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Abstract

Prolongating our previous paper on the Einstein relation, we study the motion
of a particle diffusing in a random reversible environment when subject to a small
external forcing. In order to describe the long time behavior of the particle, we intro-
duce the notions of steady state and weak steady state. We establish the continuity
of weak steady states for an ergodic and uniformly elliptic environment. When the
environment has finite range of dependence, we prove the existence of the steady
state and weak steady state and compute its derivative at a vanishing force. Thus
we obtain a complete ‘fluctuation–dissipation Theorem’ in this context as well as
the continuity of the effective variance.

1. Introduction

Prolongating the work started in [7], we study the motion of a particle diffusing
in a random reversible environment when subject to a small external force. The
external force we consider is a constant in time vector field in some direction e1
and strength λ. We think of λ as being small.

Long time properties of the motion of our particle depend on the process of the
environment seen from the particle: in the absence of the external force, the process
of the environment seen from the particle is at equilibrium and the motion of the
diffusing particle is diffusive (obeys the central limit theorem). When a constant
external force is added, the process of the environment seen from the particle is off
equilibrium and the motion of the particle becomes ballistic. In order to get a law of
large numbers, one has to study appropriate invariant measures for the environment
seen from the particle; we call suchmeasures ‘steady states’. Although the existence
of a steady state was proved for environments with a finite range of correlation in
[17], nothing was known until recently about the way it depends on λ. A first partial
answer was given in [7] where we computed the derivative of the effective velocity
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and thus obtained the so-called Einstein relation. In the present paper, we shall
investigate regularity properties of the steady state itself.

This question is of general interest in physics where studying the response of
a system to a small perturbation is often a fruitful experimental procedure. A first
example of such a situation is the work of Perrin on the Brownian motion of minute
particles suspended in liquids, see [27], that confirmed the theoretical predictions
of Einstein about Brownian motion and the existence of atoms, see [5]. Another
well-known example is the Green–Kubo relation expressing transport coefficients
in terms of correlations, see [22]. Such results are usually referred to as fluctuation–
dissipation theorems or Linear Response theory in the physics literature. We refer
to [12] and their references for applications to climate change among others.

Reversible diffusions in a random environment are also an example of models
obeying homogenization ([4,13,14,20,21,25,26] among others). Studying the ef-
fect of imposing a small drift in the equation is then a way to test the robustness of
homogenization properties. Indeed our result on the continuity of the steady state
rely on our ability to obtain bounds on the effect of the external forcing that are
uniform in time, see in particular Lemma 3.1. Let us alsomention that similar issues
are currently addressed in the context of deterministic dynamical systems, see [2]
and references.

Let � be the space of smooth d × d symmetric non-negative matrix functions
defined on R

d . We equip this space with the topology of uniform convergence on
compact subsets of R

d . We let Rd act on � by additive translations. We denote this
action by x .ω.

Let Q be a Borel probability measure on �.

Assumption 1. The action (x, ω) �→ x . ω. preserves the measureQ and is ergodic.

We first introduce the diffusion process without external forcing. Let (Xω
0 (t) ;

t ≥ 0) be the solution of the stochastic differential equation in R
d :

dXω
0 (t) = bω(Xω

0 (t))dt + σω(Xω
0 (t))dWt ; Xω

0 (0) = 0 , (1.1)

whereσω(x) = σ(x .ω) is a stationaryd×dmatrix,bω(x) = 1
2div(σ

ω(x)(σω)∗(x)),
and (Wt ; t ≥ 0) is a d-dimensional Brownian motion defined on some probabil-
ity space (W,F , P). In the sequel, we use the notation aω(x) = σω(x)(σω)∗(x)
and a(ω) = σ(ω)(σ )∗(ω). The vector field bω is stationary therefore of the form
bω(x) = b(x .ω) for some vector valued function b defined on �.

Our goal is to study the behaviour of diffusion Xω
0 (t) perturbed by a fixed small

force. The corresponding equation for the perturbed process reads

dXλ,ω
0 (t) = bω(Xλ,ω

0 (t))dt + λaω(Xλ,ω
0 (t))e1 dt + σω(Xλ,ω

0 (t))dWt ;
Xλ,ω
0 (0) = 0 , (1.2)

where e1 is a fixed vector in R
d , and λ ∈ R.

In the paper we assume that the diffusion coefficient in (1.1), (1.2) satisfies the
following uniform ellipticity condition:
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Assumption 2. There is κ > 0 such that the following estimates hold:

κ|ζ |2 � |σ(ω)ζ |2 � κ
−1|ζ |2, for all ω ∈ � and ζ ∈ R

d .

We also assume that the diffusion coefficient in (1.1), (1.2) has smooth realizations:

Assumption 3. for any environment ω, the function x → σω(x) is smooth.

The asymptotic behaviour of the non-perturbed symmetric diffusion (1.1) was
widely studied in the 70’s and 80’s. It was proved, see [14,20,21,25,26], that under
general ergodicity assumptions, the process Xω

0 shows a diffusive behaviour and
satisfies the invariance principle. We endow the path space with the topology of
locally uniform convergence. Then the law of the family of rescaled processes
(εXω

0 (t/ε2) ; t ≥ 0) weakly converges towards the law of a Brownian motion with
some covariance matrix �.

If λ > 0 then the process Xλ,ω
0 is ballistic. It was shown in [7] that it satisfies

the quenched estimates

c1λt � E(Xλ,ω
0 (t) · e1) � c2λt

with deterministic constants c1, c2, 0 < c1 < c2 that only depend on the ellipticity
constants and the dimension and do not depend on λ; here the symbol E stands for
the expectation related to the measure P on (W,F). We generalize this estimate
in Lemma 3.1.

However, these estimates do not automatically imply the law of large numbers
(LLN). The LLN was proved in [29] under the condition that the diffusion matrix
aω(x) has a finite range of dependence, see Assumption 4 below. The proof is
based on the construction of regeneration times. This technique also yields the
central limit theorem for Xλ,ω

0 ; we call �λ the asymptotic variance.
These results can be better understood using the point of view of the particles in-

troduced in [26]. Define the process ω0(t) = Xω
0 .ω, respectively ωλ(t) = Xλ,ω

0 .ω.
One checks that ω0(.) and ωλ(.) are Markov processes, and that Q is a reversible
invariant measure ofω0(.). Using theDirichlet form ofω0(.), we define the Sobolev
space H1(�) and its adjoint H−1(�). It was shown in [4,14] that the invariance
principle holds for additive functionals of elements of H−1(�). The invariance
principle stated above for the process Xω

0 is a consequence of these more general
results.

For positive λ the measure Q is not invariant any more. Following [16] we use
the notion of steady state.

Definition 1.1. Let λ > 0. A Borel probability measure νλ on � is called steady
state if for any bounded continuous function f , for Q almost all ω and P almost
surely we have

lim
t→∞

1

t

∫ t

0
f (ωλ(s)) ds = νλ( f ),

where ωλ(s) = Xλ,ω
0 (s).ω.
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Note that, if it exists, the steady state is an invariant measure for the Markov
process ωλ(.) and it is unique.

The existence of the steady state is proved in [17] for a model of a diffusion in a
random environment that differs a bit from ours and satisfies Assumption 4 below
on a finite range of dependence. In Section 4 we shall also obtain the existence of
νλ assuming finite range of dependence by a method that is more explicit than in
[17]. The existence of the steady state is not known for a general stationary ergodic
environment. Furthermore, even if we happened to know that it exists for all λ, it
would not directly follow from the definition whether νλ converges to Q as λ → 0.

This motivates us to modify the definition of a steady state and to introduce the
notion of weak steady state in the definition below.

Theweak steady state is defined on a special subset of the space H−1(�) that we
call H̃−1∞ (�). The precise definition will be given in Section 3. Loosely speaking,
one may think of elements in H−1(�) as function f on � that can be written as
the divergence of some stationary, square integrable vector field, say f = divF .
We call H−1∞ (�) the set of f in H−1(�) for which we can choose a bounded F .
Note that H−1∞ (�) is naturally endowed with a Banach space structure. We further
let H̃−1∞ (�) denote the closure in H−1∞ (�) of the linear set of f in H−1∞ (�) for
which we can choose a bounded and local F . Precise definitions are given at the
beginning of Section 3.

A typical example of an element of H−1∞ (�) is obtained choosing F(ω) = a(ω).
Then f (ω) = 2b(ω) is the drift term in Equation (1.1).

We shall see that, although an element of f ∈ H−1∞ (�) need not be a function,
it still makes sense to consider the additive functional

Aλ,ω
0, f (t) =

∫ t

0
f (ωλ(s)) ds.

We thus define the notion of

Definition 1.2. Let λ > 0. A continuous linear functional νλ on H̃−1∞ (�) is called
weak steady state if for any f in H̃−1∞ (�), then

lim
t→∞

1

t
Aλ,ω
0, f (t) = νλ( f ), (1.3)

in L1(W, P) for Q almost all ω.

As we shall see in Section 3, if the convergence in (1.3) holds for any f in
H̃−1∞ (�), then the limit is automatically a linear continuous functional on H̃−1∞ (�).

Observe that due to Lemma 3.1 below, we could replace in Definition 1.2 the
convergence in L1(W, P) with the convergence in L p(W, P) for any p � 1.
Also, due to the same Lemma, if 1

t A
λ,ω
0, f (t) converges P almost surely, then the

convergence holds in L1(W, P) as well.
We prove the Lipschitz continuity of weak steady states.
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Theorem 1.3. There exists a constant C1 satisfying the following: if for λ with
0 � λ � 1 and f in H−1∞ (�) the limit

lim
t→∞

1

t
Aλ,ω
0, f (t) := νλ( f ),

exists in L1(W, P) for Q almost all ω, then

|νλ( f )| ≤ C1λ‖ f ‖H−1∞ (�)
. (1.4)

In particular, if the weak steady state exists for all λ ∈ [0, 1], then νλ( f ) converges
to 0, as λ → 0 for all f ∈ H̃−1∞ (�).

Remark 1.4. In the next section we introduce the space H1(�) in such a way
that these functions have zero mean value. With this definition the duality between
functions from H−1(�) and constants does not make sense. However, under our
assumptions, the generators Dj , j = 1, . . . , d of the action x .ω are such that√−1Dj are self-adjoint in L2(�). Therefore, for any F = (F1, . . . , Fj ) such that
Fj belongs to the domain of Dj we have

∫
�
divF(ω)dQ = − ∫

�
F · ∇(1)dQ = 0.

Thus all elements of H−1(�) are centered in a certain sense. In particular,∫
�
dQ(ω)E[A0,ω

0, f (t)] = 0 for all t .
Therefore Equation (1.4) does indeed express the Lipschitz continuity of the

weak steady state νλ, considered as a linear functional on H̃−1∞ (�).

In Section 4, we prove that weak steady states exist for all λ ifQ has finite range
of dependence, see Assumption 4 below.

From now on, we shall discuss properties of diffusions in a media satisfying
the following finite range of dependence property: for a Borel subset F ⊂ R

d , let
HF denote the σ -field generated by {σ(x .ω) : x ∈ F}. We then have

Assumption 4. there exists R such that for any Borel subsets F and G such that
d(F,G) > R (where d(F,G) = inf{|x − y| : x ∈ F, y ∈ G} is the distance
between F and G) then

HF and HG are independent. (1.5)

As alreadymentioned, underAssumption 4, steady states andweak steady states
then exist for all λ and Theorem 1.3 applies. We can go one step further and show
that νλ( f ) has a derivative at λ = 0. This is the content of the next Theorem.

Theorem 1.5. Let f belong to H̃−1∞ (�). Then, the derivative of νλ( f ) at λ = 0
exists.

Our main tool for proving the existence of the steady state and Theorem 1.5 are
regeneration times. As a matter of fact, regeneration times were already the main
tools in [29] (for the proof of the law of large numbers and c.l.t. for Xλ,ω

0 ) and in
[17] to establish the existence of steady states; see also [15,30] for random walks.

