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Abstract. This paper deals with homogenization of parabolic problems for integral convolution type operators with a non-
symmetric jump kernel in a periodic elliptic medium. It is shown that the homogenization result holds in moving coordinates.
We determine the corresponding effective velocity and prove that the limit operator is a second order parabolic operator with
constant coefficients. We also consider the behaviour of the effective velocity in the case of small antisymmetric perturbations
of a symmetric kernel, in particular we show that the Einstein relation holds for the studied periodic environment.

Keywords: Homogenization in moving coordinates, periodic medium, non-local operator, non-symmetric convolution kernel

1. Introduction

The paper deals with homogenization of parabolic problems for an integral convolution type operator
of the form

(Lu)(x) = /R e = Rl () — o) dy ()

with a non-symmetric jump kernel a(z) and a periodic positive function p(x, y).
In our previous work [8] we considered an integral convolution type operator defined by

(Lu)(x) = A(x) /Rd a(x = y)p)(u(y) —ux)dy 2)

under the assumption that A(x) and w(y) are bounded positive periodic functions characterizing the
properties of the medium, and a(z) is the jump kernel being a positive integrable function such that
a(—z) = a(z). We then made a diffusive scaling of this operator

(Lu)(x) = e‘d—%(g) /R ) a(x - 4 )u(f)(u(y) —u(x))dy, (3)

*Corresponding author. E-mail: apiatnitski @ gmail.com.

0921-7134/19/$35.00 © 2019 — IOS Press and the authors. All rights reserved


mailto:apiatnitski@gmail.com
mailto:ejj@iitp.ru
mailto:apiatnitski@gmail.com

242 A. Piatnitski and E. Zhizhina / Homogenization of biased convolution type operators

where ¢ is a positive scaling factor, ¢ < 1. Then we proved the homogenization result for the opera-
tors L. More precisely, we proved that the family L® converges, as ¢ — 0, to a second order divergence
form elliptic operator with constant coefficient in the so-called G-topology that is for any m > 0 the
family of operators (—L® + m)~! converges strongly in L>(R¢) to the operator (—L° + m)~! where

LY =@l ax?;x-/ with a positive definite constant matrix ©.

In this work we consider homogenization problems for convolution type operators L with a kernel of
the form a(x — y)u(x, y), where the function a(z) is not assumed to be even. More precisely, we assume
that a(z) is a generic non-negative integrable function in R¥ that has finite second moments. Concerning
the coefficient w(x, y) we assume that this function is periodic both in x and y and satisfies the estimates
0 < o < u(x,y) < oy for some positive constants «; and «.

In this framework it is natural to study the evolution version of the corresponding homogenization
problem. Namely, we are going to investigate the limit behaviour of a solution to the following parabolic

equation:
du(x, 1) — (L°u)(x,1) =0, u(x,0) = ug(x). 4)

Clearly, under the above conditions on a and p due to the lack of symmetry a drift phenomenon might
appear. In this case the homogenization takes place in a moving frame whose velocity is called the
effective velocity. This raises the following two natural problems: to determine the effective velocity,
and to obtain homogenization results in the corresponding moving coordinates. In the paper we address
both questions. The main homogenization results are formulated in Theorem 2.1 below.

We also consider a small antisymmetric perturbation of a symmetric kernel and study how the effective
velocity and other effective characteristics react on this small perturbation. These results are summarized
in Lemma 7.1. In particular, we prove that the Einstein relation holds for small antisymmetric perturba-
tions of a symmetric kernel. Concerning the notion of “Einstein relation” we refer to [4,5].

It is interesting to compare the effective behaviour of parabolic equations for nonlocal non-symmetric
convolution type operators and for differential operators of convection—diffusion type. Homogenization
problems for non-stationary convection—diffusion equations in periodic media have been investigated
in the works [1-3,7]. It was shown in these works that the homogenization takes place in the moving
coordinates X (t) = x — gt with an appropriate constant vector b. For an elliptic diffusion in a periodic
environment and in a random ergodic environment with a finite range of dependence the Einstein relation
was proved in [5], for a random walk with i.i.d. conductances it was justified in [4].

2. Problem setup and main results

In this section we provide all the conditions on the coefficients of operator L and then formulate our
main results.

Regarding the function a(-) we assume that

a(z) € L'(RY), a(z) >0, ®)

and

lall @y = / a(z)dz = a; > 0; / |z]*a(z) dz < oo. (6)
RY RY
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The function u(x, y) is periodic in both variables and bounded from above and from below:
0<ap <pulx,y) <ay < oo. (N

From now on we identify periodic functions in R¢ with functions defined on the torus T¢ = R?/Z¢. The
operator L is a bounded not necessary symmetric operator in L>(R9), see [8].
In what follows we also use the function

am =) a(m+k, neT

kezd

Notice that @ is non-negative, and ||d||;1rey = lallp1re). In addition to (5) and (6) we impose the
following technical condition:

am) e L*(T%). (8)
Let us consider the following evolution operator

a

H=——1,
a1

with L defined in (1). Then, performing the change of variables x — ex, t — &2, we obtain the family
of rescaled operators

ou
H®u = — — Lfu,
ot
1 xX—y Xy
h L = — 2 _ )
where (L°u)(x, 1) oS Rda( . >u(8,8)(u(y,t) u(x,1))dy )

The main result of this paper is the following homogenization theorem.

