = µε . (3.3)

The bounds for the �rst and second derivatives ofWε(x) are obtained in the following

Lemma 8. There is a constant C, independent of ε, such that

max |∇Wε| ≤ C, max |∂2Wε/∂xi∂xj| ≤ C/ε. (3.4)

Proof. The proof of the �rst bound in (3.4) is borrowed from [21]. Let D1(x) := |∇Wε(x)|2
and D2(x) :=

∑
|∂2Wε(x)/∂xi∂xj|2 . From (3.3) in conjunction with (3.2) we get mD1 ≤

C(εD1/2
2 + D1/2

1 + 1), this in turn implies that

D1 ≤ C(εD1/2
2 + 1). (3.5)
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10 A. PIATNITSKI AND V. RYBALKO

Assume that D1 attains its maximum at a point x′, then we have ∇D1(x′) = 0 and

aij(x′) ∂2D1
∂xi∂xj

(x′) ≤ 0 or

∂2Wε

∂xi∂xk
(x′)

∂Wε

∂xk
(x′) = 0 (3.6)

and

ε
∑

k

aij
∂2Wε

∂xi∂xk

∂2Wε

∂xj∂xk
≤ −ε

∑

k

aij
∂3Wε

∂xi∂xj∂xk

∂Wε

∂xk
at x′. (3.7)

In order to bound the right hand side of (3.7) we take derivatives of (3.3), this yields

− εaij
∂3Wε

∂xi∂xj∂xk
= ε

∂aij

∂xk

∂2Wε

∂xi∂xj
− 2aij

∂2Wε

∂xi∂xk

∂Wε

∂xj
+ bi

∂2Wε

∂xi∂xk
+ ∂bi

∂xk

∂Wε

∂xi
− ∂c

∂xk
. (3.8)

Then we multiply (3.8) by ∂Wε/∂xk, sum up the resulting relations in k and insert the result

into (3.7) to obtain

εmD2(x
′) ≤ ε

∑

k

aij(x′)
∂2Wε

∂xi∂xk
(x′)

∂2Wε

∂xj∂xk
(x′) ≤ C

(
εD1/2

1 (x′)D1/2
2 (x′)+D1(x

′)+D1/2
1 (x′)

)
.

Next we use (3.5) to get thatD2(x′) ≤ C/ε, and exploiting once more (3.5) we obtain the �rst

bound in (3.4).

To show the second bound in (3.4) we use the following interpolation inequality

‖∇u‖2L∞ ≤ C(
∥∥aij ∂2u

∂xi∂xj

∥∥
L∞ + ‖u‖L∞)‖u‖L∞ , (3.9)

which holds for every Y-periodic u with a constant C independent of u. The proof of this
inequality follows the lines of one in the Appendix of [7] (here it is important that the

coe�cients aij are Lipschitz continuous). We apply (3.9) to (3.8) to obtain

∥∥∥ ∂2Wε

∂xl∂xk

∥∥∥
2

L∞
≤ C

ε

( ∑∥∥∥ ∂2Wε

∂xi∂xj

∥∥∥
L∞

+ 1
)

∀l, k, (3.10)

here we have also used the �rst bound in (3.4). From (3.10) one easily derives the second

bound in (3.4).

It follows from Lemma 7 that µε → µ, up to extracting a subsequence. Due to

Lemma 8 the family of functions Wε(x) is equicontinuous, moreover minWε(x) = 0

therefore passing to a further subsequence (if necessary) we have Wε(x) → W(x) uni-

formly. The standard arguments (see, e.g., [15]) show that the pair µ and W satis�es

the equation

aij(x)
∂W

∂xi

∂W

∂xj
− bj(x)

∂W

∂xj
+ c(x) = µ (3.11)

in the viscosity sense.

The number µ for which (3.11) has a periodic viscosity solution is unique (see [20, 32]),

therefore the entire sequence µε converges to µ as ε → 0.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 11

4. A priori bounds

In this section we show that the eigenvalues λε of (1.1) are uniformly bounded and the

functionsWε (given by (2)) uniformly converge on compacts in� as ε → 0, up to extracting

a subsequence. We also establish existence of continuous up to the boundary relaxed semi-

limits, which is important for deriving the homogenized boundary condition (1.5).

Because of the Dirichlet boundary condition on the boundary ∂� and fast oscillations of

the coe�cients the arguments here are more involved than those in the periodic case.

Lemma 9. There is a constant 3 independent of ε and such that

− 3 ≤ λε ≤ sup c(x, y). (4.1)

Proof. The proof of the upper bound follows by the maximum principle as in Lemma 7.

To derive a lower bound for λε we construct a function vε and choose a number 3 > 0

such that vε = 0 on ∂�, and

Lεvε − λvε > 0 in � (4.2)

for every λ < −3, 0 < ε < 1. There is a function V ∈ C2(�) satisfying the following

conditions, V > 0 in � and V = 0 on ∂�, |∇V| > 1 in a neighborhood of ∂�. Set

vε(x) := eκV(x)/ε − 1, where κ is a positive parameter to be chosen later. We assume that

−3 ≤ min c(x, y) so that λ < min c(x, y). Then we have

Lεvε −λvε ≥
(
mκ2−κ(M1+εM2)+(c(x, x/εα)−λ)

)
eκV(x)/ε −(c(x, x/εα)−λ) > 0 in�′

when κ > κ1 := (M1 + M2)/m. Here �′ = {x ∈ �; |∇V| ≥ 1},M1 = max
∣∣bi(x, y) ∂V

∂xi
(x)

∣∣,
M2 = max

∣∣aij(x, y) ∂2V
∂xi∂xj

(x)
∣∣. On the other hand, δ := inf{V(x); x ∈ �\�′} > 0. Therefore,

eκV(x)/ε > 2 in �\�′, when κ > κ2 := (log 2)/δ. Assuming additionally that min c(x, y) −
λ > 2κ(M1 + M2), we have

Lεvε−λvε ≥ (−κ(M1+εM2)+(c(x, x/εα)−λ)) exp(κγ /ε)−(c(x, x/εα)−λ) > 0 in�\�′.

Thus, setting κ := max{κ1, κ2} and 3 := 2κ(M1 + M2) − min c(x, y), we get (4.2).
Now note that λε is also the �rst eigenvalue (the eigenvalue with the maximal real part)

of the adjoint operator L∗
εu = ε2 ∂2

∂xi∂xj
(aiju) − ε ∂

∂xi
(biu) + cu, and the corresponding

eigenfunction u∗
ε can be chosen positive in�. Therefore, if λε < −3 then (Lεvε −λεvε)u∗

ε >

0 in �. This contradicts the Fredholm theorem.

The following two results show that, up to extracting a subsequence, functions Wε

converge uniformly on compacts in�. For brevity introduce the notation d(x) = dist(x, ∂�).

Lemma 10. For every β > 0 there is a constant Cβ , independent of ε, such that

‖∇Wε‖L∞(�βε) ≤ Cβ , (4.3)

where �βε = {x ∈ �; d(x) > βε}.

Proof. As in Lemma 8we use the Bernsteinmethod, but its local version becauseWε(x) tends
to +∞ as x → ∂�. For more details see for example [2]. Let ξ be an arbitrary point in �βε .
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12 A. PIATNITSKI AND V. RYBALKO

Introduce a smooth cuto� function ϕ ≥ 0 compactly supported in the ball Bβ = {x; |x| < β}
and such that ϕ = 1 in Bβ/2. Consider the functions

D1(x) := ϕ4((x − ξ)/ε)|∇Wε|2 and D2(x) :=
∑∣∣∣ ∂2Wε

∂xi∂xj

∣∣∣
2
.

Following the line of Lemma 8 one can show that ifD1 attains its nonzeromaximum at a point

x′ then

ϕ4
εD2 ≤ C

ε2

(
1 + ϕ2

ε |∇Wε|2 + εϕ3
εD

1/2
2 |∇Wε| + εϕ3

ε |∇Wε|3
)
, ϕε(x) = ϕ((x − ξ)/ε)

where C is independent of ε and ξ . This bound in conjunction with the pointwise inequality

|∇Wε|2 ≤ C1(εD
1/2
2 +1) yieldsϕ4((x′−ξ)/ε)D2(x′) ≤ C3/ε

2. Thusmax{|∇Wε(x)|; |x−ξ | ≤
βε/2} ≤ C4 with C4 = C4(β ,m, ‖aij‖C1 , ‖bi‖C1 , ‖c‖C1 ,�).

Lemma 10 shows that if we renormalizeWε by subtracting a proper constant (e.g.Wε(x0)
for a �xed x0 ∈ �) then functionsWεn converge locally uniformly to a functionW(x) along
a subsequence εn → 0. The latter function can be extended by continuity to a Lipschitz

continuous function on �, moreover we have

sup
x∈�βεn

|Wεn(x) − W(x)| → 0 as n → ∞ ∀β > 0. (4.4)

Now for x ∈ � we de�ne a function W̃ by

W̃(x) = lim inf
xn→x
xn∈�

Wεn(xn). (4.5)

It follows from the de�nition of W̃ that this function coincides with W in �. The following

important result shows that actually W̃ = W on � (it is clear that W̃ ≤ W, but even

boundedness from below of W̃(x) on ∂� is not obvious).

Lemma 11. Let φ ∈ C2(�), then every global minimum point xε ofWε −φ satis�es d(x) ≥ βε

with some β > 0 independent of ε. It follows that the functions W(x) de�ned via (4.4) and W̃
given by (4.5) coincide everywhere in �.