In order to prove Theorem 1.5, one needs regeneration times that do not explode
faster than λ−2 as λ tends to 0. We already faced this issue in [7] and there we
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introduced appropriate modifications to the definitions in [29] to achieve the right
order of magnitude. The construction we shall use here differs a bit from [7] but
it also provides regeneration times of order λ−2. The other key ingredient in the
proof of Theorem 1.5 is an explicit expression of νλ( f ) in terms of regeneration
times. Our definition makes the regeneration time depend on the function f .

The proof of Theorem 1.5 also gives the value of the derivative. Let us denote
by 
̄( f ) the derivative of νλ( f ) at λ = 0 as in Theorem 1.5. We now give various
interpretations of 
̄( f ).

One proof of the invariance principle is based on the existence of a corrector:
let Lω be the generator of the process Xω

0 . The corrector is a (random) function χ

defined on R
d , with values in R

d and satisfying the equation

Lωχ = −bω. (1.6)

One shows that Equation (1.6) has a solution with a stationary gradient, see
Section 2.4.1. If σ(·) has finite range of dependence and d � 3, then as was proved
in [10] and [11], Equation (1.6) has a stationary solution. We show that


̄( f ) = −2
∫

�

χ(ω) f (ω) dQ. (1.7)

Notice that in general Equation (1.6) need not have a stationary solution. However,
the interpretation of the derivative of the steady state at λ = 0 as the corrector
remains valid in a weaker form, see Proposition 2.8.

In Lemma 2.9 we give another interpretation of 
̄( f ) as a covariance. Finally
we can also obtain 
̄( f ) as a drift term for the scaling limit of a perturbed diffusion
with vanishing strength in the so-called Lebowitz-Rost scaling discussed in Section
2.3.

These last interpretations of 
̄( f ) are in good agreement with fluctuation–
dissipation-Theorems that predict that the linear response of a system in equilibrium
can be expressed as a correlation.

In the Appendix A, we briefly discuss the case of a periodic environment where
the construction of steady states is immediate and the expression of the derivative
of the steady state in terms of the corrector (1.7) follows by directly comparing the
periodic boundary value problems for PDE’s satisfied by these quantities.

The proof of Theorem 1.5 relies of the Continuity Lemma 5.8 which gives the
scaling limit on the regeneration scale of the joint law of Xλ,ω

0 and Aλ,ω
0, f for a local

function f in H̃−1∞ .
Another important consequence of Lemma 5.8 is the continuity of the asymp-

totic variance �λ at λ = 0.
The organization of the paper is as follows.
In Section 2 we consider rather general stationary environments and discuss

scaling limits of additive functionals of the environment seen from the particle
either in the case λ = 0 or, more generally, in the Lebowitz-Rost scaling. The
material from this part cannot be called ‘new’: it ismainly a rephrasing of arguments
borrowed from references [4,14] and [23]. For the background materials we refer
to the books [13] and [18]. However we found it necessary to include some details
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in this part as the precise statements needed in the sequel are not always easy to
find in the references. We believe it makes the paper more self-contained and easier
to read.

In Section 3 we investigate continuity properties of steady states and prove
Theorem 1.3.

Section 4 is devoted to the construction of regeneration times and of the steady
state and weak steady state assuming the environment has finite range of depen-
dence. Our regeneration times are not exactly as in [16,17]. Indeed, in our con-
struction, the definition of the regeneration times depends on the function f . This
point of view allows for an explicit expression of νλ( f ).

In Section 5 we let λ tend to 0. The crucial role here is played by the estimates
obtained in [7] and by uniform estimates for the scaled regeneration times in the case
f ∈ H̃−1∞ . We obtain the general Continuity Lemma 5.8. As a first consequence
we prove the existence of and identify the derivative of νλ at λ = 0. Finally, in
Section 6 we also obtain a continuity property of the asymptotic variance �λ and
we derive from the general continuity lemma the validity of the Einstein relation
in a way that differs from [7].

Remark 1.6. The questions addressed in this paper can also be raised for discrete
models of random walks among random conductances. This is the object of the
recent preprint [8]. (Our two papers are simultaneous. They cannot be called ‘in-
dependent’ as the two teams kept contact during all the elaboration of the two
preprints.)

In [8], the authors consider randomwalks with uniformly elliptic conductances,
only the i.i.d. case being studied. Their main result is the Einstein relation, which
they obtain following a strategy similar to that in [7]. In particular they construct re-
generation times of the correct order. On top of it [8] discusses regularity properties
of the steady state νλ.

The approach used in [8] is more quantitative than ours; the authors assume
that d � 3, so that there exists a stationary corrector and local bounded functions
are in H−1(�). Furthermore, they crucially rely on results from [24] that quantify
the ergodicity of the environment seen from the particle. As a result, they obtain
the continuity of the steady state acting on local bounded continuous functions -
that we do not get here - and they show, for d � 3, fluctuation–dissipation relations
similar to our Theorem 5.1 and Corollary 5.2.

Herewe preferred to take the ‘H−1 point of view’ as a starting point;we view the
steady state as a linear functional on H̃−1∞ rather than as a measure, see Definitions
1.1 and 1.2. This allows us to include the two-dimensional case and to get continuity
results for general ergodic environments, see Theorem 1.3. As for the FDT, we do
not use quantitative bounds on the ergodicity of environment seen from the particle
but rather make an extensive use of scaling limits, see Lemma 5.8. Our approach
also yields the results on the continuity of the variance.
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2. Homogenization of Additive Functionals

Let � be a separable topological space, equipped with a measurable action of R
d

that we denote

(x, ω) �→ x . ω.

Let Q be a Borel probability on �. We denote by D = (D1, . . . , Dd) the generator
of this action.

We refer to the books [13] and [18] for further details of the dynamical system
x . ω. and its generator.

Assumption 1. The action (x, ω) �→ x . ω. preserves the measureQ and is ergodic.

Let σ be a measurable symmetric d × d matrix valued function defined on �.

Assumption 2. There is κ > 0 such that the following estimates hold:

κ|ζ |2 � |σ(ω)ζ |2 � κ
−1|ζ |2, for all ω ∈ � and ζ ∈ R

d .

LetD = {g ∈ L2(�) ; Dg ∈ (L2(�))d} be the L2 domain of the following bilinear
form:

( f, g) −→ 1

2

∫
�

σDf · σDg dQ =: E( f, g).

The bilinear form E( f, g) with domain D is a Dirichlet form. We postulate the
existence of a Hunt process with continuous paths whose Dirichlet form is (E,D).
We denote by ω(s) the coordinate process on path space C(R+,�). We denote by
P0 the law of the Hunt process with initial law Q.

We also introduce the subspaces of centered functions

L2
0(�) =

{
u ∈ L2(�) :

∫
�

u dQ = 0

}
, D0 =

{
u ∈ D :

∫
�

u dQ = 0

}
.

Due to the ergodicity, the quadratic form

E( f ) = 1

2

∫
�

σDf · σDf dQ

defines a norm on D0. We introduce H1(�) as the completion of D0 with respect
to E. By construction, H1(�) is a Hilbert space.

We then define H−1(�) as the dual space to H1(�). LetA be the linear subset
of L2

0(�) consisting of functions f ∈ L2
0(�) such that for some constant c and for

any u ∈ D0 the following inequality holds:

(∫
�

f u dQ

)2

� c2E(u). (2.8)

The map u → ∫
�

f udQ defines an element in H−1(�)whose norm is the smallest
constant c for which inequality (2.8) holds true, so that we can interpret A as a
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subset of H−1(�). Then A is dense in H−1(�). With this construction we may
identify A with L2

0(�) ∩ H−1(�). In what follows we use the latter notation.

Let L2
pot(�) be the closure of {v = Du : u ∈ D0} in the space

(
L2(�)

)d
equipped with the norm ( 12

∫
�

|σv|2 dQ)1/2. By construction L2
pot(�) is a Hilbert

space.
Let f ∈ L2

0(�) ∩ H−1(�). Setting

〈 f, Du〉 =
∫

�

f u dQ,

we can interpret f as a linear continuous functional on L2
pot(�). Using the Riesz

theorem we identify f with an element f̃ ∈ L2
pot(�). In other words, f̃ is the

unique element of L2
pot(�) such that

∫
�

f u dQ = 1

2

∫
�

σ f̃ · σDu dQ for all u ∈ D0.

Observe that the map f �→ f̃ preserves the norms in H−1(�) and L2
pot(�). There-

fore, it extends to an isometry between H−1(�) and L2
pot(�).

Let us introduce the notation

�( f ) = 2‖ f ‖2H−1(�)
=
∫

�

|σ f̃ |2 dQ

and

�( f, g) = 2( f, g)H−1(�) =
∫

�

σ f̃ · σ g̃ dQ. (2.9)

2.1. Invariance Principle

Given a square integrable and centered function f : � �→ R satisfying (2.8), and
given a continuous trajectory (ω(s) ; s � 0) in �, we set

A f (t) =
∫ t

0
f (ω(s)) ds.

Observe that the process (A f (t) ; t � 0) is an additive functional of the process
(ω(t) ; t � 0). As was proved in [14], the following invariance principle holds:

Theorem 2.1. Let f : � �→ R be a square integrable and centered function
satisfying (2.8). Then under P0 the family of processes (Aε

f (t) = εA f (t/ε2) ; t �
0) converges in law, as ε → 0, in C([0,∞), R) towards a Brownian motion with
variance �( f ). Moreover,

1

t
E0

[
A2

f (t)
]

−→
t→∞ �( f ).
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In fact, the approach of [14] provides a martingale approximation for A f .
It then follows that for any finite collection ( f1, . . . , fn) of functions satisfying
the assumptions of the above theorem the joint invariance principle holds for
the n-dimensional additive functional (A f1 , . . . , A fn ) with limit covariance ma-
trix {�( fi , f j )}ni, j=1. Moreover, if (M1, . . . , Mk) are continuous square integrable
martingale additive functionals, then the (n + k)-dimensional additive functional
(A f1 , . . . , A fn , M1, . . . , Mk) satisfies the joint invariance principle.

2.2. Extension to H−1

In this section we extend the previous result to all elements of H−1(�). This
extension relies on the following lemma:

Lemma 2.2. For any g : � �→ R being a square integrable and centered function
satisfying (2.8) and any t > 0 we have

E0

⎡
⎣
(
sup
s�t

|Ag(s)|
)2
⎤
⎦ � 8t‖g‖2H−1(�)

. (2.10)

Proof. The proof relies on the forward–backward martingale representation of Ag;
see [6, chapter 5.7]. Denote by rt the time reversal operator at time t : ω ◦ rt (s) =
ω(t − s) for all s ∈ [0, t]. Then,

Ag(s) = 1

2
(M(s) + (M(t) − M(t − s)) ◦ rt ) , (2.11)

where, under P0, M is a continuous square integrable martingale with bracket

〈M〉(t) =
∫ t

0
|σ g̃|2(ω(s)) ds.

The first martingale on the right hand side of (2.11) can be estimated using Doob’s
inequality as follows:

E0
[
sup
s�t

|M(s)|2
]

� 4E0

[
〈M〉(t)

]
= 4t

∫
�

|σ g̃|2 dQ = 8t‖g‖2H−1(�)
.

The second term can be treated in a similar way taking advantage of the fact that
P0 is invariant with respect to rt . ��

The first consequence of the lemma is that we can make sense of A f for f ∈
H−1(�). Observe that f ∈ L2

0(�)∩H−1(�) vanishes as an element of H−1(�) iff
f = 0 Q-a.s. Due to the lemma, the map f �→ (A f (t) ; t � 0) is linear continuous
from L2

0(�)∩H−1(�) equipped with H−1(�) topology to L2(�,C[0,∞)). Since
L2
0(�)∩H−1(�) is dense in H−1(�), this map extends to a linear continuous map

on H−1(�). We will sometimes abuse notation and keep the notation

A f (t) =
∫ t

0
f (ω(s)) ds

for f ∈ H−1(�).
The following extension of Theorem 2.1 follows from Lemma 2.2:
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Theorem 2.3. Let f ∈ H−1(�). Then under P0 the family of processes (Aε
f (t) =

εA f (t/ε2) ; t � 0) converges in law, as ε → 0, in C[0,∞) towards a Brownian
motion with variance �( f ). Moreover,

1

t
E0

[
A2

f (t)
]

−→
t→∞ �( f ).