Theorem 2.1. Assume that the functions a(z) and u(x, y) satisfy conditions (5)—(8). Then there exist
a vector b € R? and a positive definite symmetric constant matrix ® such that for any T > 0 and any
¢ € L*(RY) the solution u®(x, t) of the evolution problem

ou’
ot

= Lu®, u®(x,0) = p(x), (10)

converges to the solution u®(x, t) of the limit parabolic problem

u® 0 0
T =0 -VVu’, u(x,0) =), (11)

in the moving coordinates (x + gt, t) that is

b
u® (x + —t, t) —u(x, 1) -0 ase — 0. (12)
€

Lo°((0,7),L2(RY))
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b
u(x, 1) — u0<x — —t, t)
)

Observe that

b
u® (x + gt, t) —u(x, 1)

(13)

L>=((0,T),L2(R9)) L®((0,T),L2(R9))

3. Correctors and auxiliary cell problems

In this section we approximate a solution u® of problem (10) using an ansatz constructed in terms of a
solution u° of the limit problem (11) with the same initial condition ¢. To this end we consider auxiliary
periodic problems, whose solutions (the so-called correctors) are used in the construction of this ansatz
and define the coefficients ® of effective operator in (11). We first deal with functions from the Schwartz
space S(R?) that are smooth in ¢ on any interval ¢ € [0, T].

For a given u € C*([0, T], S(RY)) we introduce the following ansatz:

b X b , (X b
wix, ) =ulx——t,t)+ex{ =) -Vulx——t,t )+ -] -VVulx — 1,1, (14)
€ € £ € €

where the vector b € R? and correctors s, € (L2(T%))¢ and s¢, € (L2(T%))%* (a vector function »; and
a matrix function sz,) will be defined below.

Lemma 3.1. Assume that u € C*®([0, T], S(RY)). Then there exist functions »; € (L*>(T¢))? and
) € (Lz(Td))dz, a vector b € R? and a positive definite matrix © such that for the function w® defined
by (14) we obtain

£
Hew®(x,t) = ow” _ Lw® = (8—u(x€, 1) —© - VVu(x®, 1)+ ¢°(x°, t)) , (15)
o1 ot x5=x7§t
where
[ 0.7 £2gery = O- (16)

Proof. Substituting the expression on the right-hand side of (14) for u in (9) and using the notation
x“":x—flweget

dwe(x, 1 —
Hew’(x,1) = wa(;c t)_8d+2/ a(x y)u(i—c,%)(wg(y,t)—we(x,t))dy

R4 &
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y e 2 Y e 3
+ e | = -Vu(y,t)—i—e | = -VVu(y,t)—u(x,t)
& &
_ i & 2 i £
F | -Vu(x ,t) £ -VVu(x ,t) dy, 17

& &

where the symbol ® stands for tensor product, in particular

X b ij X bk
wl-]1® -] VVVu = | — _— 8xi8x_/8xku.
& & & &

Here and in the sequel we assume summation over repeated indices.

We collect the terms in (17) that give the main contribution on the right hand side of equality (15);
the higher order terms form the remainder ¢*. We do this separately for % and for L®w?®. For % we
obtain

w1 _ <_9) Vu(x®, 1) + aa—”t‘(xs, 1)+ e (%) ® (—é> VVu(xf, 1) + ¢ (x, 1), (18)

ot € €
with
¢ (x, 1) = e, (£> . Va—u(xg, 1)+ 82%2(£> ® (—é) - VVVu(x®, 1)
e ot e e
by du
+ 82%2(;) - vva(xs, ). (19)
After change of variables 7 = == = xgg;yg we get

(stg)(x,t) = i/a’za(z)u(i, al —z){u(xs — ez, t) +8%1<£ —z) -Vu(xg — ez, t)
R g & &

&2

+ szzz(g - z) . VVu(xe — &z, t) - u(xg, t)

— &1 (g) . Vu(xs, t) - 82%2(2) . VVu(xS, t)} (20)

Using the following relations

1 8 1
u(y) = u(x) +f (s + (5 = x)q) dg = u() +f Vu(x + (v — 1)q) - (6 — x) dg.
0 0

1
u(y) = 1) + Vi) - (v — x) + fo VVu(x + (v — )g)(y — 1) - (v — (1 — q)dg
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based on the integral form of a remainder in the Taylor expansion and being valid for any x, y € R, we
rearrange (20) as follows