Proof. Consider the function Vε(x) = φ(x) − ρε(x), where ρε = 2d(x) −Kd2(x)/ε and K is

a positive parameter to be chosen later. We claim that Vε satis�es

− εaij(x, x/εα)
∂2Vε

∂xi∂xj
+ H(∇Vε , x, x/ε

α) < −AK in �\�ε/K , (4.6)

where �ε/K = {x ∈ �; d(x) > ε/K}, and AK is a positive constant which can be chosen as

large as we want by choosing an appropriate K > 0. Indeed, |∇ρε| ≤ 4 when d(x) ≤ ε/K
while

εaij(x, x/εα)
∂2ρε

∂xi∂xj
≤ −2Kaij(x, x/εα)

∂d(x)

∂xi

∂d(x)

∂xj
+ εC ≤ −2mK + C in �\�ε/K ,

where C is independent of ε and K. Thus taking su�ciently large K we get (4.6) with a

constant AK > −λε (by Lemma 9 we have −λε ≤ 3 with 3 independent of ε). Then it

follows from (1.3) and (4.6) that the functionWε −Vε cannot attain its local minimum at any
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 13

interior point of�\�ε/K , otherwise at such a point−εaij(x, x/εα) ∂2Wε

∂xi∂xj
+H(∇Wε , x, x/εα) ≤

−εaij(x, x/εα) ∂2Vε

∂xi∂xj
+H(∇Vε , x, x/εα) leading to the inequality AK ≤ −λε , that contradicts

the inequality AK > −λε . Thus, for x ∈ �\�ε/K we have

Wε − φ + ρε ≥ min
∂�ε/K

(Wε − φε + ρε) = min
∂�ε/K

(Wε − φ) + ε/K

along with the inequality ρε < ε/K in the interior of �\�ε/K , which easily follows from the

de�nition of ρε . This implies, in particular, that the minimum of Wε − φ over � is never

attained at a point xε such that d(xε) < ε/K.
To prove the inequality W̃ ≥ W approximate W by functions wδ ∈ C2(�) so that

max� |W − wδ| ≤ δ, δ > 0. Then

W̃(x) − wδ(x) = lim inf
n→∞,�∋xn→x

(Wεn(xn) − wδ(xn)) ≥ lim inf
n→∞

min
�

(Wεn − wδ)

= lim inf
n→∞

inf{Wεn(x) − wδ(x); x ∈ �βεn}, (4.7)

for some β > 0 which depends on δ but independent of n. By (4.4) the right hand side of (4.7)
is min�(W(x) − wδ), thus passing to the limit δ → 0 in (4.7) yields W̃(x) ≥ W(x).

Corollary 12. There is a constant κ > 0 such that every maximum point xε of uε satis�es
d(xε) ≥ κε.

Proof. We simply apply Lemma 11 with φ ≡ 0.

5. Vanishing viscosity limit

This section is devoted to the proof of Theorem 1. According to the results of the previous

section we can assume that,

λεn → λ (5.1)

and (4.4) holds with a Lipschitz continuous on� functionW. According to Corollary 12 and

Lemma 10 we can return to the normalization (2.2). We are going to show that the pair λ and

W is a solution of problem (1.4), (1.5).

For brevity we will write ε in place of εn. We follow the same scheme for α > 1, α = 1 and

α < 1. We construct test functions φε converging to φ uniformly in �, and such that

− εaij(xε , xε/ε
α)

∂2φε

∂xi∂xj
(xε) + H

(
∇φε(xε), xε , xε/ε

α
)

→ H(∇φ(x0), x0) (5.2)

for every sequence of points xε ∈ � such that xε → x0. The existence of such functions φε

will be established later on.

Consider an arbitrary function φ ∈ C2(�), and assume thatW−φ attains strict minimum

at a point x0 ∈ �. SinceW can be equivalently de�ned as the relaxed semi-limit (4.5) (W̃ = W
on� by Lemma 11) there exists a sequence xε ∈ � ofminimumpoints ofWε−φε , converging

to x0. We have

∇φε(xε) = ∇Wε(xε) and aij(xε , xε/ε
α)

∂2Wε

∂xi∂xj
(xε) ≥ aij(xε , xε/ε

α)
∂2φε

∂xi∂xj
(xε).
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14 A. PIATNITSKI AND V. RYBALKO

Using (1.3) to get −εaij(xε , xε/ε
α)

∂2φε

∂xi∂xj
(xε) + H

(
∇φε(xε), xε , xε/ε

α
)

− λε ≥ 0, and then

passing to to the limit as ε → 0 with the help of (5.2) we obtain H(∇φ(x0), x0) ≥ λ.

If W − φ attains strict maximum at a point x0 ∈ � we argue similarly to derive

H(∇φ(x0), x0) ≤ λ. ThusW(x) is a viscosity solution of (1.4), (1.5).

It remains to construct functions φε that satisfy (5.2), and converge to φ uniformly in �.

Case α > 1. We set

φε(x) = φ(x) + ε2α−1θ(x/εα),

where θ(y) is a Y-periodic solution of

− aij(x0, y)
∂2θ

∂yi∂yj
= H(∇φ(x0), x0) − H(∇φ(x0), x0, y). (5.3)

Thanks to (2.3) such a solution does exist. Indeed, (2.3) is nothing but the solvability condition

for (5.3). Moreover, since the coe�cients and the right hand side in (5.3) are Lipschitz

continuous, θ ∈ C2,1 (see, e.g., [23]). Therefore if xε → x0 as ε → 0, then we have

− εaij(xε , xε/ε
α)

∂2φε

∂xi∂xj
(xε) + H

(
∇φε(xε), xε , xε/ε

α
)

= −aij(xε , xε/ε
α)

∂2θ

∂yi∂yj
(xε/ε

α) + O(ε)

+ H
(
∇φ(xε) + O(εα−1), xε , xε/ε

α
)

= −aij(x0, xε/ε
α)

∂2θ

∂yi∂yj
(xε/ε

α)

+ H
(
∇φ(x0), x0, xε/ε

α
)
+ O(|x − xε| + ε + εα−1) = H(∇φ(x0), x0) + o(1).

Case α = 1. Set φε(x) = φ(x) + εθ(x/ε), where θ(y) = − log ϑ(y) and ϑ(y) is the unique
(up to multiplication by a positive constant) Y−periodic positive solution of

aij(x0, y)
∂2ϑ

∂yi∂yj
+ b̂j(y)

∂ϑ

∂yj
+ ĉ(y))ϑ = H(p, x0)ϑ , (5.4)

where p = ∇φ(x0), b̂j(y) = bj(x0, y)−2aij(x0, y)pi, ĉ(y) = aij(x0, y)pipj−bj(x0, y)pj+c(x0, y).
By a standard elliptic regularity result we have θ ∈ C2,1 (see [23]), and one can easily verify

that

−εaij(xε , xε/ε)
∂2φε

∂xi∂xj
(xε) + H

(
∇φε(xε), xε , xε/ε

)
= H(∇φ(x0), x0) + o(1),

as soon as xε → x0 when ε → 0.

Case α < 1. Set φε(x) = φ(x)+εαθε(x/εα), where θε is aY-periodic solution of the equation

− ε1−αaij(x0, y)
∂2θε

∂yi∂yj
+ H

(
p + ∇θε(y), x0, y

)
= Hε(p, x0) with p = ∇φ(x0). (5.5)

Such a solution exists if Hε(p, x0) coincides the �rst eigenvalue µε (eigenvalue with the

maximal real part) of the spectral problem

ε2(1−α)aij(x0, y)
∂2ϑε

∂yi∂yj
+ ε1−α b̂j(y)

∂ϑε

∂yj
+ ĉ(y)ϑε = µεϑε ,

ϑε is Y-periodic,
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 15

where b̂j, ĉ are as in (5.4). According to the Krein-Rutman theorem µε is a real and simple

eigenvalue, and the corresponding eigenfunction ϑε can be chosen positive. Then a solution

of (5.5) is given by θε = −ε1−α log ϑε . We invoke now the results obtained in Section 3,

Hε(p, x0) → H(p, x0) = H(∇φ(x0), x0) (5.6)

(where the limit H(p, x0) is described in (2.5)),

‖∂2ϑε/∂yi∂yj‖L∞ ≤ C/ε1−α (5.7)

This allows us to obtain (5.2) similarly to other cases considered above,

− εaij(xε , xε/ε
α)

∂2φε

∂xi∂xj
(xε) + H

(
∇φε(xε), xε , xε/ε

α
)

= −ε1−αaij(xε , xε/ε
α)

∂2θε

∂yi∂yj
(xε/ε

α)

+ H
(
∇φ(xε) + ∇θε(xε/ε

α), xε , xε/ε
α
)
+ O(ε) = −ε1−αaij(x0, xε/ε

α)
∂2θε

∂yi∂yj
(xε/ε

α)

+ H
(
∇φ(x0) + ∇θε(xε/ε

α), x0, xε/ε
α
)
+ O(|x − xε| + ε) = H(∇φ(x0), x0) + o(1).

Theorem 1 is completely proved.

6. Case of zero potential. lower bound for eigenvalues via blow up analysis

The goal of this and the next sections is to prove Theorem 4. Here we consider in details the

special case when α = 1 and c(x, y) = 0, the corresponding convection-di�usion operator is

given by (2.14). Under assumptions (2.19) the eigenvalues λε of (1.1) converge to zero as ε →
0. It is then natural to study the �rst non-trivial term of the asymptotic expansion for λε . We

show that, under our standing assumptions, this term is of order ε, and its limit behavior can

be characterized by local analysis near points of theAubry setAH of the e�ectiveHamiltonian.

The main result of this section which establishes a re�ned lower bound for eigenvalues is

given by

Theorem 13. Let c(x, y) = 0 and α = 1, and assume that (2.19) is ful�lled. Then

lim inf
ε→0

λε/ε ≥ σ̄ = max{σ(ξ); ξ ∈ AH}, (6.1)

where quantities σ(ξ) are de�ned in Theorem 4.

Proof. Fix a point ξ ∈ AH .