Notice that as in Theorem 2.1, for any finite collection ( f1, . . . , fn) of elements
of H−1(�), the joint invariance principle holds for the vector (A f1, . . . , A fn ) with
limit covariance matrix {�( fi , f j )}ni, j=1. If (M1, . . . , Mk) are continuous square
integrable martingale additive functionals, then the (n + k)-dimensional additive
functional (A f1, . . . , A fn , M1, . . . , Mk) satisfies the joint invariance principle.

For f, g ∈ H−1(�) we have

1

t
E0
[
A f (t)Ag(t)

] −→
t→∞ �( f, g). (2.12)

2.3. Lebowitz–Rost Type Results

Let (M(t) ; t � 0 be a continuous martingale additive functional of the Markov
process ω(·). Then M(t) is a continuous martingale with stationary increments
under P0. We assume that its bracket is of the form

〈M〉(t) =
∫ t

0
m(ω(s)) ds,

with m ∈ L∞(�).
For λ ∈ R, let P

λ
0 be the measure on path space that satisfies

dP
λ
0

∣∣Ft

dP0
∣∣Ft

= eλM(t)− λ2
2 〈M〉(t)

for all t � 0.
It follows from our assumptions that M(·) satisfies the invariance principle. Let

f ∈ H−1(�). Observe that the pair (A f , M) satisfies the joint invariance principle
under P0. We denote by 
M the off-diagonal term of the limit covariance matrix.
It follows from the assumptions on M(·) and (2.10) that


M ( f ) = lim
t→∞

1

t
E0
[
A f (t)M(t)

]
.

Theorem 2.4. Let f ∈ H−1(�), and let α be a positive real number. Then underP
λ
0

the family of processes (Aε
f (t) = εA f (t/ε2) ; t � 0) converges in law in C[0,∞),

as ε → 0, λ → 0 and λ2/ε2 → α, towards a Brownian motion with variance
�( f ) and constant drift

√
α 
M ( f ).
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The statement of this theorem remains valid in the multi-dimensional case.
Namely, let f1, . . . , fn belong to H−1(�), and let M1, . . . , Mk be continuous
square integrable martingale additive functionals. Let Mε

j (t) = εMj (t/ε2), j =
1, . . . , k. Then, as ε → 0, λ → 0 and λ2/ε2 → α, under P

λ
0 the rescaled family

(Aε
f1
, . . . , Aε

fn
, Mε

1 , . . . , M
ε
k ) converges in law in C([0,∞), R

n+k) to a Brownian
motion with constant drift. The limit covariance of A fi and A f j is �( fi , f j ); the
limit covariance of A fi and Mj is 
Mj ( fi ).

Proof. The arguments below are essentially borrowed from [23]. Let F be a con-
tinuous bounded functional on path space on time interval [0, T ], T > 0. Then we
have

E
λ
0

[
F(Aε

f (t) ; t ∈ [0, T ])
]

= E0

[
F(Aε

f (t) ; t ∈ [0, T ])eλM(T/ε2)−(λ2/2)〈M〉(T/ε2)

]
.

(2.13)
By Theorem 2.3 and since λ2/ε2 tends to α, under P0 the law of (Aε

f , λM(·/ε2))
converges to the law of a two-dimensional Brownian motion Ž = (Ž1, Ž2) defined
on a probability space (W,F ,P). Let E denote integration with respect to P .

Let �2 = {(�2)i j }2i, j=1 be the covariance matrix of Ž . It follows from the
definitions that (�2)11 = �( f ) , and (�2)12 = (�2)21 = √

α
M ( f ). Notice also
that E[(Ž2(T ))2] = αE0[〈M〉(T )] = αE0[〈M〉(1)]T . By the ergodic theorem, the
process λ2〈M〉(·/ε2) converges in probability under P0 to the deterministic pro-
cess (α2

E[〈M〉(1)]t ; t � 0). Therefore, the triple (Aε
f , λM(·/ε2) , 〈M〉(·/ε2))

converges in law under P0 towards the process
(
(Ž(t), α2

E[〈M〉(1)]t) ; t � 0
)
.

Besides, under the assumption that m ∈ L∞(�), we can estimate

E0

[
e2λM(T/ε2)

]
= E0

[
e2λM(T/ε2)−2λ2〈M〉(T/ε2)e2λ

2〈M〉(T/ε2)
]

� e2α‖m‖L∞(�) .

Therefore, we can pass to the limit in (2.13), and the right-hand side converges to

E
[
F(Ž1(t) , t ∈ [0, T ])eŽ2(T )−E[(Ž2(T ))2]

]
. The Gaussian integration by parts for-

mula yields

E
[
F(Ž1(t) , t ∈ [0, T ])eŽ2(T )−E[(Ž2(T ))2]

]

= E
[
F(Ž1(t) + √

α
M ( f )t , t ∈ [0, T ])
]
.

The extension to the multidimensional case described in the comment that
follows the Theorem is an immediate consequence of the joint invariance principle
stated just after Theorem 2.3. ��
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2.4. Diffusions in a Random Environment

In this section we apply the above results to the case of a diffusion in random
environment.Wechoose for� the spaceof smoothd×d symmetricmatrix functions
defined on R

d . We equip this space with the topology of uniform convergence on
compact subsets of R

d . Besides, R
d acts on � by additive translations.

Let Q be a stationary ergodic measure on � so Assumption 1 holds. Choose
σ satisfying Assumption 2. We define σω(x) = σ(x .ω) for x ∈ R

d . We further
assume

Assumption 3. for any environment ω, the function x → σω(x) is smooth.

We introduce the notation

aω = (σω)2 and bω = 1

2
divaω.

Observe that both aω and bω are then stationary fields that is aω(x) = a(x .ω) and
bω(x) = b(x .ω) for some functions a = σ 2 and b. It is immediate to check that b
belongs to (H−1(�))d .

Let (Wt : t � 0) be a Brownian motion defined on some probability space
(W,F , P). We denote expectation with respect to P by E . We define the process
Xω
x as the solution of the following stochastic differential equation

dXω
x (t) = bω(Xω

x (t)) dt + σω(Xω
x (t)) dWt ; Xω

x (0) = x . (2.14)

Then Xω is a Markov process generated by the operator

Lω f (x) = 1

2
div( aω ∇ f )(x). (2.15)

Define the process ω(t) = Xω
0 (t).ω.

Proposition 2.5. Under P, the process ω(·) is a symmetric Hunt process with re-
versible measure Q and Dirichlet form (E,D) in L2(�, Q).

Proof. It is clear that ω(·) is a Hunt process with continuous paths. Since the
generator Lω is symmetric, the Lebesgue measure is reversible for the process Xω

x
for all ω. This combined with the fact that Q is stationary implies that the measure
Q is reversible for the process ω(·).
Now we identify the Dirichlet form of ω(·). For a given ω the domain of the
Dirichlet form of the process Xω

x is H1(Rd). Let F ∈ D. For ω ∈ � we define
Fω(x) = F(x .ω). Then for almost all ω the function Fω(·) belongs to H1

loc(R
d)

(see [13, page 232]). From these two facts the desired statement follows. ��
According to Proposition 2.5we are in the framework of this Section. Therefore,

we set P0(A) = ∫
�
dQ(ω)P(Xω

0 (·).ω ∈ A) for all measurable sets A in the path
space.
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Remark 2.6. One can retrieve the trajectory of Xω
0 from the trajectoryω(·) looking

for x ∈ R
d that solves the equation

x .ω = ω(t). (2.16)

If this equation has a unique solution x , then Xω
0 (t) = x , and it follows from

the structure of Equation (2.16) that Xω
0 is an additive functional of the process

ω(·). Furthermore, enlarging the space � if necessary, we may always assume that
Equation (2.16) has a unique solution. For instance, let (V1, . . . , Vd)be independent
nonconstant random fields with finite range of correlation indexed byR and defined
on some probability space�′ = �1×. . .×�d .We assume that each� j is equipped
with a measure preserving ergodic action of R. For ω′ = (ω1, . . . , ωd) and x ∈ R

d

we define x .ω′ = (x1.ω1, . . . , xd .ωd), and let V ω′
(x) = V (x .ω′). We enlarge �

by taking the product space � × �′. Observe that if the Equation (2.16) has two
different solutions then one of the components of V ω is periodic, and this happens
with probability 0.

A similar argument is used in [4, Remark 4.2].

The martingale part of Xω
0 , that can be expressed as

∫ ·
0 σ(ω(s)) dWs , is a mar-

tingale additive functional of the process ω(·). The drift part is also an additive
functional of the form

∫ ·
0 b(ω(s)) ds with b ∈ (H−1(�))d . Therefore, Theorem 2.3

and the comment following this theorem imply the joint invariance principle for
these processes. As a consequence, the family of processes

(
εXω

0 (t/ε2) ; t � 0
)

converges in law under P × Q, as ε → 0, towards a Brownian motion with the
effective covariance that we denote by �, and

e · �e = lim
t→∞

1

t

∫
�

E[(Xω
0 (t) · e)2] dQ(ω), for any e ∈ R

d .

In the sequel we often use the notion of symmetric and antisymmetric additive
functionals of ω(·). For T > 0 the time reversal operator RT maps a trajectory
(ω(t) ; 0 � t � T ) to the trajectory (ω(T−t) ; 0 � t � T ). An additive functional
is called symmetricwith respect to time reversal if its restriction to the time interval
[0, T ] is invariant under RT for all T . It is called antisymmetric if it changes sign
upon the action of RT . For instance, A f is a symmetric additive functional whereas
Xω
0 is antisymmetric.
Let e1 be a non-zero vector and λ > 0. We define λ̂ to be the vector λ̂ = λe1.

We consider the perturbed stochastic differential equation:

dXλ, ω
x (t) = bω(Xλ, ω

x (t)) dt + aω(Xλ, ω
x (t))λ̂ dt + σω(Xλ, ω

x (t)) dWt ;
Xλ, ω
x (0) = x . (2.17)

Then Xλ,ω is a Markov process with generator

Lλ,ω f (x) = Lω f (x) + aω(x)λ̂ · ∇ f (x).

Applying the Girsanov formula (see [28]) to the processes Xω and Xλ, ω, we get
that, for any ω,

E[F(Xλ, ω
0 ([0, t]))] = E

[
F(Xω

0 ([0, t])) eλB̄(t)− λ2
2 〈B̄〉(t)

]
, (2.18)
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where B̄ is the martingale

B̄(t) =
∫ t

0
σω(Xω

0 (s)) e1 · dWs (2.19)

and 〈B̄〉 is its bracket
〈B̄〉(t) =

∫ t

0
|σω(Xω

0 (s)) e1|2 ds.

Observe that the process B̄ is an additive functional of ω(·) which can be written
as

B̄(t) − B̄(s) = e1 · (Xω
0 (t) − Xω

0 (s)) −
∫ t

s
e1 · bω(Xω

0 (u)) du

= e1 · (Xω
0 (t) − Xω

0 (s)) −
∫ t

s
e1 · b(ω(u)) du. (2.20)

We let ωλ(t) = Xλ,ω
0 (t).ω. Then the law of the process ωλ(·) with the initial

measure Q coincides with the measure P
λ
0 defined in Section 2.3, where we set

M = B. Let 
̄ be the covariance operator defined in Section 2.3 with M = B.

Proposition 2.7. Let f ∈ H−1(�), Then, under P × Q, the processes(
λXλ,ω

0 (λ−2·), λ

∫ λ−2·

0
f (ωλ(s)) ds

)

converge in law in C([0,∞), R
d+1), as λ tends to 0, towards a Brownian motion

with constant drift. The limit covariance matrix and the drift are given, respectively,
by (

� 0
0 �( f )

)
,

(
�e1

( f )

)
.