(Lfw®)(x, 1)
1 X X e .
= 8—2 -y dZa(Z)M(E, ; - Z){M(X ’t) — &7 - vu(_x , t)
1
+82/ VVu(x —e2q.1) - 2® 2(1 — q) dg +em<§ —Z>
0
1
. (Vu(xs’ t) — SVVM(Xg, t)Z +82/ VVVM(XE — ezq, I)Z ®Z(1 _ q) dq)
0

+ 82%2<)8—C — z) . VVu(xa — ez, t) — u(xg, t)

on(2) - () et

where

2 3

P10 and {VVVa(z @) = ot
N T : an ul- =
xidx/ . Loz xidxsoxk

{VVM(-)Z}i = (-)Z'/Zk.

Collecting power-like terms in the last relation we obtain

(ngg)(x,t)
= qu(xg,t)-/ {—z+m(f—z) —%1(£>}a(z)u<)—c,f—z) dz + VVu(x*, 1)
) Rd P £ € €
1 X X X X X
/ {—z@z—z@%l(——z)—l-%z(——z)—%z(—)}a(z)u<—,——z>dz
R | 2 € € € £ ¢

+ o (x, 1) 2D

with
¢ (x. 1)
1 X X ) ! .
== dza(ul —,— —z )¢ VVu(x —szq,t)-z®z(1—q)dq
&% JRrd e & 0
1
- ?VVu(xs, 1)-z2®z4¢ (f - z) f VVVu(x® —ezq,1)z ® z(1 — q) dq
€ 0

1
— 83%2<f — z) . / VVVu(xs —&zq, t)z dq}. (22)
€ 0
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Thus the remainder term ¢? is the sum
¢° =0 +¢,". (23)

Proposition 3.1. Letu € C*([0, T, S(RY)) Then for the functions ¢ and ¢{-) given by (19) and (22)
we have

6] =0 and 60, >0 ase 0, 2
where || - ||oo is the norm in L>((0, T), L*(R%)).

Proof. The convergence (24) for ¥ immediately follows from the representation (19) for this function.
For the function ¢{", the proof is completely analogous to the proof of Proposition 5 in [8]. [
4. First corrector sz, and drift b

Our next step of the proof deals with constructing the corrector 5. Denote & = £ a variable on the
period: £ € T¢ = [0, 1]¢, then w(&, n), 5 (£),i = 1,...,d, are functions on T?. We collect all the
terms of the order e~! in (18) and (21), and then equate them to 0. This yields the following equation for

the vector function s (§) = {%i (£)},€ €T¢, i =1,...,d, as unknown function and for the unknown
vector b = {b'} € R?:

/ (2" +59E -2 = ©))a@uE, § —)dz+b' =0 Vi=1,....d. (25)
R4

Here and in what follows s (g), g € R, is the periodic extension of s (£), & € T?. Notice that (25) is
a system of uncoupled equations. After change of variables ¢ = & —z € R? equation (25) can be written
in the vector form as follows

/Rda(é —uE, @) (>a(q) —(§))dg = /l;a(é —q)u,q)E —q)dqg — b, (26)
or
Asxi=h=f—b (27)

with the operator A in (L?(T%))? defined by
(Ap)(§) = /Rda(é — P, q)(pq) — ¢&))dg = /Td&(é —muE n(@m) — &) dn, (28)

where

am =Yy am+k, neT, (29)
kezd
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and

f= /Rda(é —q)pn& q)E —q)dgq. (30)
Observe that the vector function

hE) = fR 4t — . )€ — g dg —b € (L(T9))", G31)

because it is bounded for all £ € T¢. Indeed, due to (6),

fRd aE — )& — P, q)dq‘ <o fR a(2)lz] dz < oo.

In (27) operator A applies component-wise. In what follows, abusing slightly the notation, we use the
same notation A for the scalar operator in L?(T¢) acting on each component in (27).
Let us denote

Ko® = [ a6 —ou ap@rda. o< 13T

Proposition 4.1 ([8]). The operator

Ko@) = fR JaE —nE aeg)dg = fT aE —muE memmdn, g€ L*(T%), (32)

is a compact operator in L*>(T?).

For the proof, see [8].
The operator

Go(®) = p(&) fR a6 — QuiE, 9)dq = p(&) fT € —muE. mdn. ¢ LT, (33)

is the operator of multiplication by the function G (§) = fRd a(E —q)u(, q)dq. Observe that
0<g <GE) < g <o (34)

Thus, the operator A in (28) can be written as A = K — G, where G and K were defined in (33) and
(32). Therefore —A is the sum of a positive invertible operator G and a compact operator —K, and the
Fredholm theorem applies to (27).