Applying the maximum principle we see that λε < 0. In order to obtain a lower bound, we

introduce, for any δ > 0, an auxiliary spectral problem Lεvε − δ|x − ξ |2vε = εσ̃εvε , or

εaij(x, x/ε)
∂2vε

∂xi∂xj
+ bj(x, x/ε)

∂vε

∂xj
− δ|x − ξ |2

ε
vε = σ̃εvε in � (6.2)

with the Dirichlet condition vε = 0 on ∂�. According to [42] the eigenvalues λε and εσ̃ε are

given by

λε = inf
{

sup
x∈�

Lεφ

φ

}
, εσ̃ε = inf

{
sup
x∈�

Lεφ − δ|x − ξ |2φ
φ

}
,
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16 A. PIATNITSKI AND V. RYBALKO

where in both expressions the in�mum is taken over the set

{φ ∈ C2(�) ∩ C(�), φ > 0 in �, φ = 0 on ∂�}.
Therefore, for any given δ > 0, we have

λε ≥ εσ̃ε .

We assume herea�er that the �rst eigenfunction vε of (6.2) is normalized by vε(ξ) = 1.

Let us transform (6.2) to a form more convenient for the analysis. First, a�er changing

variables z = (x − ξ)/
√

ε and setting wε(z) = vε(ξ + √
εz) equation (6.2) becomes

a
ij
ξ ,ξ/ε

(√
εz, z/

√
ε
)∂2wε

∂zizj
+

b
j
ξ ,ξ/ε

(√
εz, z/

√
ε
)

√
ε

∂wε

∂zj
− δ|z|2wε = σ̃εwε in (� − ξ)/

√
ε.

(6.3)

Here and in what follows the subscript “ξ , ξ/ε” denotes the shi� (translation) by ξ in x and

by ξ/ε in y, i.e., for instance, a
ij
ξ ,ξ/ε(x, y) = aij(x + ξ , y + ξ/ε). Next we multiply (6.3) by

θ∗
ξ ,ξ/ε

(√
εz, z/

√
ε
)
, θ∗(x, y) being given by (2.17). A�er simple rearrangements this yields

∂

∂zi

(
θ∗
ξ ,ξ/ε

(√
εz, z/

√
ε
)
a
ij
ξ ,ξ/ε

(√
εz, z/

√
ε
)∂wε

∂zj

)
+

S
j
ξ ,ξ/ε

(√
εz, z/

√
ε
)

√
ε

∂wε

∂zj

+
(bj(√εz + ξ)√

ε
+

√
εh

j
ε(z)

)∂wε

∂zj
= (σ̃ε + δ|z|2)θ∗

ξ ,ξ/ε

(√
εz, z/

√
ε
)
wε , (6.4)

where

Sj(x, y) = bj(x, y)θ∗(x, y) − ∂

∂yi

(
aij(x, y)θ∗(x, y)

)
− b

j
(x);

h
j
ε in (6.4) are uniformly bounded functions whose structure is not important. Since θ∗

solves (2.17), the Y-periodic vector �eld S(x, y) = (S1(x, y), . . . , SN(x, y)) is divergence free,
for every �xed x, and, due to the de�nition of b̄, this �eld has zero mean over the period.

Therefore, S(x, y) admits the representation (see, for instance, [12])

Sj(x, y) = ∂

∂yi
Tij(x, y) with Y-periodic in y skew-symmetric Tij(x, y) (Tij = −Tji).

Moreover, functions Tij are continuous with bounded derivatives ∂Tij/∂xk. We can thus

rewrite (6.4) as

∂

∂zi

(
q
ij
ξ ,ξ/ε

(√
εz, z/

√
ε
)∂wε

∂zj

)
+

(bj(√εz + ξ)√
ε

+
√

εh̃
j
ε(z)

)∂wε

∂zj

= (σ̃ε + δ|z|2)θ∗
ξ ,ξ/ε

(√
εz, z/

√
ε
)
wε , (6.5)

where q
ij
ξ ,ξ/ε(x, y) = qij(x + ξ , y + ξ/ε), qij(x, y) = θ∗(x, y)aij(x, y) + Tij(x, y), and h̃

j
ε are

uniformly bounded functions. Note that on every �xed compact we have

b
j
(
√

εz + ξ)√
ε

= b
j
(
√

εz + ξ) − b
j
(ξ)√

ε
→ zi

∂b
j

∂xi
(ξ)

uniformly in z as ε → 0.
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 17

In the following statement we do not suppose condition (2.19) to hold, however we still

assume that c(x, y) = 0 and α = 1.

Lemma 14. If b̄(ξ) = 0 for some ξ ∈ � then the �rst eigenvalue λε of operator (2.14) satis�es
the bound −3ε ≤ λε < 0 with some 3 > 0 independent of ε.

Proof. We know that λε < 0 and in the proof of the lower bound we assume �rst that ξ ∈ �.

Then (6.5) holds in B2 = {z; |z| < 2} for su�ciently small ε. Letting

L
(aux)
ε w = ∂

∂zi

(
q
ij
ξ ,ξ/ε

(√
εz,

z√
ε

)∂w

∂zj

)
+

(bj(√εz + ξ)√
ε

+
√

εh̃
j
ε(z)

)

×∂w

∂zj
− δ|z|2θ∗

ξ ,ξ/ε

(√
εz,

z√
ε

)
w

one can rewrite (6.5) in the operator form L
(aux)
ε wε = σ̃εθ

∗
ξ ,ξ/ε

(√
εz, z/

√
ε
)
wε and consider

the parabolic equation for the operator L
(aux)
ε

∂w̃ε

∂t
− L

(aux)
ε w̃ε = 0 in (0,+∞) × B2,

subject to the initial condition w̃ε(0, z) = wε(z) and the boundary condition w̃ε(t, z) = 0 on

(0,+∞) × ∂B2. The solution w̃ε of this problem satis�es the pointwise bound

w̃ε(t, z) ≤ exp
(
σ̃ε(min θ∗)t

)
wε(z). (6.6)

This follows by the maximum principle applied to
( ∂

∂t
− L

(aux)
ε

)(
exp

(
σ̃ε(min θ∗)t

)
wε(z) − w̃ε(t, z)

)

= σ̃ε

(
min θ∗ − θ∗

ξ ,ξ/ε

(√
εz, z/

√
ε
))
wε(z) ≥ 0.

On the other hand, since the coe�cients of the operator L
(aux)
ε are uniformly bounded

on B2 and the uniform ellipticity bound θ∗
ξ ,ξ/ε

(√
εz, z/

√
ε
)
a
ij
ξ ,ξ/ε

(√
εz, z/

√
ε
)
ζ iζ j ≥

(min θ∗)m |ζ |2 holds, by the Aronson estimate (see [4]) we have

min{w̃ε(1, z); z ∈ B1} ≥ M min{w̃ε(0, z); z ∈ B1}
with M > 0 independent of ε, where B1 is the unit ball B1 = {z; |z| < 1}. Combining this

with (6.6) yields

e(min θ∗)σ̃ε min
B1

wε ≥ min{w̃ε(1, z); z ∈ B1} ≥ M min{w̃ε(0, z); z ∈ B1} = M min
B1

wε ,

i.e. σ̃ε ≥ logM/ min θ∗ =: −3. Thus σ̃ε ≥ −3 and λε ≥ −3ε.

Finally, in the case ξ ∈ ∂� we can repeat the above argument taking ξε ∈ � in place of ξ ,

with |ξε − ξ | = dist(ξε , ∂�) = 2
√

ε.

In the proof of Lemma 14 we have got a uniform lower bound for σ̃ε which (in conjunction

with the obvious inequality σ̃ε < 0) allows one to obtain uniform bounds for the norm of wε

in C0,β(K) (with β > 0 depending only on bounds for coe�cients in (6.5)) and H1(K), for

every compact K (see, e.g., [23, Section 8.9]). Thus, up to extracting a subsequence, wε → w
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18 A. PIATNITSKI AND V. RYBALKO

in Cloc(R
N) and σ̃ε → σ̃ . Moreover, using the standard homogenization techniques based

on the div-curl Lemma, one can show that w solves

Qij ∂2w

∂zi∂zj
+ ziB

ji ∂w

∂zj
− δ|z|2w = σ̃w in R

N , (6.7)

where Qij = Qji are homogenized constant coe�cients satisfying the ellipticity condition

(actually, one has Qij = 1
2

∂2H
∂pi∂pj

(0, ξ)) and

Bji = Bji(ξ) = ∂ b̄j

∂xi
(ξ).

Since we assumed the normalization wε(0) = 1, we see that w(z) is a nontrivial solution of

(6.7).Moreover, if zε is amaximumpoint ofwε(z)we get from (6.3) |zε|2 ≤ −σ̃ε/δ. Therefore,

thanks to Lemma 14, |zε| ≤ C. It follows that w(z) is a bounded positive solution of (6.7).

Let us now construct an eigenpair (σ ′,w′) of (6.7) with w′ of the form w′(z) = e−Ŵ
ij
δ zizj and

a symmetric positive de�nite matrix (Ŵ
ij
δ )i,j=1,N . To this end, consider the following matrix

Riccati equation

4ŴδQŴδ − ŴδB − B∗Ŵδ − δI = 0,

where I denotes the unit matrix. It is well-known (see, for instance, [31, Theorem 9.1.5]) that

for positive de�nite Q and δ > 0 this equation has a maximal solution Ŵδ , and, moreover,

Ŵδ being positive de�nite. Then w′(z) = e−Ŵ
ij
δ zizj is a positive bounded solution of (6.7)

corresponding to the eigenvalue σ ′ = −2tr(QŴδ). Next observe that, by means of the

transformation w̃(z) = e−r|z|2w(z) with r > 0, equation (6.7) is reduced to

Qij ∂2w̃

∂zi∂zj
+ (Bji + 4rQij)zi

∂w̃

∂zj
+ (4r2Qijzizj + 2r trQ + 2rBjizizj − δ|z|2)w̃ = σ̃ w̃ in R

N .