Proof. Theorem 2.4 and the comment following this theorem apply and yield the

convergence in law of
(
λXλ,ω

0 (λ−2·), λAλ,ω
0, f (λ

−2·)
)
, under the annealed measure

P × Q.
According to Theorem 2.4 the limit covariance matrix is also the limit covari-

ance matrix under the annealed measure of(
1√
t
Xω
0 (t),

1√
t

∫ t

0
f (ω(s) ds

)
, (2.21)

as t → ∞. By definition of �, the covariance of the Xω
0 component converges to

�, while the limit variance of the last component is�( f ). The covariance of Xω
0 (t)

and
∫ t
0 f (ω(s) ds vanishes because Xω

0 (·) is an antisymmetric with respect to time
reversal additive functional of ω(·), and ∫ t0 f (ω(s) ds is symmetric.

As for the limit drift part, Theorem 2.4 implies that it is given by the limit of
the covariances of the vector in (2.21) and t−1/2B(t). The contribution of the last
component is
( f ) by definition. To identify the contribution of the Xω

0 component
we rely on formula (2.20) observing once again that the covariance of Xω

0 (t) and∫ t
0 e1 · b(ω(s)) ds vanishes for symmetry reasons. ��
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2.4.1. The Corrector We recall that b ∈ (H−1(�))d . Let b̃ be the matrix whose
columns are elements of L2

pot(�) such that b̃e = b̃ · e for any e ∈ R
d . Let b̃ω(x) =

b̃(x .ω) be the space realization of b̃. For any e ∈ R
d for almost all ω ∈ � then

b̃ω · e is a curl-free function in L2
loc(R

d). Therefore, there exists a smooth vector
valued function χ(·, ω) defined on R

d and such that ∇(χ(·, ω) · e) = b̃ω · e. The
function χ is called a corrector. Observe that it is uniquely defined up to an additive
constant. By the definition of b̃,∫

�

(b · e)u dQ = 1

2

∫
�

σ (̃b · e) · σ∇u dQ, for any u ∈ D0.

Going to the space of realizations yields∫
Rd

bω(x)·e u(x) dx = 1

2

∫
Rd

σω(x)∇(χ(x, ω) · e) · σω(x)∇u(x) dx

for any u ∈ C∞
0 (Rd). Integrating by parts we obtain∫
Rd

bω(x)·e u(x) dx = −
∫
Rd

Lωχ(x, ω)·e u(x) dx .

Thus, Lωχ · e = −bω · e. This implies that for almost all ω ∈ � the process
χ(Xω

x (t), ω) + Xω
x (t) is a martingale under P for all starting points x .

The following Proposition illustrates the role of the corrector. However, it will
not be used in the sequel.

Proposition 2.8. Let f ∈ H−1(�) ∩ L2(�). Then

E0

[
1

t

∫ t

0
f (Xω

0 (s).ω) χ(Xω
0 (s), ω) · e1ds

]
−→ −1

2

̄( f ), as t → ∞

Proof. The proposition relies on the following statement. Recall that �( f, g) is
defined in (2.9), see also (2.12). ��
Lemma 2.9. We have


̄( f ) = −�( f, b · e1) for all f ∈ H−1(�).

Proof of Lemma 2.9. By definition,


̄( f ) = lim
t→∞

1

t
E0
[
A f (t)B(t)

]

with B defined in (2.19). Notice that

B(t) = (Xω
0 (t) − Xω

0 (0)) · e1 − Ab·e1(t).

Aswe already observed, A f is a symmetric additive functional and (Xω
0 (t)−Xω

0 (0))
is antisymmetric. Therefore, the covariance of Xω

0 (t) − Xω
0 (0) and A f vanishes.

Thus,


̄( f ) = − lim
t→∞

1

t
E0
[
A f (t)Ab·e1(t)

] = −�( f, b · e1).
��
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Define

mt = χ(Xω
0 (t), ω) · e1 − χ(0, ω) · e1 + Ab(t) · e1.

Then the process {mt : t � 0} is a martingale under P . We have

E0

[
1

t

∫ t

0
f (ω(s))χ(Xω

0 (s), ω) · e1 ds
]

= E0

[
1

t

∫ t

0
f (ω(s))ms ds

]

− E0

[
1

t

∫ t

0
f (ω(s))Ab(s) · e1 ds

]
+ E0

[
1

t

∫ t

0
f (ω(s))χ(0, ω) · e1 ds

]
.

(2.22)

Using the martingale property of m·, we get

E0

[
1

t

∫ t

0
f (ω(s))ms ds

]
= E0

[
1

t

(∫ t

0
f (ω(s)) ds

)
mt

]

= E0

[
1

t
A f (t)

(
χ(Xω

0 (t), ω) − χ(0, ω) + Ab(t)
) · e1

]

= E0

[
1

t
A f (t)Ab(t) · e1

]
;

here we have also used the fact that A f is a symmetric with respect to time reversal
additive functional and χ(Xω

0 (·), ω) − χ(0, ω) is antisymmetric. Therefore, their
covariance vanishes.

By stationarity and reversibility we have for all s � v

E0

[
f (ω(s))b(ω(v))

]
= E0

[
f (ω(v))b(ω(s))

]
.

Therefore,

E0

[
1

t

∫ t

0
f (ω(s))Ab(s) · e1 ds

]
= E0

[
1

t

∫ t

0
f (ω(s))

∫ s

0
b(ω(v)) · e1 dvds

]

= E0

[
1

t

∫ t

0
f (ω(s))

∫ t

s
b(ω(v)) · e1 dvds

]
= 1

2
E0

[
1

t
A f (t)Ab(t) · e1

]
,

and we conclude that

E0

[
1

t

∫ t

0
f (ω(s))χ(Xω

0 (s), ω) · e1 ds
]

= 1

2
E0

[
1

t
A f (t)Ab(t) · e1

]
+ E0

[
1

t

∫ t

0
f (ω(s))χ(0, ω) · e1 ds

]
.

(2.23)

As t → ∞, according to Theorem 2.3, the term E0

[
1
t A f (t)Ab(t) · e1

]
con-

verges to �( f, b · e1). By the Ergodic theorem the last term on the right-hand side
of (2.23) converges to zero. Thus,

E0

[
1

t

∫ t

0
f (Xω

0 (s).ω) χ(Xω
0 (s), ω) · e1ds

]
−→ 1

2
�( f, b · e1) = −1

2

̄( f ), as t → ∞.
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Remark 2.10. For a function g ∈ L2(�) by stationarity we have
∫

�

f g dQ = 1

t
E0

[ ∫ t

0
f (ω(s))g(ω(s)) ds

]
.

In general, χ(x, ω) is not of the form g(x .ω). This suggests that the expression

E0

[
1

t

∫ t

0
f (Xω

0 (s).ω) χ(Xω
0 (s), ω) · e1ds

]

need not have a limit for all f ∈ L2(�). However, the Proposition says that the
limit exists for all f ∈ H−1(�). In this respect, − 1

2 
̄( f ) can be interpreted as a
substitute for the integral of a function f against the corrector χ .

In the case of finite range of dependence and d � 3, then the corrector exists
and

−1

2

̄( f ) =

∫
�

f χdQ,

see [11] and [10].

3. Continuity of Steady States

In this section, we study continuity properties of the steady state νλ as λ tends to 0.
In particular we shall prove Theorem 1.3. Our main tool is Lemma 3.1. It will also
be useful in the other sections of the paper. An alternative version of Lemma 3.1,
which also implies Theorem 1.3, is given in Appendix B.

3.1. The Spaces H−1∞ (�) and H̃−1∞ (�).

Let F be a vector-valued function in (L∞(�))d .
The formula

〈F, u〉 = −
∫

�

F · Du dQ

defines a linear continuous functional on H1(�). Therefore there exists an element
f ∈ H−1(�) such that 〈F, u〉 is the duality product 〈 f, u〉H−1,H1 . We denote
f by divF as it coincides with the standard divergence if F is regular enough.
Indeed, if F = (F1, . . . , Fd) is such that Fj belongs to the domain of Dj , then
〈 f, u〉H−1,H1 = −(F, Du)L2(�) = (

∑
Dj Fj , u)L2(�) = (divF, u)L2(�) for any

u ∈ H1(�). The second relation here follows from the fact that
√−1Dj is a

self-adjoint operator in L2(�). We define H−1∞ (�) to be the set of elements f in
H−1(�) of the form f = divF for some F in (L∞(�))d . Let

‖ f ‖H−1∞ (�)
= min{‖F‖∞ ; divF = f }.

Then H−1∞ (�) is a Banach space. Indeed, it is clear that ‖ f ‖H−1∞ (�)
is a norm.

We have to check that H−1∞ (�) is complete with respect to this norm. To this end



Steady States, Fluctuation–Dissipation Theorems and Homogenization 295

consider a Cauchy sequence { fm}∞m=1 in H−1∞ (�). Taking a subsequence {m j } we
can assume that ‖ fm j+1 − fm j ‖H−1∞ � 2−( j+1). Then there exist F̃j ∈ (L∞(�))d

such that ‖F̃j‖∞ � 2− j and fm j+1 − fm j = divF̃j . Denote F = Fm1 +∑∞
j=1 F̃j

with divFm1 = fm1 and Fm1 ∈ (L∞(�))d . By construction F ∈ L∞(�) and thus
f := divF ∈ H−1∞ (�). One can easily check that fm j converges to f in H−1∞ (�)

as j → ∞, and, by the triangle inequality, fm converges to f as m tends to ∞.

Observe that, for a given f in H−1∞ (�) there may be several F’s in
(
L2(�)

)d
such that divF = f . They are characterized by the fact thata−1F+ 1

2 f̃ is orthogonal
to L2

pot (�).

We call a function f - or more generally an element f in H−1(�) - local if
there exists R f such that f is measurable with respect to the σ -field HBR f

where
BR is the ball of radius R.

We denote by H̃−1∞ (�) the closure of the set of elements f in H−1∞ (�) for
which there exists a bounded and local F such that divF = f .

3.2. Proof of Theorem 1.3.

In Section 2.2, we defined the continuous additive functional A f for f ∈ H−1(�).
Since, for all t > 0, for all ω, the laws of the processes (Xω

0 (s); 0 � s � t)

and (Xλ,ω
0 (s); 0 � s � t) are equivalent, the same approximation procedure as in

Section 2.2 can be used to give a meaning to the continuous additive functional

Aλ,ω
0, f (t) :=

∫ t

0
f (ωλ(s)) ds,

for Q almost all ω.
We then have the following:

Lemma 3.1. For all p � 1 there exists a constant Cp such that for all 0 < λ � 1,
for all f ∈ H−1∞ (�), for Q almost all ω, for each t � 1/λ2 the following estimate
holds

E

(
max
0�s�t

|Aλ,ω
0, f (s)|p

)
� Cpλ

pt p‖ f ‖p

H−1∞ (�)
; (3.24)

the constant Cp depends only on the ellipticity constant κ in Assumption 2 and the
dimension.

Proof. Let us first observe that after multiplying f by an appropriate constant,
we may assume that ‖ f ‖H−1∞ (�)

< 1. We then choose F in (L∞(�))d such that
f = divF and supω |F(ω)| < 1.

We then consider processes taking on values in R
d+1. We use the notation

z = (x, y), x ∈ R
d and y ∈ R. Let us introduce the process

Zλ,ω
z (t) =

(
Xλ,ω
x (t), y + Aλ,ω

x, f (t) + W 1
t

)
,
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whereW 1 is an independent one-dimensional Brownian motion (which is assumed
to be defined on the same probability space (W,F , P) as W ), and

Aλ,ω
x, f (t) =

∫ t

0
f (Xλ,ω

x (s).ω) ds.

Notice that Zλ,ω is a Markov process with generator

Mλ,ω = (Lλ,ω)x + 1

2
∂2y + f (y.ω)∂y

where, for a function q(z), the operator (Lλ,ω)x acts on q as a function of variable
x .

Let us check that the operator Mλ,ω can be written in the form

Mλ,ωq = 1

2
divx (a

ω∇xq) + λaωe1∇xq + divx (F
ω∂yq) − ∂y(F

ω∇xq) + 1

2
∂2yq,

(3.25)

where, as above, we use the notation Fω(z) = F(x .ω). Indeed, since Fω does not
depend on y, we have

divx (F
ω∂yq) − ∂y(F

ω∇xq) = (divx F
ω)∂yq = f ω∂yq.