Since the operator A is not symmetric, we need to characterize the kernel of the adjoint operator A*;
here and in what follows the super index * stands for adjoint operator.
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Lemma 4.1. The operator (G~'K)* is compact in L>(T%) and has a simple eigenvalue at > = 1. The
corresponding eigenfunction Vo € L*(T¢) satisfies the equation

(G™'K) o = v (35)
and admits the following estimates:

0 <y <o) <y <00 foralls €T, (36)
here vy, > 0 and y, are positive constants.

Proof. The compactness of G~'K is an immediate consequence of Proposition 4.1 and estimate (34).
The operator A = K — G has the eigenfunction ¢y(§) = 1 with the eigenvalue equal to 0. Thus
@o(€) = 1 is also the eigenfunction of the operator G~!K that corresponds to the eigenvalue A = 1.
Moreover, A = 1 is the maximal eigenvalue, since the operator G~! K is a stochastic operator. It is clear
that G™'K is a positive operator, that is it maps the set of non-negative L2(T¢) functions into itself.
Moreover, we will now prove that G~! K is a positivity improving operator, and furthermore there exists
N e N such that

feL*(TY)\{0}, f(&) >0 implies (G_IK)Nf(é) >v(f) >0 forall & e TY. (37)

Due to representation (32) of the operator K property (37) is a straightforward consequence of the
following lemma.

Lemma 4.2. There exist N € N and yy > 0 such that
aNE) =yn VEeT, (38)
where the symbol x stands for the convolution on the torus T¢.

Proof. For proving (38) it is sufficient to show that for any non-negative a € L'(R%):
a@ >0, [ a@az=1. (39)
R4

there exist y > 0 and a ball B; € R? of a radius § > 0 such that
(axa)(z) >y Vze B;. (40)

The Lebesgue differentiation theorem states that, given any f € L'(IR¢), almost every x is a Lebesgue
point of f, i.e.

|f(») — fx)|dy =0, (41)

lim
r—0t [ B ()| Jp,(x)

where B, (x) is a ball centered at x with radius r > 0, |B,(x)] is its Lebesgue measure. Condition (39)
implies that there exists a Lebesgue point xo such that a(xg) = o« > 0. We assume without loss of
generality that xo = 0. In the following statement the symbol u stands for the Lebesgue measure.
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Proposition 4.2. For any ¢ > 0 there exists 6y > 0 such that for any § < &y:

M{yEBa(O):a(y)> %} > (1 —¢)|Bs(0)]. (42)

Proof. Using inclusion

{y € B5(0) : a(y) < %} c {y € By(0) : |a(y) — a(0)] > %} with a(0) = a,

the Chebyshev inequality

2
M{y € B5(0) : a(y) —a(0)] > %} < —/ |a(y) — a(0)| dy,
& JB50)

and definition (41) of a Lebesgue point, we get that for any ¢ > 0 there exists §; > 0 such that for any
S < 502

o o
u{y € Bs(0) :a(y) < 5} < M{y € B5(0) : |a(y) — a(0)| > 5} < | Bs(0)]. (43)
Consequently, inequality (42) holds. [
Notice that x — y € Bs(0),if x,y € B% (0). Then it follows from (43) that for any x € B 5 (0) we

obtain

o

2} > |Bs| —2M{y € By(0) 1 a(y) < g}

2
2 |By| — 2¢|Bs|. (44)

M{y € By(0) :a(y) > 3. alx =) >

Choosing ¢ = 27@*2 and the corresponding § = 8(g) we get from (44) the following estimate which is
valid for all x € B% (0) with § = §(¢):

|Bs]. (45)

3
2

1
M{y € By(0) 1a(y) > 3.a(r =) > E} >3

2
Finally we have for all x € B% (0):

2

o
a(x —y)a(y)dy > §|B l,

3
2

(a*a)(x) = /Rda(x —ya(y)dy = /|

vI<$.a()>§.ax—y)>%
which implies (40).

From (40) one can easily deduce that a**(z) = (a * a) * (a *x a)(z) > y; forall z € B% s with
Y1 = n(y,d) > 0. Iterating this inequality we obtain a>*%(z) > y > O forall z € By 3 with
k/\: 1,2,.... Letting N = [%] + 1 and yp = yn, we have a*N(z) > y forall z € B /5. Since
a*N(-) = a*", the inequality (38) follows, and the proof of Lemma 4.2 is completed. [
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As was already explained in the beginning of the proof of Lemma 4.1 the maximal eigenvalue of the
operator G 'K is equal to 1. Consequently, the Krein-Rutman theorem ([6], Theorem 6.2) implies that
the operator (G~'K)* has the maximal eigenvalue equal to 1, and from Lemma 4.2 it follows that the
corresponding eigenfunction vy is positive: ¥y > 0 (the ground state). The fact that A = 1 is a simple
eigenvalue of the operator (G~!K)* in the space L?(T?) follows from the positivity improving property
(37), see e.g. [6], Section 6.