For su�ciently small r > 0 we have ((4r2Qijzizj + 2r trQ + 2rBjizizj − δ|z|2) → −∞, and,

due to the boundedness of w, w̃(z) → 0 as |z| → ∞. Then, according to [41, Theorem

1], the eigenvalue σ̃ that corresponds to such a positive eigenfunction w̃ vanishing as |z| →
∞ is unique. Thus σ̃ = σ ′ = −2tr(QŴδ), and summarizing the above analysis we have

lim infε→0 λε/ε ≥ −2tr(QŴδ). Finally note that Ŵδ converges to the maximal positive semi-

de�nite solution of the Bernoulli equation (see, e.g., [31, Theorem 11.2.1])

4ŴQŴ − ŴB − B∗Ŵ = 0, (6.8)

as δ → +0. Calculations presented in Appendix C show that −2tr(QŴ) = σ(ξ) with

σ(ξ) being the sum of negative real parts of the eigenvalues of −B(ξ). Thus, a�er taking the

maximum in ξ ∈ AH , we get the desired lower bound

lim inf
ε→0

λε/ε ≥ σ̄ = max{σ(ξ); ξ ∈ AH}.

7. Case of zero potential. upper bound for eigenvalues and selection of the

additive eigenfunction

In this section we derive an upper bound for the principal eigenvalue which completes the

proof of formula (2.20). Similarly to the previous section we make use of the blow up analysis
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 19

near points of the Aubry set. We consider here only special (so-called signi�cant) points of
the Aubry set, where we can control the asymptotic behavior of rescaled eigenfunctions at

in�nity. We will show that only these special points have an in�uence on the leading term of

the principal eigenvalue and eigenfunction.

To de�ne a signi�cant point we recall that, due to Theorem 1, up to extracting a subse-

quence, the functionsWε = −ε log uε converge uniformly on compacts to a viscosity solution

W of problem (1.4)–(1.5) with λ = 0. It follows from (2.13) that W has the representation

W(x) = min{dH(x, ξ) + W(ξ); ξ ∈ AH}.
We say that a point ξ ∈ AH is signi�cant if

W(x) = dH(x, ξ) + W(ξ) in a neighborhood of ξ .

Otherwise we call ξ negligible. For every negligible point ξ ∈ AH there are sequences

xn → ξ and ξn ∈ AH\{ξ} such that dH(xn, ξ) + W(ξ) > dH(xn, ξn) + W(ξn). Since

the Aubry set consists of a �nite number of points, the sequence ξn converges (possibly

along a subsequence) to ξ ′ ∈ AH , ξ ′ 6= ξ . Passing to the limit n → ∞ and using the

continuity of the distance function, we get dH(ξ , ξ ′) = W(ξ) − W(ξ ′) (we always have

dH(ξ , ξ ′) ≥ W(ξ)−W(ξ ′)). Now we introduce a (partial) order relation� onAH by setting

ξ ′ � ξ ⇐⇒ dH(ξ , ξ ′) = W(ξ) − W(ξ ′). (7.1)

This relation is clearly re�exive, its transitivity is a consequence of the triangle inequality

dH(ξ , ξ ′′) ≤ dH(ξ , ξ ′) + dH(ξ ′, ξ ′′) while the antisymmetry follows from the inequality

SH(ξ , ξ ′) > 0 held for all ξ , ξ ′ ∈ AH with ξ 6= ξ ′. Then we see that every minimal element

ξ ∈ AH is a signi�cant point. SinceAH is �nite there exists a minimal element, i.e. there is at

least one signi�cant point ξ ∈ AH .

Theorem 15. Let assumptions of Theorem 4 be satis�ed, and let ξ be a signi�cant point ofAH ,
associated to a converging (sub)sequence Wε → W. Then limε→0 λε/ε = σ(ξ) and functions
uε(ξ + √

εz)/uε(ξ) converge weakly in H1(K) for every compact set K ⊂ R
N to the limit

function w(z) which is the unique positive eigenfunction of

Qij ∂2w

∂zi∂zj
+ ziB

ji ∂w

∂zj
= σw in R

N (7.2)

corresponding to the eigenvalue σ = σ(ξ), normalized by w(ξ) = 1 and satisfying the
additional condition

w(z)eµ|5sz|2−ν|5uz|2 is bounded on R
N for some µ > 0 and every ν > 0, (7.3)

where 5s and 5u denote spectral projectors on the invariant subspaces of the matrix B
corresponding to the eigenvalues with positive and negative real parts (stable and unstable
subspaces of the system żi = −Bijzj). Here coe�cients Qij and Bij are as in Theorem 4.

Proof. From now on we will assume that uε is normalized by uε(ξ) = 1, unless otherwise

is speci�ed; the W will also refer to the limit of scaled logarithmic transformations of uε

normalized in this way. Thanks to the upper and lower bounds for the eigenvalue λε the ratio

λε/ε converges, as ε → 0, along a subsequence, to a �nite limit, denoted by σ0. Then we

argue exactly as in the proof of the lower bound for λε . We consider rescaled eigenfunctions
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20 A. PIATNITSKI AND V. RYBALKO

wε(z) = uε(ξ + √
εz) that are solutions of

∂

∂zi

(
q
ij

ξ , ξ
ε

(√
εz, z/

√
ε
)∂wε

∂zj

)
+

(bj(√εz + ξ)√
ε

+
√

εh̃
j
ε(z)

)∂wε

∂zj
= λε

ε
θ∗
ξ , ξ

ε

(√
εz, z/

√
ε
)
wε

in
� − ξ√

ε
.

Up to extracting a further subsequence, wε converge in C(K) and weakly inH1(K), for every

compact K, to a positive solution w0 of (7.2) with σ = σ0. Eigenvalue problem (7.2) has, in

general, many solutions even in the class of positive eigenfunctions w(z). We will show that

the above de�ned eigenfunction w0 also satis�es (7.3). Under condition (7.3) the following

uniqueness result holds.

Lemma 16. Spectral problem (7.2) has a unique eigenpair (σ ,w) with a positive eigenfunction

w satisfying (7.3) and normalized by w(0) = 1. Furthermore, w(z) = e−Ŵijzizj , where Ŵ is the
maximal positive semi-de�nite solution of (6.8), and σ = −2tr(ŴQ).

Proof. First observe that w(z) = e−Ŵijzizj satis�es (7.3). This follows from the relation Ŵ =
5∗

s Ŵ5s ≥ γ5∗
s 5s with γ > 0, see Proposition 25 in Appendix C. It is also clear that w(z)

does solve (7.2) with σ = −2tr(ŴQ).

To justify the uniqueness of σ andw(z)wemake use of a transformation w̃(z) = eφ(z)w(z),
with a quadratic function φ(z) to be constructed later on, which leads to the equation of the

form

Qij ∂2w̃

∂zi∂zj
+ zĩB

ji ∂w̃

∂zj
+ C̃(z)w̃ = σ w̃ in R

N . (7.4)

We will choose φ(z) so that C̃(z) → −∞, w̃(z) → 0 as |z| → ∞. Then, by [41], there is

a unique σ such that (7.4) has a positive solution w̃(z) vanishing as |z| → ∞ (w̃(z) is also
unique up to multiplication by a positive constant).

We proceed with constructing φ(z). By setting φ = rA
ij
s zizj − rA

ij
uzizj, with symmetric

matrices As and Au, we get in (7.4)

B̃ji = Bji + 4rQjl(Ali
u − Ali

s )

and

C̃(z) = 4r2(Ail
u − Ail

s )Q
lm(A

mj
u − A

mj
s )zizj

+ r
((
Bli(A

lj
u − A

lj
s ) + (Ail

u − Ail
s )B

jl)zizj + 2tr
(
Q(Au − As)

))
.

De�ne As and Au as particular solutions of the Lyapunov matrix equations

AsB + B∗As = 5∗
s 5s, AuB + B∗Au = −5∗

u5u, (7.5)

which are given by

As =
∫ 0

−∞
eB

∗t5∗
s 5se

Bt dt, Au =
∫ ∞

0
eB

∗t5∗
u5ue

Bt dt, (7.6)

and choose su�ciently small r0 > 0 in such a way that the matrix

4r(Au−As)Q(Au−As)+(Au−As)B+B∗(Au−As) = 4r(Au−As)Q(Au−As)−5∗
s 5s−5∗

u5u
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 21

is negative de�nite for 0 < r < r0. Then C̃(z) → −∞ as |z| → ∞. It remains to see that if

w(z) satis�es (7.3) then choosing small enough r > 0 we have w̃(z) → 0 as |z| → ∞. Here

we have used the fact that the inequalities As ≤ γ15
∗
s 5s and Au ≥ γ25

∗
u5u hold for some

γ1, γ2 > 0.

So farwe know thatλε/ε → σ0 andwε(z) = uε(ξ+√
εz) converge uniformly on compacts

to a positive solution w0 of (7.2) with σ = σ0. In order to apply Lemma 16 we need only to

show (7.3). To this end we �rst construct a quadratic function 8ν
µ(x) satisfying

H(∇8ν
µ(x), x) ≤ −δ|x − ξ |2 in a neighborhood U(ξ) of ξ (7.7)

for some δ > 0.

Lemma 17. Let us set φs(x) := A
ij
s xixj and φu(x) := A

ij
uxixj, where As and Au are solutions of

the Lyapunov matrix equation (7.5) given by (7.6). Then the function

8ν
µ(x) := µφs(x − ξ) − νφu(x − ξ) (7.8)

satis�es (7.7) for some δ > 0, provided that 0 < µ, ν < r and r > 0 is su�ciently small.