This implies the desired representation. In the variables z̃ = λz and t̃ = λ2t , the
generator reads

1

2
divx̃ (a

ω(λ−1 x̃)∇x̃ q) + aω((λ−1 x̃)e1∇x̃ q + divx̃ (F
ω(λ−1 ỹ)∂ỹq)

− ∂ỹ(F
ω(λ−1 ỹ)∇x̃ q) + 1

2
∂2ỹ q (3.26)

Note that all the coefficients of the operator in (3.26) are bounded. The parabolic
Aronson estimates (see [1, Theorems 8 and 9]) therefore hold uniformly in λ and
in ω on any finite time interval and in any fixed ball.

Denote T̃r = inf{s > 0 : |λZλ,ω
0 (s/λ2)| = r}. Applying Aronson’s lower

bound to the parabolic equation with generator given by (3.26), we obtain that
there exists δ0 > 0 such that for all λ ∈ (0, 1) and all ω such that sup |Fω| � 2,
then

P(T̃1 � 1) � δ0.

Therefore,

E
(
e−T̃1

)
� 1 − ε0

for some ε0 > 0. Applying the Markov property we deduce that

E
(
e−T̃r

)
� (1 − ε0)

r−1,
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and

P(T̃r � t) � et (1 − ε0)
r−1.

Let T � 1. Since the events (T̃r � T ) and (λ max
0�s�λ−2T

|Zλ,ω
0 (s)| � r) coincide,

we get that

E

(
λp max

0�s�λ−2T
|Zλ,ω

0 (s)|p
)

= p
∫ ∞

0
r p−1dr P(T̃r � T ) � peT

∫ ∞

0
r p−1dr (1 − ε0)

r−1 � η0,

(3.27)

where η0 = pe
∫∞
0 r p−1dr (1 − ε0)

r−1 is a constant.
Let now T > 1 with integer part [T ]. Note that

max
0�s�λ−2T

|Zλ,ω
0 (s)| �

[T ]∑
j=0

max
jλ−2�s�( j+1)λ−2

|Zλ,ω
0 (s) − Zλ,ω

0 (λ−2 j)|.

Therefore

E

(
λp max

0�s�λ−2T
|Zλ,ω

0 (s)|p
)

� (T + 1)pη0.

If we change variable to t = λ−2T , we obtain

E

(
max
0�s�t

|Zλ,ω
0 (s)|p

)
� λ−p(λ2t + 1)pη0. (3.28)

On the other hand

E

(
max
0�s�t

|W 1
s |p
)

� Cpt
p/2.

Combining (3.27), (3.28) and the last estimate and considering the lower bound
t � λ−2, we obtain the desired inequality. ��
Proof of Theorem 1.3. Apply Lemma 3.1. ��

4. Construction of Steady States

The goal of this section is to prove the existence of the steady state and weak steady
state under the assumption of finite range of dependence and get an explicit formula
in terms of regeneration times, see formula (4.44).

In this section we assume Assumptions 1–4 to hold.
We recall that a function f or an element f in H−1(�) is local if there exists

R f such that f is measurable with respect to the σ -fieldHBR f
where BR is the ball

of radius R.
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Theorem 4.1. For all λ > 0 there exists a unique Borel probability measure νλ on
� such that for any bounded local function f , for Q almost all ω and P almost
surely we have

lim
t→∞

1

t

∫ t

0
f (ωλ(s)) ds = νλ( f ),

where ωλ(s) = Xλ,ω
0 (s).ω.

Theorem 4.2. For all λ > 0, for any local f in H−1∞ (�), then

lim
t→∞

1

t

∫ t

0
f (ωλ(s)) ds := νλ( f ),

exists for Q almost all ω and P almost surely.

Corollary 4.3. For all 0 < λ � 1, the steady state and weak steady state exist.

Proof of Corollary 4.3. To deduce the existence of the steady state from Theorem
4.1,we approximate a continuous andbounded function bybounded local functions.

Let now f belong to H̃−1∞ . Then there is a bounded F such that f = divF
and F can be approximated by bounded and local functions Fn . Apply Theorem
4.2 to each fn = divFn . By Lemma 3.1, |νλ( fn) − νλ( fm)| � C1λ ‖Fn − Fm‖∞.
Therefore the sequence νλ( fn) has a limit, say a.

From Lemma 3.1 (with p > 1) and Theorem 4.2, we deduce that 1
t A

λ,ω
0, fn

(t)

converges to νλ( fn) in L1(W, P) for Q almost all ω. Applying Lemma 3.1 again,
we see that 1

t A
λ,ω
0, f (t) converges to a in L1(W, P) for Q almost all ω. In particular,

the limit a does not depend on the choice of F and the approximating sequence
(Fn). We call it νλ( f ). That νλ is a linear continuous functional on H̃−1∞ (�) follows
at once from Lemma 3.1. ��

The remainder of this section including subsections 4.1 and 4.2 is devoted to
the proof of Theorems 4.1 and 4.2

Recall from the proof of Lemma 3.1 the notation z = (x, y), x ∈ R
d and y ∈ R

and the definition the R
d+1 valued process

Zλ,ω
z (t) =

(
Xλ,ω
x (t), y + Aλ,ω

x, f (t) + W 1
t

)

whereW 1 is an independent one-dimensional Brownian motion (which is assumed
to be defined on the same probability space (W,F , P) as W ).

Recall that the generator can be written as

Mλ,ω = (Lλ,ω)x + 1

2
∂2y + f (x .ω)∂y .

We shall use this formula when f is bounded, as in Theorem 4.1. When f belongs
to H−1∞ (�), we rather use the divergence form (see (3.25)

Mλ,ωq = 1

2
divx (a

ω∇xq) + λaωe1∇xq + divx (F
ω∂yq) − ∂y(F

ω∇xq) + 1

2
∂2yq,

where F is bounded and satisfies divF = f . (Observe that although f is local, F
need not be local itself.)
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4.1. Regeneration Times

We assume that f is local and either f is bounded or f belongs to H−1∞ (�).
Before embarking in the proofs of Theorems 4.1 and 4.2, let us sketch the main

steps of the construction of steady states and explain how this section of the paper
is organized.

In both Theorems 4.1 and 4.2, we have to study the convergence of the additive
functional Aλ,ω

0, f (t) = ∫ t
0 f (ωλ(s))ds for Q almost all ω. As in the preceeding

paragraph, we shall work with the process Zλ,ω
x and deduce the convergence of

Aλ,ω
0, f (t) from the regeneration properties of Zλ,ω

x . More precisely, the main idea

is to construct an increasing sequence of random times, τλ
1 < τλ

2 < . . ., that

we call regeneration times and are such that the increments of the process Zλ,ω
0

betweeen successive regeneration times are i.i.d. under the annealed law P
λ
z . Then

the convergence of Aλ,ω
0, f (t) follows at once from the convergence of Zλ,ω

0 (t)which
in turn follows from the law of large numbers for i.i.d. sequences.

Note that, in order to carry out this programm, we also need some bounds on
the moments of the regeneration times. Also observe that, as a useful by-product
of this proof, we shall be able to express the limit νλ( f ) in terms of the increments
of the additive functional between two successive regeneration times, see formula
4.44.

Of course, the decoupling properties along regeneration times is tightly related
to Assumption 4. Very roughly speaking, we proved in [7] that the process Xλ,ω

0 ,

and therefore also the process Zλ,ω
0 , are transient in direction e1. Thus there are

non-backtracking times t such that, before t , the diffusion only visited the half-
space {x : e1 · x < e1 · Zλ,ω

0 (t)} and after time t , it will only visit the half-

space {x : e1 · x � e1 · Zλ,ω
0 (t)}. Since, due to Assumption 4, the restrictions

of the environment in these two half-spaces are independent, we are done. This is
obviously wrong for at least two reasons. First a diffusion process never does such
a thing as non-backtracking. Secondly, in order to use Assumption 4, we need a
little bit of space between the two hyperplanes. Let us discuss how these issues are
addressed in [29].

We carry the whole construction on path space, equipped with the annealed law.
As a first step towards the desired decoupling property we enlarge the path space
with the addition of a sequence of independent Bernoulli random variables Yk and
provide a coupling of this sequence and the diffusion Zλ,ω

0 , see Proposition 4.5. The
coupling is constructed such that, at times where a Bernoulli variable Yk takes the
value 1, the canonical process temporarily forgets about the environment andmakes
a ‘deterministic’ jump in direction e1 of size 9R(λ). (Here ‘deterministic’ means
‘independently of what the environment may look like and R(λ) is a parameter that
will be chosen later.) If Yk takes the value 0, we just do what should be done to
retrieve the law of Zλ,ω

0 . Of course, we should tune the parameter δ of the Bernoulli
variables Y so that this ‘deterministic’ jump we impose has a positive probability
to occur. How to choose δ then depends on a lower bound of the transition kernel
of the process Zλ,ω

0 , see Lemma 4.4 and note that we need a lower bound that is
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uniform with respect to ω and that, since the process Zλ,ω
0 involves f , the best

value we can use for δ depends on f . It also depends on λ.
Regeneration times will then be times t such that (1) at time t , the process

reaches a localmaximum (with a variation of R(λ)) and the correspondingBernoulli
variable in the sequenceYk takes the value 1 and (2) after time t , the process does not
backtrack more than R(λ). This construction allows one to explicitly express how
the process depends on the restrictions of the environment in the two half-spaces
already discussed (and now separated by a distance R(λ)). R(λ) is chosen larger
than the range of dependence R from Assumption 4 and the size of the support of
the local function f : R f .

The organization of the rest of this section is as follows: after introducing some
notation on path space, we state the bounds we shall need to choose the parameter
δ. Proposition 4.5 is borrowed from [29]; it describes the properties of the coupling
construction of the diffusion and the Bernoulli random variables. Then we give a
detailed definition of the regeneration times starting with formula (4.31). Theorem
4.7, also borrowed from [29], says that the increments of the process between
successive regeneration times are indeed i.i.d. We do not prove Theorem 4.7 but we
do include the proof of Lemma 4.8, that we shall need later and which is actually
very close to the proof of Theorem4.7. In Proposition 4.9,we establish somebounds
on the regeneration times. Finally, in Sect. 4.2, we finish the proofs of Theorems
4.1 and 4.2.

The constructionof regeneration timeswill also beused in theproof offluctuation–
dissipation relations and then we shall need bounds on the regeneration times that
depend on λ, see Sect. 5.1.

The regeneration timeswill be constructedoncanonical spaceC([0,∞), R
d+1).

We use the notation Z(t)t�0 for the coordinate map on C([0,∞), R
d+1). The first

d components of Z(·) will be denoted by X (·). Let Pλ,ω
z be the law of Zλ,ω

z , and
Eλ,ω
z be the corresponding expectation. Let P

λ
z be the annealed law

P
λ
z (A) =

∫
dQ(ω)

∫
dPλ,ω

z (w)1A(ω,w)

for any measurable subset A ⊂ � × C([0,∞), R
d+1).

Next we set

R(λ) = max
{
R, R f ,

1

λ

}
,

where R is the constant fromAssumption 4 and R f is chosen so that f ismeasurable
with respect to the σ -field HBR f

. Denoting Br (z) the ball in R
d+1 centered at z

of radius r , we let Uz = B6R(λ)(z + 5R(λ)ě1), Bz = BR(λ)(z + 9R(λ)ě1) with
ě1 = (e1, 0). Then we set

TUz = inf
{
s � 0 : Z(s) �∈ Uz} , (4.29)

so that TUz is the exit time from Uz . We also define the corresponding transition
densities pλ,ω,Uz (s, z′, z′′) which satisfy the relation

Pλ,ω
z′
{
Z(s) ∈ G, TUz′>s} =

∫
G
pλ,ω,Uz (s, z′, z′′) dz′′
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for any Borel set G ⊂ Uz′ .