Thus we have proved the existence and uniqueness of ¥y > 0, ¥y € L*(T¢) that satisfies (35). In
particular,

Yol (rey = /d Yo(§)ds > 0.
T
Next we turn to the bounds in (36). Estimates (34) and (38) imply the bound from below:
o0& = ((G'K)") v ®) = (g5"en) " w0 / Yo(m dn
T

_ N
= (g5 "'@1) vollYollLirey VE € T, (46)

where 0 < [|Yoll1(pey < 1Yol L2(7e)- The upper bound follows from (8) and (35):

max Yo(§) < max /Td a(n —&)un, %‘)G_l(n)lﬁo(n)dn‘ < angy ol e a1 L2 cpa).- (47)

The proof of Lemma 4.1 is completed. [

Corollary 4.1. The function vo = G~ satisfies the following relation

| ata = oua. oun@dg = [ a - nie.q)da. @)

i.e. Ker(A*) = Ker(G — K)* = span(vy). This function obeys the following lower and upper bounds:
0< 7 <v€) <jh<oo forallE e T (49)
Proof. We have
(G—K)v=(G(E-G'K))'G o= (E— (G 'K) )y =0. O

To fix the normalization condition for function vy we assume in the sequel that

/ w0(&) dé = 1.
']1‘11

Proposition 4.3. Equation (27) is solvable if and only if

b= /R /d“@ — D, & — q) dq vo(§) dt. 50
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Proof. By the Fredholm theorem the solvability condition for the equation in (27) reads:

[ em@de= [ [ ae—oue.oE-odmeds b [ wede=o. 6D

This yields the desired statement. [J

To summarize, for b given by (50) equation (26) has a unique (up to a constant vector) solution
s € (LA(T9))".

5. Second corrector s, and effective matrix ©®

We collect now all the terms of the order £° in (18) and (21), and then equate them to the main term
on the right-hand side of (15):

M n) — 0 vVulet, 1)

Notice that time derivatives %—Lt‘ (x#, t) are mutually cancelled on both sides of this relation, and we obtain

an equation for the unknown matrix function s (§) = {%;j &), € € T4 i,j =1,...,d, and the
constant matrix ® = {®/}. This equation reads

fR @@, &~ (A€ 2 — ) de+ b @)
+/ a(@)p, & - z)(%zizj — 715 (£ — z)) dz = ©Y. (52)
]Rd

Notice that (52) is again a system of uncoupled equations. After change of variables ¢ = £ — z € R?
equation (52) can be written in the vector form as follows

- /R e ~ & ) (alg) — =) dg

1
=b® s (§) +/Rda(§ —q)u(é,q)<§(§ —q)®E—q)— ¢ —q)®m(q)) dg —0©, (53)
or
—An(E)=F(¢) -0 (54)

with the operator A defined above in (28) and the following matrix function on the right-hand side:

1
F(&) =b® (&) +fRda(§ —q)u(é‘,q)(i(é - E—q)—E—q) ®m(q)) dq.
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The equation (54) on 3z, has the same form as equation (27) on ;. Consequently, using the same
reasoning as above we conclude that the solvability condition for (54) leads after simple rearrangements
to the following formula for the matrix ®:

oY = /T FU @) dé
1 , . o
= /T fR a(§ — QuE, q)<§<s — )€ —q) — (&~ q)’%{(q))vo(g)dq dé
+ b fT A () dé 55)

for any i, j, where vy € L?(T?) is the normalized function from Ker(—A*), see Corollary 4.1.

Proposition 5.1. The integrals on the right-hand side of (55) converge. Moreover, the symmetric part of
the matrix ® = {®"} defined in (55) is positive definite.

Proof. The first statement of the Proposition immediately follows from the existence of the second
moment of the function a(z). Since function vy(§) > 0 and satisfies two-sided bounds (49), it is sufficient
to prove that the symmetric part of the right-hand side of (55) is positive definite. To prove that ©® is a
positive definite matrix we consider the following integrals:

i = fT d /R e~ i, (¢~ )+ (a® — (@)
(€ = @) + (0©) = 3a(@)) vo(©) dg dt. (56)
Our aim is to show that the symmetric part of the right-hand side of (55) is equal to I:
1" = 0" + 6. (57
We have
o + 0/ = /T d /R a(E — (9 —9)' (€ —9)v0() dt dg
- [ [ at¢ —me 0 — 0@ + € — )/ @6 dg de
+0' /T A Evo(€) dE + b /T @) dé. (58)
Let us rewrite /*/ as the sum

Jii — Ilij + Iéj + Iij,
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where

I = /T ) fR as —uE. )€ —9)'E —q) vo(€) dg ds. (59

L' = /T /R a6 = uE 0)(E -9 (2@ —a@) + (4 - @) ¢ - ))
0(€) dg dt, (60)

I = / ) / alt —uE.q)(a®) — @) (a®) @) wE)dg dé. (61)
T¢ JR
Then [ fj coincides with the first integral in (58). Let us rewrite the integral in Iéj as follows:

= [, [ at = au o -0/ + € /@) (e da ds

- /w /Rda(é — 1, ) (E — @) 5 (@) + E — ¢) 7(@))vo(&) dg dE

T (62)

Then J2ij coincides with the second integral in (58). Further we rearrange the integral J~2"j using (26) and
(27) and recalling the definition of the function f in (30):

Ji = fT P ©uE) ds + /T P ds
_ fT A ©uE (b + A ©) de + fT S AEWE (B! + 4 ©)) dé

= /Td ] (§)vo(€) dE + b /w 7 (E)vo(§) d§

4 /T A ©uE A E) de + /T A @A € ds. (63)

Denote
Dy =¥ /T o] E)vo€) dE + b/ /T A@WE) dé, (64)
Dj = fT o E)o(E) A (§) d + fT A E () A (5) dE. (65)

Then D} coincides with the third integral in (58).
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‘We have to show that I_;j = —ﬁ;j . We have

I = /Td A{d aE —quE, q)(aE) — m(q))i%{(é)vo(é)dq dg
- fT ,, /R als — (e )4 6) — 20@)) 2 @ (6) dy d

—— [ Ax©©Oue de + 5. (66)
']Td
We rearrange J3U using (48):

= /T d /R a6 — e 9) (4 &) — (@) | (@w(E) dg ds
_ /T d fT il — &, @) (a(@) — 1 ©) A @uol®) dg d
- /T d fT alg —©)(, 0 (4 (©) — (@) 4 ©uol) da de
=de /Td&(q—S)M(CI,S)UO(Q)dCI 54(6)34] (&) d
- /T d /T alg ~ ©r(@, E)v0(g) () ] €) dg de
_ /T d [T e — )t )4 (§) dquo(§) 4 (©) d
_ /T d /T (e — e )] (@) dq v0(§)7 €) d

= /T A E)wE) @) d. (67)

Thus I3ij = —l~);j and this relation complete the proof of equality (57).

The structure of (56) implies that (Ir, r) > 0, Vr € R?, and moreover (Ir,r) > 0 since vy > 0 and
s1(q) is the periodic function while g is the linear function, consequently [((§ —q)+ (5«1 (§)—3¢1(q)))-r]?
can not be identically O if » £ 0. 0

Thus, Lemma 3.1 is now completely proved. [

6. A priori estimates

Let u°(x, t) be a solution of (11) with u°(x,0) = ¢ € S(RY). Then u’(x,t) € C®([0, T], S(R?))
for any T and we can define approximation w® of u° substituting u°(-) for u(-) in (14). It follows from
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Lemma 3.1 that w® satisfies the following equation

Jw? ou’

o Lfw® = W(xs, t) - 0. VVuo(xg, t) + d)s(xg, t) = d)s(xg, t),

w(x,0) = @(x) + ¥° (%),

(68)

where x® = x — gt, and

Y (x) = e <§) Ve(x) + 82%2<§> L VVp(x) € L2(RY).

Consequently, the difference v®(x, t) = w®(x, t) —u®(x, t), where u® is the solution of (10), satisfies the
following problem:

ove(x,t)

Py — L%V (x, 1) = qbs(xg, t), vo(x,0) = ¥ (x). (69)

Notice that by (23) and Proposition 3.1 we have ||/* || 2re) = O(¢) and [|¢°||oc = o(1), where || - || 1S
the norm in L>((0, T'), L>(R%)). We are going to show now that the solution v® of (69) tends to zero in
L0, T), L>(R%)) as ¢ — 0.
Proposition 6.1. Let v® be the solution of (69) with small V¢ and ¢*:

6] =0, ¥ s = O) ase 0.
Then

HUSHOO—)O ase — 0. (70)

Proof. Since problem (69) is linear, we consider separately two problems:

ad
% — Lng = 0, Ulp(.x, O) == w(-x)a (71)
ad
81):) _ L8U¢ — d), U¢(x’ O) = O’ (72)

and prove that [[vy [loc < Cil|¥ || L2re) and ||v¢||io < C1||¢]loo With some constants Cy, C, that do not
depend on €, however might depend on 7'. This immediately implies the required relation in (70).