Proof. We have, as x → ξ ,

H(∇8ν
µ(x), x) ≤ H(0, x) + ∂H

∂pj
(0, x)

∂8ν
µ

∂xj
(x) + C|∇8ν

µ(x)|2

= −(xi − ξi)
∂ b̄j

∂xi
(ξ)

∂8ν
µ

∂xj
(x) + C|∇8ν

µ(x)|2 + ō(|x − ξ |2)

≤ −2(xi − ξi)B
ji(µA

lj
s − νA

lj
u)(xl − ξl)

+ C1(µ
2|5∗

s (x − ξ)|2 + ν2|5∗
u(x − ξ)|2) + ō(|x − ξ |2). (7.9)

Note that (µAs − νAu)B + B∗(µAs − νAu) = µ5∗
s 5s + ν5∗

u5u, therefore the �rst term in

the right hand side of (7.9) can be written as −µ|5s(x − ξ)|2 − ν|5u(x − ξ)|2. Thus (7.7)
does hold if 0 < µ < 1/C1 and 0 < ν < 1/C1.

Next we prove

Lemma 18. If 8ν
µ(x) and µ, ν are as in Lemma 17, then W(x) > 8ν

µ(x) in U ′(ξ)\{ξ}, where
U ′(ξ) ⊂ U(ξ) is a neighborhood of ξ .

Proof. Since ξ is a signi�cant point, we have W(x) = dH(x, ξ) in some neighborhood U(ξ)

of ξ . Due to the representation formula (2.11), there exists a sequence of positive numbers

{tn > 0}∞n=1 and absolutely continuous curves ηn : [0, tn] → � satisfying the initial and the

terminal conditions ηn(0) = ξ and ηn(tn) = x such that

dH(x, ξ) = lim
n→∞

∫ tn

0
L(η̇n, ηn) dτ .

We claim that there is a neighborhood U ′(ξ) ⊂ U(ξ) such that for all su�ciently large n
and any x ∈ U ′(ξ) we have {ηn(τ ) ; τ ∈ [0, tn]} ⊂ U(ξ). Indeed, if we assume that such
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22 A. PIATNITSKI AND V. RYBALKO

a neighborhood does not exist then there are sequences of points xn → ξ and curves ηn(t)
such that

• ηn connects ξ to xn, that is ηn(0) = ξ , ηn(tn) = xn;
• ηn(τn) ∈ ∂U(ξ) for some τn ∈ (0, tn);

• limn→∞
∫ tn

0 L(η̇n, ηn) dτ = 0.

Letting yn := ηn(τn) ∈ ∂U(ξ) and considering the continuity of the distance function, we

obtain limn→∞ SH(yn, ξ) = 0, where SH(yn, ξ) = dH(yn, ξ) + dH(ξ , yn) is the symmetrized

distance. A�er extracting a subsequence yn → y ∈ ∂U(ξ) we obtain SH(y, ξ) = 0. Therefore

y ∈ AH . Repeating this reasoning we conclude that there is a point of Aubry set on the

boundary of any open neighborhood of ξ . Therefore, ξ cannot be an isolated point of AH .

This contradicts (2.19).

Now using (7.7) we get, for every x ∈ U ′(ξ)

8ν
µ(x) =

∫ tn

0
∇8ν

µ(ηn) · η̇n dτ =
∫ tn

0

(
∇8ν

µ(ηn) · η̇n − H(∇8ν
µ(ηn), ηn)

)
dτ

+
∫ tn

0
H(∇8ν

µ(ηn), ηn) dτ ≤
∫ tn

0
L(η̇n, ηn) dτ ,

when n is su�ciently large. It follows that 8ν
µ ≤ W in U ′(ξ). On the other hand if 8ν

µ = W

at a point x0 ∈ U ′(ξ) then x0 is a local minimum ofW − 8ν
µ andH(∇8ν

µ(x0), x0) ≥ 0 since

W is a viscosity solution of H(∇W(x), x) = 0 in �. Therefore, x0 = ξ by (7.7), i.e. 8ν
µ < W

inU ′(ξ)\{ξ} and choosing, if necessary, a smaller neighborhoodU ′(ξ), we obtain the desired

statement.

The following step is crucial in establishing (7.3). We want to construct a test function

9ε(x) of the form 9ε(x) = 8ν
µ(x) + εθ̃ε(x, x/ε) such that

− εaij(x, x/ε)
∂29ε

∂xi∂xj
+ H

(
∇9ε(x), x, x/ε

)
≤ H(∇8ν

µ(x), x) + Cε in U ′(ξ). (7.10)

To this endwe�rst assume that the solutionϑ(p, x, y)of (2.4), normalized by
∫
Y ϑ(p, x, y)dy =

1, is su�ciently smooth, and set θ̃ε(x, y) = θ
(
∇8ν

µ(x), x, y
)
, where θ(p, x, y) = log ϑ(p, x, y).

Then, since

−aij(x, y)
∂2θ(p, x, y)

∂yi∂yj
+ H

(
p + ∇yθ(p, x, y), x, y

)
= H(p, x),

(7.10) is straightforward. Note that in this case θ̃ε(x, y) does not depend on ε. In the general

case, thanks to C1-regularity of the coe�cients aij(x, y) and bj(x, y), all the �rst and second

order partial derivatives of ϑ(p, x, y) exist and continuous onRN ×�×R
N , except (possibly)

∂2ϑ(p, x, y)/∂xi∂xj. To obtain su�cient regularity of θ̃ε(x, y) we set

θ̃ε(x, y) =
∫

ϕε(x − x′)θ
(
∇8ν

µ(x), x′, y
)
dx′,

where ϕε(x) = ε−Nϕ(x/ε), with ϕ(x) being a C∞
0 (RN) nonnegative function,

∫
ϕ(x) dx = 1.

Then we have

aij(x, x/ε)
( ∂2θ

∂yi∂yj

(
∇8ν

µ(x), x, x/ε
)
− ∂2

∂xi∂xj

(
θε(x, x/ε)

))
≤ C

ε

and
∣∣∇yθ

(
∇8ν

µ(x), x, x/ε
)
− ∇

(
θε(x, x/ε)

)∣∣ ≤ C. This yields (7.10).
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 23

It follows from (7.10) and (7.7) that

− εaij(x, x/ε)
∂29ε

∂xi∂xj
+ H

(
∇9ε(x), x, x/ε

)
≤ −δ|x − ξ |2 + Cε in U ′(ξ). (7.11)

Consider now the function Wε − 9ε . By Lemma 18 we have Wε > 9ε on ∂U ′(ξ) for

su�ciently small ε, therefore either Wε ≥ 9ε in U ′(ξ) or Wε − 9ε attains its negative

minimum in U ′(ξ) at a point xε . In the latter case we have ∇Wε(xε) = ∇9ε(xε) and

aij(xε , xε/ε)
∂2Wε

∂xi∂xj
(xε) ≥ aij(xε , xε/ε)

∂29ε

∂xi∂xj
(xε).

Therefore,

λε = −εaij(xε , xε/ε)
∂2Wε

∂xi∂xj
(xε) + H

(
∇Wε(xε), xε , xε/ε

)

≤ −εaij(xε , xε/ε)
∂29ε

∂xi∂xj
(xε) + H

(
∇9ε(xε), xε , xε/ε

)
≤ −δ|xε − ξ |2 + Cε.

Thus either Wε > 9ε in U ′(ξ) or Wε ≥ 9ε + Wε(xε) − 9ε(xε) in U ′(ξ) and xε satis�es

|xε − ξ | ≤ C
√

ε. Both cases lead to the bound Wε(x) ≥ 8ν
µ(x) + Wε(x̃ε) − βε, where x̃ε

is either ξ or xε (recall that uε is normalized by uε(ξ) = 1, i.e. Wε(ξ) = 0). Then, setting

z = (x − ξ)/
√

ε and recalling the de�nition of 8ν
µ in (7.8), we get

wε(z) ≤ Cwε(zε)e
−µφs(z)+νφu(z) in (U(ξ) − ξ)/

√
ε,

where zε = (x̃ε − ξ)/
√

ε, and hence |zε| ≤ C. Observe that since zε stay in a �xed compact

as ε → 0, then wε(zε) ≤ C and in the limit ε → 0 we therefore obtain

w(z) ≤ Ce−µφs(z)+νφu(z) in R
N .

It remains to note that φs(z) ≥ γ3|5sz|2 and φu(z) ≤ γ4|5uz|2 for some γ3, γ4 > 0. Hence

w(z) does satisfy (7.3), and applying Lemma 16 in conjunction with claim (iii) of Proposition

25 (see Appendix C) we complete the proof of Theorem 15.

Proof of Theorem 4. Theorem13 andTheorem15 alongwith the fact that the set of signi�cant

points is nonempty yield formula (2.20). Moreover they imply the uniqueness of the limiting

additive eigenfunction W(x), provided that the maximum in (2.20) is attained at exactly

one point ξ = ξ̄ of the Aubry set. Indeed, we know that, up to extracting a subsequence,

functions Wε converge uniformly (on compacts in �) to an additive eigenfunction W(x);
here Wε = −ε log uε and uε are referred to the eigenfunctions normalized by (2.2).

By Theorem 15 the unique signi�cant point (associated to the chosen subsequence) is

ξ̄ . Therefore ξ̄ is the only minimal element in AH with respect to the order relation �
de�ned in (7.1); hence it is the least element of AH , i.e. ξ̄ � ξ for every ξ ∈ AH .

This means that W(ξ) = W(ξ̄ ) + dH(ξ , ξ̄ ) for all ξ ∈ AH , and consequently W(x) =
dH(x, ξ̄ ) + W(ξ̄ ). Thus, taking into account Corollary 12, we have W(ξ̄ ) = 0, and claim

(i) of Theorem 4 is now completely proved. Finally, claim (ii) of Theorem 4 is addressed in

Theorem 15.
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24 A. PIATNITSKI AND V. RYBALKO

8. Case of zero potential. Other scalings

The statement of Theorem 4 remains valid in the case of εα-scaling in (1.1) with α > 1. This

section focuses on this scaling. As in Theorem 4 we suppose that c(x, y) = 0. In this case

the e�ective dri� is still given by formula (2.16), however the function θ∗ is now de�ned as a

Y-periodic solution of the equation

∂2

∂yi∂yj

(
aij(x, y)θ∗(x, y)

)
= 0,

∫

Y
θ∗ dy = 1.