Lemma 4.4. Let 0 < λ � 1. There exists δλ
f > 0 such that

pλ,ω,Uz (λ−2, z′, z′′) �
2δλ

f

|BR(λ)| (4.30)

for all z′ ∈ R
d+1, z′′ ∈ Bz. Moreover for any R0 there exists δλ > 0 such that

we may choose δλ
f � δλ for any f such that R f � R0 and either | f | � 1 or

‖ f ‖H−1∞ (�)
� 1.

Proof. The required bound is a consequence of the fundamental solution estimates
obtained in [1], see Lemma 5.2 in [7]. Remember that due to Assumption 2 the
matrix a is uniformly elliptic and either f is bounded or f = divF where F is
bounded. ��

We proceed with introducing a coupling construction. We mostly follow the
construction of [29] (see also [7]). First, we enlarge the probability space by adding
a sequence {Yk}∞k=0 of i.i.d. Bernoulli randomvariables. Let (Ft )t�0 be the filtration

generated by (Z(t))t�0 and Jm = σ {Y0, . . . ,Ym}. Let θλ
m be the rescaled shift

operator defined by

θλ
m(Z(·))(s) = Z(λ−2m + s), s � 0.

We extend these operators by setting

θλ
m((Z(s))s�0, (Yk)k�0) = ((Z(λ−2m + s))s�0, (Yk+m)k�0), m ∈ N.

Part (i) of the Proposition below states that we indeed couple i.i.d. Bernoulli
random variables and Pλ,ω

z . Part (ii) expresses the markov property of the coupling
P̂λ,ω
z . Part (iii) says that, when a variable Yk takes the value 1, then the diffusion

makes this ‘deterministic’ jump we discussed in the introduction of this section.

Proposition 4.5. There exists, for every λ, ω and z, a probability measure P̂λ,ω
z on

the enlarged probability space such that, with δ = δλ
f from Lemma 4.4, we have:

(i) The law of (Z(t))t�0 under P̂λ,ω
z is Pλ,ω

z , and the sequence (Yk)k�0 is a se-

quence of i.i.d. Bernoulli variables with success probability δ under P̂λ,ω
z .

(ii) Under P̂λ,ω
z , (Yn)n�m is independent of Fλ−2m × Jm−1, and conditioned on

Fλ−2m × Jm, Z ◦ θλ
m has the same law as Z under P̂λ,ω

Z(λ−2m),Ym
, where P̂λ,ω

z,y

denotes the conditioned law P̂λ,ω
z [·|Y0 = y], (for y ∈ {0, 1}).

(iii) P̂λ,ω
z,1 -almost surely, Z(t) ∈ Uz for t ∈ [0, λ−2] and the distribution of Z(λ−2)

under P̂λ,ω
z,1 is the uniform distribution on Bz.

We refer to [29] for the proof.

Remark 4.6. As a consequence of Proposition 4.5, under P̂λ,ω
z , conditioned on

Fλ−2m × J(m−1), Z ◦ θλ
m has the same law as Z under P̂λ,ω

Z(λ−2m)
.
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Wewill nowprovide the constructionof the sequenceof regeneration times.This
construction is algorithmic that is, in the next paragraph, we describe an algorithm
than eventually stops after a certain number of steps, here denoted with K , and
delivers the value of the first regeneration time τλ

1 . The algorithm depends on the
choice of the parameter a that we set equal to 3λR(λ). Its input is a trajectory.

First we introduce a sequence of random times V λ
k (a)when the process e1 ·X (s)

reaches a local maximum within a variation of R(λ). If we sampled the trajectory
at the times V λ

k (a), we would see increments of order λ−1 in the direction e1.
Because the coupling in Proposition 4.5 uses discrete times,wemodify the times

V λ
k (a) by taking their integer part and thus define the sequence Ñλ

k (a). From the
sequence Ñλ

k (a), we extract Nλ
1 (a) for which the corresponding random variables

Yk takes the value 1 for the first time. Remember that, when a Bernoulli variable
Yk takes the value 1, then the diffusion performs a ‘deterministic’ jump of size λ−1

in direction e1 and in time λ−2. We look at the process right after the jump.
At time Sλ

1 = Nλ
1 (a) + λ−2, we ask wether the diffusion is going to backtrack

in direction e1 by a distance larger than R(λ). If the answer is ‘yes’, we then wait
until the diffusion backtracks - this defines the backtracking time D - and start the
algorithm again; we then get a second random time Sλ

2 , and ask if the diffusion
will backtrack again. The algorithm stops the first time we reach a time Sλ

k after
which the diffusion does not backtrack more than R(λ). The definitions to follow
provide a rigourous description of the algorithm, including some further technical
restrictions.

Observe that the times Sλ
k are stopping times. However, because it includes a

non-backtracking condition, the regeneration time τλ
1 itself is not a stopping time.

Let
M(t) := sup{e1 · (X (s) − X (0)) : 0 � s � t}. (4.31)

For a > 0, define the stopping times V λ
k (a), k � 1, as follows. We define TL =

inf{t : e1 · (X (t) − X (0)) = L}, and define

V λ
0 (a) := Tλ−1a, V λ

k+1(a) := TM(�V λ
k (a)�λ)+R(λ), k � 1; (4.32)

here and later on �r�λ stands for the min{n ∈ λ−2
Z : r ≤ n}. Then

Ñλ
1 (a) := inf

⎧⎨
⎩
⌈
V λ
k (a)

⌉
λ

: k ≥ 0, sup
s∈[V λ

k (a),�V λ
k (a)�λ]

∣∣∣e1 ·
(
X (s) − X

(
V λ
k (a))

)∣∣∣ ≤ R(λ)

2

⎫⎬
⎭ ,

(4.33)
Ñλ
k+1(a) := Ñλ

1 (3λR(λ)) ◦ θλ

λ2 Ñλ
k (a)

+ Ñλ
k (a), k ≥ 1 , (4.34)

Nλ
1 (a) := inf

{
Ñλ
k (a) : k ≥ 1, Yλ2 Ñλ

k (a) = 1
}

, (4.35)

(we will see later that Ñλ
k (a) < ∞, for all k). The random times λ2 Ñλ

k (a) are
integer-valued and sups�Ñλ

k (a) e1 · (X (s) − X (Ñλ
k (a))) � R(λ). We next define

random times Sλ
1 , Jλ

1 and Rλ
1 as follows:

Sλ
1 := Nλ

1 (3λR(λ)) + λ−2, Jλ
1 := Sλ

1 + T−R(λ) ◦ θλ

λ2Sλ
1
,

Rλ
1 := �Jλ

1 �λ = Sλ
1 + D ◦ θλ

λ2Sλ
1
, (4.36)
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where

D := �T−R(λ)�λ. (4.37)

Now we proceed recursively as follows:

Nλ
k+1= Rλ

k +Nλ
1 (ak) ◦ θλ

λ2Rλ
k
with ak =λ

(
M(Rλ

k )−e1 · (X (Rλ
k )−X (0))+R(λ)

)
(4.38)

and

Sλ
k+1 := Nλ

k+1 + λ−2, Jλ
k+1 := Sλ

k+1 + TR(λ) ◦ θλ

λ2Sλ
k+1

,

Rλ
k+1 := �Jλ

k+1�λ = Sλ
k+1 + D ◦ θλ

λ2Sλ
k+1

.

Note that for all k, the Ft × Sλ2�t�λ
- stopping times λ2Nλ

k , λ2Sλ
k and λ2Rλ

k are
integer-valued (the value +∞ is possible). By definition, we have λ−2 � Nλ

1 �
Sλ
1 � Jλ

1 � Rλ
1 � Nλ

2 � Sλ
2 � Jλ

2 � Rλ
2 � Nλ

3 . . . � ∞. The first regeneration
time τλ

1 is defined as

τλ
1 := inf{Sλ

k : Sλ
k < ∞, Rλ

k = ∞} � ∞. (4.39)

Let

K = inf{k � 1 : Sλ
k < ∞ and Rλ

k = ∞}. (4.40)

Then τλ
1 = Sλ

K . By definition, λ2τλ
1 is integer-valued and τλ

1 � 2λ−2 (since Nλ
1 �

λ−2). We see that on the event τλ
1 < ∞ it holds that

e1 · X (s)�e1 · X (τλ
1 − λ−2) + R(λ)�e1 · X (τλ

1 )−7R(λ), for s � τλ
1 − λ−2,

P̂λ,ω
z − a.s.,

see also Proposition 4.5, that is (Z(s))s�τ1−λ−2 remains in the halfspace {z ∈
R
d+1 : ě1 · z � ě1 · Z(τλ

1 ) − 7R(λ)}. On the other hand, since the process (e1 ·
X (t))t�0 never goes below e1·X (τλ

1 )−R(λ) after τλ
1 , P̂

λ,ω
z -a.s., (Z(t))t>τλ

1
remains

in the halfspace {z ∈ R
d+1 : ě1 · z � ě1 · Z(τλ

1 ) − R(λ)}.
Let us define the annealed law

P̂
λ
z [A] :=

∫
dQ(ω)

∫
d P̂λ,ω

z (w)1A(ω,w). (4.41)

It has been proved in [29] (see also Proposition 5.5 in [7]) that τλ
1 < ∞ P̂

λ
0-a.s.

For k � 2 we recursively define

τλ
k = τλ

k−1 + τλ
1 ◦ θλ

λ2τλ
k−1

.

Then τλ
k is finite P̂

λ
0-a.s. for all k. We set τλ

0 = 0 for convenience.
The next theorem is Theorem 2.5 in [29].
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Theorem 4.7. Under the measure P̂
λ
0 , the random variables

((
Z(τλ

k+1) − Z(τλ
k ),

τλ
k+1 − τλ

k

)
, k � 0

)
are independent; furthermore, for k � 1 they are i.i.d. and

have the same law as
(
Z(τλ

1 ), τλ
1

)
under P̂

λ
0[ · |D = ∞].

Furthermore, we have

Lemma 4.8. Let (H(m))m�0 be a random process such that H(m) is measurable

with respect to Fλ−2m × Jm−1 for all m and such that Ê
λ
0[|H(λ2τλ

1 )|] < ∞. Then

Ê
λ
0[H(λ2τλ

1 )|D = ∞] =
∞∑
k=1

Ê
λ
0[H(λ2Sλ

k )1{Sλ
k <D}].

Proof.

Ê
λ
0

(
[H(λ2τλ

1 )]1{D=∞}
)

=
∞∑
k=1

∫
Êλ,ω
0

(
[H(λ2Sλ

k )])1{Sλ
k <∞}1{D◦θλ

Sλ
k
=∞}1{D=∞}

)
dQ

=
∞∑
k=1

∫
Êλ,ω
0

(
[H(λ2Sλ

k )])1{Sλ
k <D}1{D◦θλ

Sλ
k
=∞}

)
dQ

=
∞∑
k=1

∫
Êλ,ω
0

(
[H(λ2Sλ

k )]1{Sλ
k <D} Ê

λ,ω

Z(Sλ
k )
1{D=∞}

)
dQ;

here, to justify the second equality, we have used the fact that if Sλ
k < D and

D ◦ θλ

Sλ
k

= ∞, then D = ∞. To justify the last equality we have used the fact that

λ2Sλ
k 1{Sλ

k <D} is a stopping timewith respect to the filtration (Fλ−2m×J(m−1) , m �
0) and Remark 4.6.

For given ω and k, let ρλ,ω
k be the law of Z(Sλ

k ) under P̂λ,ω
0 . Then

∫ (
Êλ,ω
0

(
[H(λ2Sλ

k )]1{Sλ
k <D} Ê

λ,ω

Z(Sλ
k )
1{D=∞}

)
dQ

=
∫ (

Êλ,ω
0

{
Êλ,ω
0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣∣∣Z(Sλ
k )

]
Êλ,ω

Z(Sλ
k )

[
1{D=∞}

]
Êλ,ω

Z(Sλ
k )

})
dQ

=
∫

�

(∫
Rd

ρ
λ,ω
k (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣∣∣Z(Sλ
k ) = z

]
Eλ,ω
z 1{D=∞}

)
dQ

=
∫
Rd

∫
�

(
ρ

λ,ω
k (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣∣∣Z(Sλ
k ) = z

]
Eλ,ω
z 1{D=∞}

)
dQ.