Denote vy(x) = vo(3), where vg is the periodic extension of the function vy € L*(T?) defined in
Corollary 4.1. Multiplying equation (71) by vy (x, 1)vo(3) and integrating the resulting relation over
t € (0,s) and x € RY we have

/Rd /Os va(x, 1) dtvg(x) dx = % ./Rd vy, (x, $)vf(x) dx — %Ld Y2000 (x) dox

:/S/ vy (x, vy (x) Loy (x, t) dx dt. (73)
0 JRrd
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All integrals in (73) exist since vy is uniformly bounded, see (49). The last integral in (73) can be
analysed in the same way as the term /3 in the proof of Proposition 5.1, see (66)—(67). This yields

f Lfvy (x, t)vy (x, Hvg(x) dx = (Lng, vw)vo <0 forallt e [0, T],
Rd
and consequently,

/ vy, (x, $)vf(x) dx < / YA ()i (x)dx  foralls € (0, T).
RY Rd
Using the estimates in (49) for vy we conclude that
H vlﬁ('a S)HLz(Rd) < Cl”w”LZ(Rd) (74)
with a constant C; which does not depend on s € (0, T'). Thus

vy lloe < Crll¥rllz2a)- (75)

Using the same reasoning for the second equation (72) we obtain

l/ vi(x,s)vg(x)dx — /Y/ o (x, g (x, vy (x)dx dt = /S(Lewp, ”¢)v dt <0. (76)
2 Jpa 0 Jre 0 0

Recalling the bounds in (49), by the Schwartz inequality we derive from (76) that

S < 5 fo €0l 2gan 196 D 2y @t < Zs 9l lvollo (77)
for any s € (0, T'). Consequently,

[vglloc < CoAT) |l cc- O

Since ||w® (x, 1) — u®(x — 22, 1)|c — 0 by (14), then (70) immediately yields

e b 0
u*lx—+—t,t)—u(x,1)
£

Thus we proved (12) for a dense in L?(R?) set of initial data, when ¢ € S(R?).

We can complete now the proof of Theorem 2.1. For any ¢ € L?(R?) and for any § > O there
exists g5 € S(R?) such that ||¢ — @5 | 2rey < 8. We denote by u§ and ug the solution of (10) and (11)
with initial data @s. Since (11) is the standard Cauchy problem for a parabolic operator with constant
coefficients, its solution admits the classical upper bound

—0 ase—> 0. (78

oo

b
u(x, 1) — u0<x — —t, t) H —- 0 or
€ o0

|u’ e, ) —uixe, 0| < llp = gsll 2@y < 8 (79
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for any 7 > 0. By the estimate in (74) we obtain
|us e, 1) —u(x, )|, < Ci6. (80)

Since the upper bounds in (79)—(80) are valid with an arbitrary small § > 0, then (78)—(80) imply that

— 0, ase— 0.
o0

& b 0
u'lx+—-t,t)—u(x,1)
£

This completes the proof of Theorem 2.1.

7. Small perturbations of symmetric kernels. Einstein relation

Let us assume in this section that (€, n) = w(n, £) and consider a kernel a(z) satisfying (5)—(6) of a
special form:

a(z) :asym(Z)‘i‘e -c(z), (81)
where agym(—2) = agym(z) is a symmetric function that also satisfies (5)—(6), c(z) is an antisymmetric
vector function, thatis £-c(z) = £'c'(2), ¢’ (—z) = —c'(2),i = 1, ..., d; c(z) satisfies condition (6), and

£ € R? is a constant vector of a small norm. We assume here and in the sequel summation over repeated
indices. We also consider in this section a special case of antisymmetric perturbation of the form

ce(z) = Zasym(z)we (2),

where wg(z) = w(|€]|z]), and @ (s) is a C;°(R) function such that 0 < w(-) < 1, w(s) = 1 fors € [0, i],
and w(s) =0 fors > %

Lemma 7.1. Let b(£) € R? be the effective drift vector corresponding to the problem (25) with a(z)
given by (81). Then, for small £,

b =0 / f dOQuE. £ — 2)dzdE
R4 JTd
L /R d fT dagn@pE § ~ DG E) dzds + 0(107) (82)
where ¢y = {97)6} € (L*(T4))? is the solution of the problem
/Rd aym(E — &, ) (@4(q) — §4(&)) dg = 2/Rd & —quéE, q)dg (83)

with de @) dn = 0.
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In the special case, when cy(z) = zasym(2)we(2) and b(£) is defined by (82)~(83) with c(z) = c¢¢(2),
we obtain the so-called Einstein relation:

ab' (¢ ’
O 2, (84)
S VA ’

where Ogyy, is the effective matrix of problem (10) corresponding to the symmetric kernel agym(x —
VI(x, y).

Remark 7.1. Notice that the symmetric part of 2®§§m coincides with Is'gm = ®i§m + @ﬁ;m.