It should be noted that the discontinuous dependence of the e�ective dri� on the parameter

α ≥ 1 at α = 1 might lead to a signi�cant shi� of the concentration set of the eigenfunction

uε from the �xed points ξ of the vector �eld b, if α > 1 is su�ciently close to 1.

In order to de�nemore precisely the location of concentration points of uε , let us introduce

the approximate e�ective HamiltonianHε(p, x) as the (additive) eigenvalue corresponding to
a Y-periodic eigenfunction of

− aij(x, y)
∂2θε(p, x, y)

∂yi∂yj
+ H(p + εα−1∇yθε(p, x, y), x, y) = Hε(p, x), (8.1)

and the approximate e�ective dri� bε(x) by

b
j
ε(x) = −∂Hε

∂pj
(0, x).

The eigenvalue Hε is unique and θε is unique up to an additive constant, moreover θε can be

found as the scaled logarithmic transformation θε = − 1
ε2(α−1) log ϑε of a positive Y-periodic

eigenfunction of the linear eigenvalue problem

ε2(1−α)aij(x, y)
∂2ϑε

∂yi∂yj
+ ε1−α(bj(x, y) − 2aij(x, y)pi)

∂ϑε

∂yj
+ H(p, x, y)ϑε = Hε(p, x)ϑε .

Similarly to the case α = 1, the dri� bε(x) is de�ned by

bε(x) =
∫

Y
b(x, y)θ∗

ε (x, y) dy, (8.2)

via the Y-periodic solution θ∗
ε of the equation

∂2

∂yi∂yj

(
aij(x, y)θ∗

ε

)
− εα−1 ∂

∂yj

(
bj(x, y)θ∗

ε

)
= 0 (8.3)

normalized by
∫
Y θ∗

ε dy = 1. From the smallness of the second term in the last equation, it

follows that, under our assumptions on the coe�cients, bε → b inC1(�) topology, moreover

‖bε − b‖C1(�) = O(εα−1). Therefore, if b has a �nite number of zeros in �, and all of them

are hyperbolic �xed points of the ODE ẋ = −b(x), then, for su�ciently small ε > 0, bε has

the same number of zeros, and the distance of these zeros from the corresponding zeros of b
is at most O(εα−1).

Theorem 19. Let α > 1, and c(x, y) = 0. Then, under conditions (2.19), all the statements of
Theorem 4 remain valid except for claim (ii), where ξ should be replaced with the nearest to ξ

zero of the vector �eld bε(x).
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COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 25

Proof. Since the proof is quite similar to that of Theorem 4, we just outline main changes to

be made in order to adapt the arguments of Sections 6 and 7 to the case α > 1.

In order to obtain the lower bound for the eigenvalues λε , one can follow the lines of

Section 6. However, the arguments of Section 6 should apply to the zeros ξε of bε in place

of the corresponding zeros ξ of b̄. Also θ∗
ε should be used in place of θ∗. Note that although

ξε → ξ as ε → 0, the distance between this two points might be of order εα−1, so that in the

local scale
√

ε this distance might tend to in�nity. Nevertheless, up to the shi� from ξ to ξε

the local analysis is exactly the same as in Section 6. Let us emphasize that for α ∈ (1, 3/2)

the statement of Lemma 14 remains valid only if at least one of zeros of b̄ is an interior point

of �. Clearly, this condition is satis�ed if (2.19) holds.

The argument of Section 7 can also be adapted to the case α > 1. As in the proof of

the lower bound one obtains equation (7.2) for the limit of rescaled functions wε(z) =
uε(ξε + √

εz), while the construction of the functions 8ν
µ and 9ε is to be modi�ed. One

can linearize the dri� b̄ε at ξε and construct the quadratic function 8ν
µ (which now depends

on ε) following Section 7 with B
ji
ε = ∂b

j

∂xi
(ξε) in place of Bji; also, in the construction of the

function 9ε one makes use of the eigenfunction θε (cf. (8.1)) and sets 9ε(x) = 8ν
µ(x) +

ε2α−1θε(∇8ν
µ(x), x, x/εα). The details are le� to the reader.

Finally note that the case α < 1 remains completely open. The strategy used in the case

α ≥ 1 fails to work for α < 1. In particular, we cannot de�ne in a natural way the e�ective

dri� because the corresponding periodic cell problem (8.3) becomes singular for α < 1.

9. Example

Here we consider an example of an operator of the form (2.14) for which conditions (2.19)

are ful�lled. Let xy(t) be a solution of the ODE ẋy = −b̄(xy), xy(0) = y. We assume that

• The vector �eld b̄(x) has exactly three zeros ξ 1, ξ 2, ξ 3 in�. All of them are interior points

of �.

• ξ 1 and ξ 3 are stable hyperbolic points, that is the eigenvalues of
(
− ∂ b̄j

∂xi
(ξ 1)

)
i,j=1,N

and
(

− ∂ b̄j

∂xi
(ξ 3)

)
i,j=1,N have negative real parts; ξ 2 is a hyperbolic point and σ(ξ 2) >

max{σ(ξ 1), σ(ξ 3)}.
• TheODE ẋ = −b̄(x) does not have a solutionwith limt→+∞ x(t) = limt→−∞ x(t) = ξ 2.

• For every y ∈ �\
⋃3

j=1{ξ j}, either limt→−∞ xy(t) = ξ 2, or inf{t < 0 ; xy(t) ∈
�} > −∞.

Proposition 20. Under the above assumptions the Aubry setAH coincides with
⋃3

j=1{ξ j}.

Proof. According to (2.18), ̹1(v− b̄(x))2 ≤ L(v, x) ≤ ̹2(v− b̄(x))2 with some 0 < ̹1 ≤ ̹2.

One can easily check that the desired statement follows from variational representation (2.12)

of the Aubry set and the assumptions on b̄.

Hence, by Theorem 4,W(x) = dH(x, ξ 2) and λε = εσ (ξ 2) + ō(ε).
It is interesting to trace in this example the possible structure of the set Z = {x ∈

� ; W(x) = 0}. Observe that this set can also be de�ned as the set of points at which the
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26 A. PIATNITSKI AND V. RYBALKO

eigenfunction uε does not show an exponential decay, as ε → 0. Its structure depends on

whether there are trajectories of the equation ẋ = −b̄(x) going from ξ 1 or ξ 3 to ξ 2, or not.

LetZ1 be the set of all points y ∈ � such that limt→+∞ xy(t) = ξ 1 and limt→−∞ xy(t) =
ξ 2, and let Z3 be the set of all points y ∈ � such that limt→+∞ xy(t) = ξ 3 and

limt→−∞ xy(t) = ξ 2. Notice that the sets Z1 andZ3 might be empty.

Proposition 21. We have Z = {ξ 2} ∪ Z1 ∪ Z3.

Proof. The desired statement easily follows from (2.11) and the fact thatW(x) = dH(x, ξ 2).

Acknowledgments

Part of this work was done when V. Rybalko was visiting the Narvik University College. He is grateful
for a warm hospitality and the support of his visit.

References

[1] Allaire, G., Capdeboscq, Y. (2000).Homogenization of a spectral problem in neutronicmultigroup
di�usion. Comput. Methods Appl. Mech. Engrg. 187:91–117.

[2] Armstrong, S.N., Souganidis, P.E. (2012). Stochastic homogenization of Hamilton-Jacobi and
degenerate Bellman equations in unbounded envieronments. J. Math. Pure Appl. 97(5):460–504.

[3] Armstrong, S.N., Souganidis, P.E. (2013). Concentration for neutronic multigroup di�usion in
random environments. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(3):419–439.

[4] Aronson, D.G. (1968). Non-negative solutions of linear parabolic equations. Ann. Scuola Norm.
Sup. Pisa 22:607–694.

[5] Barles, G. (1994). Solutions de Viscosité des Équations de Hamilton-Jacobi [Viscosity Solutionns of
Hamilton-Jacobi Equations]. Berlin: Springer-Verlag.

[6] Barles, G., Perthame, B. (1990). Comparison principle for Dirichlet-type Hamilton-Jacobi equa-
tions and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21:21–44.

[7] Bethuel, F., Brezis, H., Hélein, F. (1993). Asymptotics for the minimizers of a Ginzburg-Landau
functional. Calc. Var. Par. Di�. Eqs. 1:123–148.

[8] Ca�arelli, L.A., Souganidis, P.E. (2010). Rates of convergence for the homogenization of fully
nonlinear uniformly elliptic PDE in random media. Invent. Math. 180:301–360.

[9] Ca�arelli, L.A., Souganidis, P.E., Wang, L. (2005). Homogenization of fully nonlinear, uniformly
elliptic and parabolic partial di�erential equations in stationary ergodic media. Comm. Pure Appl.
Math. 58:319–361.

[10] Camilli, F., Cesaroni, A. (2007). A note on singular perturbation problems via Aubry-Mather
theory. Discrete Contin. Dyn. Syst. 17:807–819.

[11] Camilli, F., Cesaroni, A., Siconol�, A. (2009). Randomly perturbed dynamical systems andAubry-
Mather theory. Int. J. Dyn. Syst. Di�er. Equ. 2:139–169.

[12] Capdeboscq, Y. (1998). Homogenization of a di�usion equation with dri�. C. R. Acad. Sci. Paris
Ser. I Math. 327:807–812.

[13] Capdeboscq, Y. (2002). Homogenization of a neutronic critical di�usion problem with dri�. Proc.
Roy. Soc. Edinburgh Sect. A 132:567–594.

[14] Capuzzo-Dolcetta, I., Lions, P.-L. (1990). Hamilton-Jacobi equations with state constraints. Trans.
Amer. Math. Soc. 318:643–683.

[15] Crandall, M.G., Ishii, H., Lions, P.-L. (1992). User’s guide to viscosity solutions of second order
partial di�erential equations. Bull. Amer. Math. Soc. (N.S.) 27:1–67.