By the definition of D and Sλ
k , the term Eλ,ω

z 1{D=∞} is measurable with re-
spect to the σ -field generated by {σ(z′ · ω) : z′ · e1 � z · e1 − R(λ)}, and
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ρ
λ,ω
k (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣Z(Sλ
k ) = z

]
is measurable with respect to the σ -

field generated by {σ(z′ · ω) : z′ · e1 � z · e1 − 8R(λ)}. Due to Assumption 4,
these two terms are independent. Therefore,

∫
Rd

∫
�

(
ρ

λ,ω
k (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣Z(Sλ
k ) = z

]
Eλ,ω
z 1{D=∞}

)
dQ

=
∫
Rd

∫
�

(
ρ

λ,ω
k (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣Z(Sλ
k ) = z

])
dQ

∫
�

(
Eλ,ω
z 1{D=∞}

)
dQ.

The term EEλ,ω
z 1{D=∞} does not depend on z and equals P̂

λ
0(D = ∞). Thus the

last term in the previous formula is equal to

P̂
λ
0(D = ∞)

∫ ∫ (
ρ

λ,ω
k (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k <D}

∣∣Z(Sλ
k ) = z

])
dQ

= P̂
λ
0(D = ∞)Êλ

0

(
H(λ2Sλ

k )1{Sλ
k <D}

)
,

which implies the desired relation. ��
The next statement provides us with useful estimates for the regeneration times.

Proposition 4.9. There exists a constant Cλ
f > 0 such that

Ê
λ
0

[
eC

λ
f τ

λ
1

]
< ∞ and Ê

λ
0

[
eC

λ
f (e1·X (τλ

1 ))

]
< ∞.

Moreover for any R0 there exists Cλ > 0 such that we may choose Cλ
f � Cλ for

any f such that R f � R0 and either | f | � 1 or ‖ f ‖H−1∞ (�)
� 1.

Proof. The first claim of the Proposition is proved in [29], Theorem 4.9 and Corol-
lary 4.10. As for the second claim observe from the construction of τλ

1 that, once
R(λ) is chosen, and given the Yk’s, the definition of τλ

1 only involves the process
e1 · X . Therefore, the rate of decay of the distribution function of τλ

1 depends on f
only through R f and δλ

f . Besides, the bigger δ
λ
f , the faster this distribution function

decays. We conclude the proof with the second claim of Lemma 4.4. ��

4.2. Proof of Theorems 4.1 and 4.2

The law of (Z(t))t�0 under P̂
λ,ω
0 is the law of (Zλ,ω

0 (t))t�0 under P . Therefore,

under P̂λ,ω
0 , the last component of Z(·) is a semimartingale of the form W1· +A f (·)

where W1· is a Brownian motion and the law of A f is the law of Aλ,ω
0, f under P .

It follows from Theorem 4.7 and Proposition 4.9 that

1

k
τλ
k −→ Ê

λ
0

[
τλ
1 |D = ∞

]
as k → ∞ P̂

λ
0 − a.s.

and

1

k

(
A f (τ

λ
k ) + W1

τλ
k

)
−→ Ê

λ
0

[
A f (τ

λ
1 ) + W1

τλ
1
|D = ∞

]
as k → ∞ P̂

λ
0 − a.s..
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Since k−1W1
τλ
k
a.s. converges to zero, we derive from the previous relation that

A f (τ
λ
k )

τλ
k

−→
Ê

λ
0

[
A f (τ

λ
1 ) + W1

τλ
1
|D = ∞

]

Ê
λ
0

[
τλ
1 |D = ∞

] as k → ∞ P̂
λ
0 − a.s.. (4.42)

Let us show that the term Ê
λ
0

[
W1

τλ
1
|D = ∞

]
on the right-hand side of (4.42)

vanishes. Since Z and A f are additive functionals of Z , then W1 is also an additive
functional of Z . From the Markov property of Pλ,ω

Z(λ−2m)
, we get that the process

(W1
λ−2m+t

−W1
λ−2m

)t�0 is a Brownianmotion independent ofFλ−2m×J(m−1). Since

1{Sλ
k <D}λ2Sλ

k is a stopping time with respect to the filtration (Fλ−2m ×J(m−1))m�0,

we have Ê
λ
0[W1Sλ

k
1{Sλ

k <D}] = 0 for all k. Combining this with Lemma 4.8 yields that

Ê
λ
0

[
W1

τλ
1
|D = ∞

]
vanishes. Therefore, (4.42) takes the form

A f (τ
λ
k )

τλ
k

−→ Ê
λ
0

[
A f (τ

λ
1 )|D = ∞]

Ê
λ
0

[
τλ
1 |D = ∞] as k → ∞ P̂

λ
0 − a.s.. (4.43)

We introduce the notation

νλ( f ) = Ê
λ
0

[
A f (τ

λ
1 )|D = ∞]

Ê
λ
0

[
τλ
1 |D = ∞] =

Ê
λ
0

[
A f (τ

λ
1 ) + W1

τλ
1
|D = ∞]

Ê
λ
0

[
τλ
1 |D = ∞] . (4.44)

Using standard arguments based on Proposition 4.9 we can replace the limit along
the sequence {τλ

k } in (4.43) with the limit with respect to t . Therefore, we conclude

that t−1A f (t) a.s. converges to νλ( f ). This implies that t−1Aλ,ω
0, f also converges

to νλ( f ) as t → ∞ for Q almost all ω and P-a.s. This yields the statement of
Theorem 4.2.

To complete the proof of Theorem 4.1, it remains to show that νλ is a Borel
probabilitymeasure on�. By construction, νλ is a non-negative linear functional on
the space of bounded local functions. For any such function f we have |Aλ,ω

0, f ( f )| �
t‖ f ‖L∞(�). Therefore, |νλ( f )| � ‖ f ‖L∞(�). It is obvious that νλ(1) = 1. The only
property to be justified is the sigma-additivity of νλ. Let R0 > 0 and let ( fn)n�1 be
a sequence of functions which are measurable with respect to the σ -field generated
by {σ(y.ω) : |y| � R0} and such that 0 � fn � 1 and fn(ω) tends to zero for all
ω. For all T > 0 we have

Ê
λ
0[A fn (τ

λ
1 )] � Ê

λ
0[A fn (T )] + Ê

λ
0[(τλ

1 )1{τλ
1 �T }].

Clearly, for any T > 0 we have Ê
λ
0[A fn (T )] → 0, as n → ∞. In addition, although

the law of τλ
1 depends on fn , due to Proposition 4.9, Êλ

0[(τλ
1 )1{τλ

1 �T }] tends to zero
as T → ∞ uniformly in n. This implies that Ê

λ
0[A fn (τ

λ
1 )] converges to zero, and

thus νλ( fn) converges to zero as n → ∞. Therefore, νλ is a probability Borel
measure on the σ -field generated by {σ(y.ω) : |y| � R0}. Since it holds true for
any R0, then νλ extends to the whole Borel σ -field of �. ��
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5. Fluctuation Dissipation Theorem

In this Section we compute the derivative of the steady state as λ → 0. Our main
tool is the description of the scaling limit of regeneration times for small λ.

Everywhere in this Section Assumptions 1–4 are fulfilled.
Recall the properties of 
̄( f ) from Lemma 2.9.

Theorem 5.1. Let f be local and belong to H−1∞ (�). Then, the derivative of νλ( f )
at λ = 0 exists and is equal to 
̄( f ).

An immediate corollary of Theorem 5.1 and Lemma 3.1 is the following version
of Theorem 1.5:

Corollary 5.2. Let f belong to H̃−1∞ (�). Then, the derivative of νλ( f ) at λ = 0
exists and is equal to 
̄( f ).

The proof will be divided into several steps which are detailed in the following
subsections.

5.1. Estimates for Regeneration Times

Proposition 5.3. Under the conditions of Theorem5.1 there exist constantsC1( f ) >

0 and C( f ) > 0 such that, for all λ with 0 < λ � 1, we have

Ê
λ
0

[
eC1( f )λ2τλ

1

]
� C( f ) and Ê

λ
0

[
eC1( f )λ(e1·X (τλ

1 ))

]
] � C( f ).

Remark 5.4. By the same arguments as in the proof of Proposition 4.9, the con-
stants C1( f ) and C( f ) can be chosen to be the same for all functions f such that
R f � R0 and ‖ f ‖H−1∞ (�)

� 1.

Proof. We will need a version of Lemma 4.4 uniform with respect to λ ∈ (0, 1).
��

Lemma 5.5. Let f be as in Theorem 5.1. Then there exists a constant δ f > 0 such
that estimate (4.30) holds for all λ ∈ (0, 1) with δλ

f = δ f .

Proof. We recall that the process

Zλ,ω
z (t) =

(
Xλ,ω
x (t), y + Aλ,ω

x, f (t) + W 1
t

)

has a generator in divergence form, see (3.25).
In the variables z̃ = λz and t̃ = λ2t , this generator reads (see (3.26))

divx̃ (a
ω(λ−1 x̃)∇x̃ q) + aω((λ−1 x̃)e1∇x̃ q

+ divx̃ (F
ω(λ−1 ỹ)∂ỹq) − ∂ỹ(F

ω(λ−1 ỹ)∇x̃ q) + ∂2ỹ q.

Since F is bounded, for the correspondingparabolic operator, theAronson estimates
(see [1]) hold uniformly in λ and in F on any finite time interval and in any fixed
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ball and for almost all ω. This implies that in the statement of Lemma 4.4 we can
choose δλ

f independenly of λ. ��
Turning back to the proof of Proposition 5.3, due to Lemma 5.5, in the con-

struction of τλ
1 , we can choose the same Bernoulli random variables (Yk)k�0 for

all λ ∈ (0, 1]. Given the sequence (Yk : k � 0) and the trajectory e1 · X (·), the
definition of τλ

1 in Section 4.1 coincides with the definition of the regeneration time

τ1 in [7] (Notice that the notation e1 · X (·) and P̂λ,ω
0 are used for the same objects

both here and in [7]). We read from Lemma 5.8 and its proof in [7] that

sup
ω

sup
0<λ�1

Êλ,ω
0

[
eC1( f )λ(e1·X (τλ

1 ))

]
< ∞,

and

sup
ω

sup
0<λ�1

Êλ,ω
0

[
eC1( f )λ2τλ

1

]
< ∞.

These estimates clearly imply the estimates stated in the Proposition. ��
Lemma 5.6. Under the conditions of Theorem 5.1 there exist constants C1( f ) > 0
and C( f ) > 0 such that, for all λ � 1,

Ê
λ
0

⎡
⎣exp

⎛
⎝C1( f )λ sup

0�s�τλ
1

|Z(s)|
⎞
⎠
⎤
⎦ � C( f ). (5.45)

Proof. Denote T̃r = inf{s > 0 : |λZ(s/λ2)| = r}. Applying Aronson’s lower
bound (see [1, Theorems 8 and 9]) to the parabolic equation with generator given
by (3.26), we obtain that there exists δ0 > 0 such that for all λ ∈ (0, 1) and all ω

Pλ,ω
0 (T̃1 � 1) � δ0.

Therefore,

Eλ,ω
0

(
e−T̃1

)
� 1 − ε0

for some ε0 > 0. Applying the Markov property we deduce that

Eλ,ω
0

(
e−T̃r

)
� (1 − ε0)

r−1.