Proof. Since the operator K and the function G defined in (32) and (33), respectively, depend on a
vector parameter £ smoothly, and A = 1 is a simple eigenvalue of the operator ((G(-))~'K)*, then the
corresponding eigenfunction ¢y = 1//5 € L*(T¢) is also a smooth function of a parameter £. So is

vy = vg. Using the perturbation theory arguments we conclude that for small £ the function vé € L*(T9)
defined in Corollary 4.1 admits the following representation

- - d
vp(§) = 1+ €50(&) + O (L), ¢ € (L*(T))", (85)
where 1 stands for the function identically equal to 1 on T¢. We used here the fact that
SPan(l) = Ker(Gsym - [(Sym)>'< = I<er((;sym - Ksym)a (86)

where operators K, G are defined by (32) and (33) respectively, and we denote by Kgym, Geym the
operators related to the symmetric kernel agym(x — y)u(x, y).
Substituting (85) in the relation K*v§ = Gv§ we obtain

/Rd aym(q — E)plq, €)1+ €:g)(q)) dg + €/ /Rd /(g —&nlg. &)1+ 'G)(q)dg + O(1¢%)
=1+ fi"cﬁé(é))[/ﬂv agym(E — (€, q)dg + t/ /Rd /(& — u, q)dq] +O(lef). (87
Relations (86)—(87) yield
4 /Rd agm(E — @&, Q)Ph(q) dg — €' fRd ¢ — & q)dg + O(|L])
= L'G() /R asm(E — & q)dg + /R € —uE g dg + O(1LP). (88)
Collecting the terms of the order |£] in (88) we deduce the equation for G:

| aom® e, (@@ ~ ) dg =2 | ¢ — e ardg (89)

Our subsequent reasoning relies on the following statement.
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Proposition 7.1. If a(—z) = a(z) for all z € R? and o € L' (R?), then
[ [ e -ameadza= [ [ a¢-ouaedsd 90)
R4 JTd R4 JTd
if B(—=z) = —B(z) forall z € R? and B € L' (R?), then

ffﬁ(f—Q)M(E,Q)dédQZ—/ / BE —qn(q,§)dé dg. oD
Rd JTd Rd JTd

The proof is the same as that of Proposition 7 in [8]. It is straightforward to check that the arguments
used in the proof given in [8] also apply to the operators considered here. We leave the details to the
reader. [J

Since ¢! (—z) = —c'(z) by our assumption, then Proposition 7.1 yields
[ [ é&-aneadga =o
R4 JTd

and consequently, there exists a unique (up to an additive constant) solution @0 € (L*(T%))? of (89). We
choose the additive constant in such a way that de ¢y(&) d§ = 0 for any component of ¢y. Then (85)
implies that de vg &)déE =1+ O(]€|%), and from (51) and (85) we obtain that

B = [ [ #asn + @), & = dx(1+ 0 ©) dé + O (1)

o [ [ deonee-adas e [ [ dasm@ue s - 06 dzde
Rd JTd Rd JTd
+ 0(l1¢]%). (92)
In the case when ¢¢(2) = zZasym(2)we(2), it follows from equation (89) that
Gt = 2otgm + e, G € (LA(TY))", (93)

where sy, is the first corrector of the symmetric problem (10) that satisfies the equation

/Rd asym(& — I, @) (3ym(q) — »sym(8)) dg = /Rd asym(§ — q)(§ — )€, q) dq, (94)

see also [8], and
IrellL2(raye — 0 as € — 0. (95)

Indeed, denoting

gu(®) = /R (@ (1~ o)l € — 2 dz
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and using (6) we get that

_Irllaxd maﬁgé(é)\ — 0 as{ — 0, andconsequently ||gell2¢eye — 0 as€ — 0. (96)
i=1,..., %‘e’ﬂ'

After substitution (93) in (89), considering equation (94), we come to a conclusion that r, satisfies the
following equation:

fT L sym(E —mu(E, M (re(n) — re(€)) dn = 2g0(€),  re € (L(T9))". 97)
We can rewrite (97) as

(Ksym - Gsym)ré = 283, (98)

where the operators
Ksymf(éf) = /1‘1‘0’ &sym(g - H)M(S, Tl)f(’?) dﬂ, Gsymf(éf) = G(g)f(é),
GE) = /T (& — e d

apply component-wise. Considering each component of r, = {r}} separately and applying the Krein—
Rutman theorem to the compact positivity improving operator Ky, (see [6], Section 6, or [9], Theo-
rem XI11.44), we conclude that the operator (G_! Kiym —E) is invertible on L?(T¢) ©{1}. Consequently,

sym

equation (97) has a unique solution r; € L*(T?) & {1}. Moreover, (96) and (98) imply that
Hré ” L2ty 0 asfé — 0, 99)

and thus (95) holds.
Next we substitute the right-hand side of (93) for @y in (92), and transform the resulting relation with
the help of Proposition 7.1 and (99). This yields

b @) = / / 2 aym (@ (E. & — 2) dz dE
R4 JTd
. . . 1 .
20 [ [ (e =00+ 57 = 2 Jaam@nnte. & - 2)dzde + 0 (1)
iy f f d i agm(OnE, & —2) dz de
R4 JTd

— g /R d /T (& — Dagm(@u (. § — 2) dzdé + o(|2]). (100)

Since in the symmetric case b(0) = 0 and vy = 1, then comparing (100) with (55) and using one more
time the statement of Proposition 7.1 we come to (84). [J
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