[16] Davini, A., Siconol�, A. (2011). Metric techniques for convex stationary ergodic Hamiltonians.
Calc. Var. Part. Di�. Eqs. 40:391–421.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
9:

31
 2

4 
Ja

nu
ar

y 
20

16
 



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 27

[17] Donato, P., Piatnitski, A. (2006). Averaging of nonstationary parabolic operators with large lower
order terms. In:Multi Scale Problems andAsymptotic Analysis. Ser.Math. Sci. Appl., vol. 24. Tokyo:
Gakkotosho, pp. 153–165.

[18] Eizenberg, A., Kifer, Y. (1987). The asymptotic behavior of the principal eigenvalue in a singular
perturbation problem with invariant boundaries. Probab. Theory Related Fields 76:439–476.

[19] Evans, L.C. (1989). The perturbed test function method for viscosity solutions of nonlinear PDE.
Proc. R. Soc. Edinburgh Sect. A 111:359–375.

[20] Evans, L.C. (1992). Periodic homogenisation of certain fully nonlinear partial di�erential equa-
tions. Proc. Roy. Soc. Edinburgh Sect. A 120:245–265.

[21] Evans, L.C., Ishii, H. (1985). A PDE approach to some asymptotic problems concerning random
di�erential equation with small noise intensities. Ann. L’Institut H. Poincare 2:1–20.

[22] Freidlin, M.I., Wentzell, A.D. (1984). Random Perturbations of Dynamical Systems. Fundamental
Principles of Mathematical Sciences, vol. 260. New York: Springer-Verlag.

[23] Gilbarg, D., Trudinger, N.S. (1983). Elliptic Partial Di�erential Equations of Second Order. Berlin:
Springer-Verlag.

[24] Ishii, H., Koike, S. (1991). Remarks on elliptic singular perturbation problems.Appl. Math. Optim.
23:1–15.

[25] Ishii, H., Mitake, H. (2007). Representation formulas for solutions of Hamilton-Jacobi equations
with convex Hamiltonians. Indiana Univ. Math. J. 56:2159–2183.

[26] Kifer, Y. (1980). On the principal eigenvalue in a singular perturbation problem with hyperbolic
limit points and circles. J. Di�. Eqs. 37:108–139.

[27] Kifer, Y. (1980). Stochastic stability of the topological pressure. J. Analyse Math. 38:255–286.
[28] Kosygina, E. (2007). Homogenization of stochastic Hamilton-Jacobi equations: Brief review of

methods and applications. In: Stochastic Analysis and Partial Di�erential Equations. Contemporay
Mathematics, vol. 429. Providence, RI: American Mathmatical Society, pp. 189–204.

[29] Kosygina, E., Rezakhanlou, F., Varadhan, S.R.S. (2006). Stochastic homogenization of Hamilton-
Jacobi-Bellman equations. Comm. Pure Appl. Math. 59:1489–1521.

[30] Krylov, N.V., Safonov, M.V. (1980). A property of the solutions of parabolic equations with
measurable coe�cients. Izv. Akad. Nauk SSSR Ser. Mat. 44:161–175.

[31] Lancaster, P., Rodman, L. (1995). Algebraic Riccati Equations. Oxford Science Publications. New
York: The Clarendon Press, Oxford University Press.

[32] Lions, P.-L., Papanicolaou, G., Varanhan, S.R.S. (1987). Homogenization of Hamilton-Jacobi
equations. Unpublished work.

[33] Lions, P.-L., Souganidis, P.E. (2005). Homogenization of degenerate second-order PDE in periodic
and almost periodic environments and applications. Ann. I.H. Poincaré, AN 22:667–677.

[34] Lions, P.-L., Souganidis, P.E. (2005). Homogenization of “viscous” Hamilton-Jacobi equations in
stationary ergodic media. Comm. Part. Di�. Eqs. 30:335–375.

[35] Majda, A.J., Souganidis, P.E. (1994). Large-scale front dynamics for turbulent reaction-di�usion
equations with separated velocity scales. Nonlinearity 7:1–30.

[36] Mitake,H. (2008). Asymptotic solutions ofHamilton-Jacobi equationswith state constraints.Appl.
Math. Optim. 58:393–410.

[37] Perthame, B. (1990). Perturbed dynamical systems with an attracting singularity and weak
viscosity limits in Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 317:723–748.

[38] Piatnitski, A.L. (1984). Averaging a singularly perturbed equation with rapidly oscillating coe�-
cients in a layer.Math. USSR, Sb. 49:19–40.

[39] Piatnitski, A. (1998). Asymptotic Behaviour of the Ground State of Singularly Perturbed Elliptic
Equations. Comm. Math. Phys. 197:527–551.

[40] Piatnitski, A., Rybalko, A., Rybalko, V. (2014). Ground states of singularly perturbed convection-
di�usion equation with oscillating coe�cients. ESAIM Control Optim. Calc. Var. 20:1059–1077.

[41] Pyatnitskii, A.L., Shamaev, A.S. (2004). On the asymptotic behavior of the eigenvalues and
eigenfunctions of a nonselfadjoint operator in R

n. J. Math. Sci. 120:1411–1423.
[42] Protter, M.H.,Weinberger, H.F. (1966). On the spectrum of general second oreder operators. Bull.

Amer. Math. Soc. 72:251–255.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
9:

31
 2

4 
Ja

nu
ar

y 
20

16
 



28 A. PIATNITSKI AND V. RYBALKO

[43] Rauch, J. (1975). Five problems: An introduction to the qualitative theory of partial di�erential
equations. In: Partial Di�erential Equations and Related Topics. Lecture Notes inMathematics, vol.
446. Berlin: Springer, pp. 355–369.

[44] Rezakhanlou, F., Tarver, J.E. (2000). Homogenization for stochastic Hamilton-Jacobi equations.
Arch. Ration. Mech. Anal. 151:277–309.

[45] Soner,H.M. (1986).Optimal control with state-space constraint. I. SIAM J. Control Optim. 24:552–
561.

[46] Souganidis, P.E. (1999). Stochastic homogenization of Hamilton-Jacobi equations and some
applications. Asymptot. Anal. 20:1–11.

[47] Vishik,M.I., Lyusternik, L.A. (1957). Regular degeneracy and boundary layer for linear di�erential
equations with a small parameter. Usp. Mat. Nauk 12:3–122.

Appendices

A. Uniqueness of additive eigenfunction and variational representation of the Aubry

set

The following simple result provides a uniqueness criterion for problem (1.4)–(1.5).

Proposition 22. Let λ = λH so that (1.4)–(1.5) has a solution W. Then W is unique (up to
an additive constant) if and only if SH−λ(x, y) = 0 for all x, y ∈ AH−λ, where SH−λ(x, y) =
dH−λ(x, y) + dH−λ(y, x).

Proof. If SH−λ(x, y) = 0 then W(x) − W(y) = dH−λ(x, y); this follows from the fact that

for any x, y we have W(x) − W(y) ≤ dH−λ(x, y). In particular, if SH−λ(x, y) = 0 for all

x, y ∈ AH−λ, then taking ξ ∈ AH−λ, we get W(x) = dH−λ(x, ξ) + W(ξ) on AH−λ. Thus,

according to the representation formula (2.13), W(x) = dH−λ(x, ξ) + W(ξ) in �, i.e. W is

unique up to an additive constant.

If there are two points ξ , ξ ′ ∈ AH−λ such that SH−λ(ξ , ξ
′) > 0, thenW0(x) = dH−λ(x, ξ)

and W1(x) = dH−λ(x, ξ
′) − dH−λ(ξ , ξ

′) are two solutions of (1.4)–(1.5) and 0 = W0(ξ) =
W1(ξ), whileW0(ξ

′) − W1(ξ
′) = SH−λ(ξ , ξ

′) > 0.

The following statement justi�es the variational de�nition of Aubry set given by (2.12).

Proposition 23. Let H(p, x) ∈ C(RN × �) be a convex in p Hamiltonian such that
min{H(p, x)/|p|; x ∈ �} → +∞ as |p| → ∞. Assume that λH is the additive eigenvalue
of problem (2.6)–(2.7). Then the Aubry setAH−λH

de�ned by (2.10) can be equivalently given

by

y ∈ AH−λH
⇐⇒ sup

δ>0
inf

{ ∫ t

0
(L(η̇, η) + λH) dτ ; η(0) = η(t) = y, t > δ

}
= 0; (A.1)

the in�mum here is taken over absolutely continuous curves η : [0, t] → �.

Proof. Let y ∈ AH−λH
. Then u(t, x) := dH−λH

(x, y), being a solution of (2.6)–(2.7), is

a stationary viscosity subsolution of ∂u
∂t + H(∇u, x) − λH = 0 in (0,+∞) × � and a

supersolution of this equation in (0,+∞) × �. According to [14, item (5) of Theorem X.1],
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u(t, x) is given by the Lax-Oleinik formula

u(t, x) = inf
{ ∫ t

0
(L(η̇, η) + λH) dτ + dH−λH

(z, y); η(0) = z, η(t) = x, z ∈ �
}
. (A.2)

The minimization here (and below) is taken over absolutely continuous curves η in �. Then,

using the representation formula (2.11) for dH−λH
(η, y) we have, for every δ > 0,

0 = dH−λH
(y, y) = u(δ, y)

= inf
{ ∫ δ

0
(L(η̇, η) + λH) dτ +

∫ t′

0
(L(η̇′, η′) + λH) dτ ; η′(0) = η(t) = y, η′(t′)

= η(0), t′ > 0
}

= inf
{ ∫ t

0
(L(η̇′′, η′′) + λH) dτ ; η′′(0) = η′′(t) = y, t > δ

}
.

Conversely, let {tn}∞n=1 be a sequence of positive real numbers such that tn → ∞, and

1n := inf
{ ∫ tn

0
(L(η̇, η) + λH) dτ ; η(0) = η(tn) = y

}
→ 0, as n → ∞.

Consider u(t, x) given by (A.2). In view of (2.11) we have u(t, x) ≥ inf{dH−λH
(x, z) +

dH−λH
(z, y); z ∈ �} ≥ dH−λH

(x, y) . Since (2.6)–(2.7) has a solution W, a�er adding a

constant to W (if necessary) we obtain u(t, x) ≤ W(x) + C ≤ C1 by the comparison

principle (see [14, Section III]). According to [14, item (5) of Theorem X.1], the functions

vs(t, x) = u(t+s, x) are uniformly Lipschitz continuous on [0,+∞)×� for s ≥ 1. Therefore,

w(x) = lim inf
τ→∞

u(τ , x) = lim
r→∞

inf
s≥r

u(s, x) = lim
r→∞

inf
s≥r

u(t + s, x)

is a Lipschitz continuous supersolution of

∂w

∂t
+ H(∇w, x) − λH = 0 in (0,+∞) × �.

Since w does not depend on t, it is also a supersolution of the equation H(∇w, x) − λH = 0

in �. On the other hand

w(x) ≤ lim sup
n→∞

inf
t>0

u(tn + t, x)

≤ inf
{ ∫ t

0
(L(η̇, η) + λH) dτ ; η(t) = x, η(0) = y, t > 0

}
+ lim sup

n→∞
1n = dH−λH

(x, y).

Thus dH−λH
(x, y) = w(x), and, therefore, dH−λH

(x, y) satis�es (2.7).

B. Aubry set for small perturbations of a gradient �eld

We outline here the proof of the claim stated in Remark 5.

Lemma 24. Let the vector �eld b(x, y) is a C1-small perturbation of a gradient �eld∇P(x)with
C2 potential P(x), and assume that

– the set {x ∈ �; ∇P(x) = 0} is formed by a �nite collection of points in �,

– the Hessian matrix
(

∂2

∂xi∂xj
P(x)

)
i,j=1,N

at every such a point is nonsingular.

Then condition (2.19) is satis�ed.
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Proof. Consider a vector �eld b(x, y)which is aC1-small perturbation of∇P(x), i.e. ‖b(x, y)−
∇P(x)‖C1(�×Y) = δ, and δ is su�ciently small. Let us show that the Aubry set AH of the

Hamiltonian H(p, x) given by (2.4) (with c(x, y) = 0) is exactly the set of zeros of b̄(x) in �,

provided that δ is su�ciently small andP ∈ C2(�) satis�es the conditions speci�ed inRemark

5. Since the Aubry set of this Hamiltonian coincides with that of the e�ective Hamiltonian

given by (2.4), we can assume without loss of generality that H(p, x) =
∑

p2i − b
i
(x)pi. Let

us �rst �nd the Aubry setAH0 of the Hamiltonian

H0(p, x) =
∑

p2i − pi
∂P(x)

∂xi
.

We calculate the corresponding Lagrangian L0(v, x) = 1
4 |v+∇P(x)|2 and use criterion (2.12).

Let ξ ∈ AH0 , then there exist a sequence of absolutely continuous curves ηn : [0, tn] → �,

ηn(0) = ηn(tn) = ξ , such that tn → ∞ and

lim
n→∞

∫ tn

0
|η̇n + ∇P(ηn)|2dτ = 0.

This yields

0 = lim
n→∞

∫ tn

0
(|η̇n|2 + 2∇Pδ(η

n) · η̇n + |∇P(ηn)|2)dτ = lim
n→∞

∫ tn

0
(|η̇n|2 + |∇P(ηn)|2)dτ .

Therefore, ηn(t) → ξ uniformly on every �xed interval [0,T]. It follows that ξ belongs to

the set K = {x ∈ �; ∇P(x) = 0}. Clearly, we also have K ⊂ AH0 . Now note that the

e�ective dri� b̄(x) given by (2.16), can be written as b̄(x) = ∇P(x) + b̃δ(x) with C1-small

b̃δ(x), ‖b̃δ‖C1 = O(δ) as δ → 0. The latter bound readily follows from the regularity of θ∗

and perturbation arguments. Thanks to the assumption on the critical points of P(x), by the
implicit function theorem, zeros of b̄(x) are isolated and are close to K when δ is su�ciently

small. Moreover, ifω is a small neighborhood of ξ ∈ K then b̄(x) vanishes at exactly one point
ξδ ∈ ω and |ξ −ξδ| = O(δ). Therefore, we can de�ne aC2 function Pδ such that |∇Pδ(x)| > 0

in �\Kδ , where Kδ is the set of zeros of b̄(x), and |b̄(x) − ∇Pδ(x)| = gδ(x)|∇Pδ(x)| with
maxx∈� gδ(x) = O(δ) as δ → 0. This yields the following bound (for small δ)

|v + b̄(x)|2 ≥ 1

2
|v|2 + 2∇Pδ(x) · v + Vδ(x), ∀v ∈ R

N , x ∈ �,

whereVδ > 0 in�\Kδ . Then, arguing as above we see thatAH = Kδ . Moreover, every ξ ∈ Kδ

is a hyperbolic �xed point of the ODE ẋ = −b̄(x), as δ is su�ciently small.

C. Properties of solutions of Bernoulli matrix equation

We provide here some results on Bernoulli equation (6.8), used in Sections 6 and 7. Recall

that the matrix Q in (6.8) is positive de�nite, 5s and 5u denote spectral projectors on the

invariant subspaces of the matrix B corresponding to eigenvalues with positive and negative

real parts.

Proposition 25. The maximal positive semi-de�nite solution Ŵ of (6.8) possesses the following
properties: (i) Ŵ = 5∗

s Ŵ5s, (ii) Ŵ ≥ γ5∗
s 5s (in the sense of quadratic forms) for some γ > 0,

(iii) 2tr(QŴ) = tr(B5s), i.e. 2tr(QŴ) is the sum of positive real parts of eigenvalues of B.
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Proof. It follows from (6.8) that X = 5∗
uŴ5u satis�es

45∗
uŴQŴ5u − X(B5u) − (B5u)

∗X = 0. (C.1)

Consider the symmetric solution of (C.1) given by

X̃ =
∫ ∞

0
Y(t) dt, (C.2)

where Y(t) = −4e(B5u)
∗t5∗

uŴQŴ5ueB5ut (note that Ẏ(t) = Y(t)(B5u) + (B5u)
∗Y(t) and

Y(t) → 0 as t → +∞, therefore integrating we get X̃(B5u) + (B5u)
∗X̃ = −Y(0) =

45∗
uŴQŴ5u, i.e. X̃ does solve (C.1)). We claim that X = X̃. Otherwise Z := X − X̃ is a

nonzero solution of equation Z(B5u) + (B5u)
∗Z = 0 and Z = 5∗

uZ5u. Then Z(t) = Z
is a stationary solution of the di�erential equation Ż(t) = Z(t)(B5u) + (B5u)

∗Z(t). The
latter equation has the solution Z̃(t) = e(B5u)

∗t5∗
uZ5ueB5ut which vanishes as t → +∞ and

satis�es the initial condition Z̃(0) = Z. Thus Z = 0, i.e. X = X̃. On the other hand it follows

from (C.2) that X̃ ≤ 0 while X ≥ 0, this yields X = X̃ = 0. Since Ŵ is positive semi-de�nite

we also have Ŵ5u = 5∗
uŴ = 0 and the calculation Ŵ = (5u + 5s)

∗Ŵ(5u + 5s) = 5∗
s Ŵ5s

completes the proof of (i). As a byproduct we also have established that Ŵ is the maximal

positive semi-de�nite solution of

4ŴQŴ − Ŵ(B5s) − (B5s)
∗Ŵ = 0. (C.3)

Indeed, assuming that Ŵ̃ is another positive semi-de�nite solution of (C.3) we get

5∗
uŴ̃QŴ̃5u = 0. This yields Ŵ̃5u = 0 so that Ŵ̃ = 5∗

s Ŵ̃5s, therefore Ŵ̃B = 5∗
s Ŵ̃(5s)

2B =
Ŵ̃(B5s) and Ŵ̃ thus solves (6.8).

To show (ii) and (iii) consider the maximal positive de�nite solution Ŵ̃δ of

4Ŵ̃δQŴ̃δ − Ŵ̃δ(B5s + δI) − (B5s + δI)∗Ŵ̃δ = 0 (C.4)

for δ > 0. The existence of the unique positive de�nite solution follows from the fact that Ŵ̃−1
δ

is the unique solution of the Lyapunov matrix equation

4Q − (B5s + δI)Ŵ̃−1
δ − Ŵ̃−1

δ (B5s + δI)∗ = 0 (C.5)

given by

Ŵ̃−1
δ = 4

∫ 0

−∞
e(B5s+δI)tQe(B5s+δI)∗t dt.

It is known (see [31, Theorem 11.2.1]) that Ŵ̃δ converges to the (maximal positive semi-

de�nite) solution Ŵ of (C.3) as δ → +0. This allows to establish (iii) easily,

2tr(QŴ) = 2 lim
δ→+0

2tr(QŴ̃δ) = 1

2
lim

δ→+0
tr

(
Ŵ̃−1

δ (B5s + δI)∗Ŵ̃δ + (B5s + δI)
)

= tr(B5s).

Finally, if we assume that (ii) is false, then there is η ∈ R
N such that Ŵη = 0 while 5sη 6= 0.

On the other hand,Ŵ
(
limδ→+0 Ŵ̃−1

δ 5∗
s 5sη

)
= 5∗

s 5sη, where the limit limδ→+0 Ŵ̃−1
δ 5∗

s 5sη

exists, for e(B5s+δI)tQe(B5s+δI)∗t5∗
s 5sη decays exponentially fast as t → −∞, uniformly in

δ ≥ 0. According to the Fredholm alternative 5∗
s 5sη and η must be orthogonal, yielding

|5sη| = 0. We obtained a contradiction showing that (ii) does hold.
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