Then

Eλ,ω
0

[
exp

(
c sup
0�s�t

λ|Z(s/λ2)|
)]

=
∫ ∞

0
ds es Pλ,ω

0 (e−T̃(s/c) � e−t )

� et
∫ ∞

0
ds es(1 − ε0)

(s/c)−1 = Cet ,
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provided we have chosen c small enough so that e1(1 − ε0)
(1/c) < 1. Writing

P̂λ,ω
0

⎛
⎝ sup

0�s�τλ
1

λ|Z(s)| � T

⎞
⎠ � P̂λ,ω

0

(
λ2τλ

1 � T/2
)

+ P̂λ,ω
0

(
sup

0�s�T/2
λ|Z(s/λ2)| � T

)
,

wededuce fromProposition5.3 andLemma5.5 that (5.45) holds true for sufficiently
small C1( f ) > 0 and some C( f ) > 0. ��

5.2. Scaling Limit on Regeneration Scale

Proposition 5.7. Under theproductmeasure P×Q, the process
(
λZλ,ω

0 (λ−2t) ; t �
0
)
converges in law, in C([0,∞), R

d+1), towards a Brownian motion with constant
drift. The limit covariance matrix and the limit drift are given, respectively, by

�̂ =
(

� 0
0 1 + �( f )

)
, B̂ =

(
�e1

( f )

)
. (5.46)

Proof. From Proposition 2.7 we get the convergence in law of
(
λXλ,ω

0 (λ−2·), λ
Aλ,ω
0, f (λ

−2·)), under the annealed measure P × Q. Since W 1 is an independent

Brownian motion, then the process
(
λXλ,ω

0 (λ−2·), λAλ,ω
0, f (λ

−2·), λW 1(λ−2·)) also
converges in law. Since

(
λZλ,ω

0 (λ−2·)) is a linear function of (λXλ,ω
0 (λ−2·), λAλ,ω

0, f

(λ−2·), λW 1(λ−2·)), then it also converges in law.
We have already computed the limit covariance and drift in Proposition 2.7. ��

5.3. Continuity Lemma

Let P be the law of a Brownian motion with covariance and drift given by
(5.46) on the canonical space C([0,∞); R

d+1), and let E be the corresponding
expectation. In the same way as in Section 4.1, we introduce the measure P̂ defined
on the extended path space that includes the sequence of Bernoulli randomvariables
(Yk)k�0. Choosing λ = 1, denote Šk = Sλ=1

k , τ̌1 = τλ=1
1 and the corresponding

random variable Ď.
Let φ = φ(z, s, λ), z ∈ R

d+1, s ∈ R, λ ∈ (0, 1), be a continuous function such
that

|φ(z, s, λ)| � C(1 + |z| + |s|)|m

for some C > 0 and m > 0.

Lemma 5.8. The following continuity relation holds:

lim
λ→0

Ê
λ
0

(
φ(λZ(τλ

1 ), λ2τλ
1 , λ)

)
1{D=∞}

Ê
λ
0

(
λ2τλ

1 1{D=∞}
) = Ê (φ(Z(τ̌1), τ̌1, 0)

)
1{Ď=∞}

Ê
(
τ̌11{Ď=∞}

) .
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Proof. By Lemma 4.8 with H(n) = φ(λZ(λ−2n), n, λ)) we get

Ê
λ
0

(
φ(λZ(τλ

1 ), λ2τλ
1 , λ))

∣∣D = ∞
)

=
∞∑
k=1

Ê
λ
0

(
φ(λZ(Sλ

k ), λ2Sλ
k , λ))1{Sλ

k <D}
)

.

(5.47)
For each k, the functions Šk , Z(Šk) and 1{Šk<D} are P̂-a.s. continuous func-
tions on path space. By Theorem 5.7 and the continuity of φ, then the law of
φ(λZ(Sλ

k ), λ2Sλ
k , λ)) 1{Sλ

k <D} under P̂
λ
0 converges to the law of φ(Z(Šk), Šk, 0))

1{Šk<Ď} under Ê . Combining the inequality Sλ
k 1{Sλ

k <∞} � τλ
1 with Lemma 5.6 and

Proposition 5.3, we deduce uniform in λ exponential tail estimates for λ2Sλ
k and for

λ|Z(Sλ
k )|. Under our standing growth condition on φ, then φ(λZ(Sλ

k ), λ2Sλ
k , λ))

satisfies uniform in λ stretched exponential tail estimates. This implies that

Ê
λ
0

(
φ(λZ(Sλ

k ), λ2Sλ
k , λ))

∣∣D = ∞
)

−→ Ê
(
φ(Z(Šk), Šk, 0))1{Šk<Ď}

)

for each k. It remains to bound the tail of the series on the right-hand side of (5.47).
By the Cauchy-Schwartz inequality we have
[
Ê

λ
0

(
φ(λZ(Sλ

k ), λ2Sλ
k , λ))1{Sλ

k <D}
)]2

� Ê
λ
0

[(
φ(λZ(Sλ

k ), λ2Sλ
k , λ))1{Sλ

k <D}
)2]

P̂
λ
0

(
Sλ
k < D

)
.

As in the preceding discussion, Proposition 5.3 and Lemma 5.6 imply that the first
term on the right-hand side is bounded uniformly in λ and k. On the other hand,

P̂
λ
0

(
Sλ
k < D

)
� P̂

λ
0

(
Sλ
k < ∞) � P̂

λ
0

(
τλ
1 � λ−2k

)
.

The term on the right-hand side here converges to zero uniformly in λ at exponential
speed. Therefore, we can pass to the limit in (5.47). ��
Proof of Theorem 5.1. Denote by Zd+1(t) the (d + 1)-st component of Z(t). We
read from (4.44) that

1

λ
νλ( f ) =

Ê
λ
0

[
A f (τ

λ
1 ) + W1

τλ
1
|D = ∞

]

λÊ
λ
0

[
τλ
1 |D = ∞

] =
λÊ

λ
0

[
Zd+1(τ

λ
1 )|D = ∞

]

λ2Êλ
0

[
τλ
1 |D = ∞

] .

By Lemma 5.8 we have

λÊ
λ
0

[
Zd+1(τ

λ
1 )|D = ∞

]

λ2Êλ
0

[
τλ
1 |D = ∞

] −→
λ→0

Ê
[
Zd+1(τ̌1)|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] .

As a special case of (4.44) with a constant σ and λ = 1, we know that

Ê
[
Zd+1(τ̌1)|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] = lim
t→∞

Zd+1(t)

t
P-a.s..

Obviously, the last limit is equal to 
( f ), see (5.46). ��
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6. Continuity of Variance and Einstein Relation

We assume Assumptions 1–4 are fulfilled.

6.1. Einstein Relation

In this section we obtain the Einstein relation as a consequence of the results of
the previous Section. This proof differs from that given in [7]. We refer to [5] for
the original physical intuition.

It follows from Theorem 4.7 and Proposition 4.9, taking f = 0, that for any
fixed λ ∈ (0, 1), X satisfies the law of large numbers under P̂

λ
0. Equivalently, there

exists a vector �(λ) ∈ R
d such that

lim
t→∞

1

t
Xλ,ω
0 (t) = �(λ)

for Q almost all ω and P-a.s.

Theorem 6.1. (Einstein relation) As λ → 0, then

1

λ
�(λ) −→ �e1.

Proof. Using the regeneration structure as in the proof of (4.44), we can represent
�(λ) as follows:

�(λ) =
Ê

λ
0

[
X (τλ

1 )|D = ∞
]

Ê
λ
0

[
τλ
1 |D = ∞

] .

Therefore,

1

λ
�(λ) =

λÊ
λ
0

[
X (τλ

1 )|D = ∞
]

λ2Êλ
0

[
τλ
1 |D = ∞

] .

It follows from the continuity Lemma 5.8 that

1

λ
�(λ) −→

Ê
[
X (τ̌1)|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] .

The expression on the right-hand side is the drift of the X -components of the process
Z under P; by (5.46), it is equal to �e1. ��
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6.2. Continuity of Variance

This section deals with the continuity of the effective variance of Xλ,ω
0 as λ → 0.

It follows from Theorem 4.7 and Proposition 4.9, taking f = 0, that for any
fixed λ ∈ (0, 1), X satisfies the central limit theorem under P̂

λ
0: there exists a matrix

�λ such that the law of 1√
t
(Xλ,ω

0 (t) − �(λ)t) under the annealed measure P × Q

converges to the centered Gaussian law with covariance matrix �λ.

Theorem 6.2. (Continuity of variance) As λ → 0, we have

�λ −→ �.

Proof. Using the regeneration structure, as in the proof of (4.44), we can represent
�λ as follows: for any e ∈ R

d ,

e · �λe =
Ê

λ
0

[
(X (τλ

1 ) · e − τλ
1 �(λ) · e)2|D = ∞

]

Ê
λ
0

[
τλ
1 |D = ∞

]

=
Ê

λ
0

[
(λX (τλ

1 ) · e − λ2τλ
1 λ−1�(λ) · e)2|D = ∞

]

Ê
λ
0

[
λ2τλ

1 |D = ∞
] .

Weapply the continuityLemma5.8 to the functionφ(z, s, λ) = (e·x−sλ−1�(λ)·e)2
for λ �= 0, and φ(z, s, 0) = (e · x − s�e1 · e)2. Observe that according to Theorem
6.1 (Einstein relation), φ is continuous. Then we get

e · �λe −→
Ê
[
(X (τ̌1) · e − τ̌1�e1 · e)2|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] .

The expression on the right-hand side is the diffusion matrix of the X -components
of the process Z under P . By (5.46), it is equal to �e · e. ��

It follows from Theorem 4.7 and Proposition 4.9 that for any f , a local element
in H−1∞ (�) and any fixed λ ∈ (0, 1), A f satisfies the central limit theorem under
P̂

λ
0: there exists a matrix�λ( f ) such that the law of 1√

t

(
A f (t) − νλ( f )t

)
under the

annealed measure P × Q converges to the centered Gaussian law with covariance
matrix �λ( f ).

Theorem 6.3. As λ → 0, we have �λ( f ) −→ �( f ).

The proof is the same as above. We leave the details to the reader.
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7. Appendix A

Although our main interest in this paper pertains to diffusions in a random
environment, in order to better explain our results, we now briefly discuss the
easier case of diffusions in a periodic environment.

In the periodic setting, the role of the dynamics of the environment viewed from
the particle is now played by the projection of the diffusion Xλ

0 on the torus.
In the case λ = 0, we will get a stationary corrector χ1, see Equation (7.51).
When λ �= 0, the process of the environment seen from the particle has an

absolutely continuous invariant measure - the steady state - whose density is given
by Equation (7.49). The fluctuation–dissipation relation follows from a direct com-
parison of both Equations (7.51) and (7.49). There is no need to go through the
interpretation of the derivative as a correlation as we did in the random environment
case.

Thus let a = (a(x), x ∈ T) be a smooth field of symmetric positive definite
matrices defined on the unit d-dimensional torus T = R

d/Z
d . Let λ be a scalar, e1

be a vector in R
d and define λ̂ = λe1. Let (Xλ

x (t) ; t ≥ 0) be the solution of the
stochastic differential equation

dXλ
x (t) = b(Xλ

x (t))dt + λa(Xλ
x (t))e1 + σ(Xλ

x (t))dWt ; Xλ
x (0) = x , (7.48)

where we periodically extended a to R
d and defined b = 1

2diva, σ = √
a and

(Wt ; t ≥ 0) is a d-dimensional Brownian motion defined on some probability
space (W,F , P).

Then (Xλ
x (t) ; t ≥ 0, x ∈ T) is a Markov process with generator Lλ =

1
2div(a∇) + λ̂ · a∇. Its projection on T is a Markov process with generator L̇λ =
1
2div(a∇) + λ̂ · a∇. This admits a unique absolutely invariant measure (steady
state), say νλ, with some density f λ with respect to the Lebesgue measure on T
and f λ is a solution of the equation

div(a(∇ f λ − 2 f λλ̂)) = 0. (7.49)

Observe that f 0 is constant.
Let us now derive a first order expansion of f λ similar to what we did in

Section 5.
Given the form of Equation (7.49), one observes that f λ smoothly depends on

λ. Besides the successive derivatives of f λ (as a function of λ) can be expressed
as solutions of the partial differential equations obtained by differentiating (7.49)
with respect to λ. Let us write f ′ for the first derivative of f λ at λ = 0. Using the
fact that f 0 = 1, we thus get that f ′ solves the equation

div(a(∇ f ′ − 2e1)) = 0. (7.50)

Define χ1 = − 1
2 f ′. Then (7.50) implies that χ1 is the solution of the equation

L̇0χ1 = −b · e1. (7.51)

Equation (7.51) is the corrector equation for the operator L0 in the direction e1, see
(1.6).
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Thus we have indeed checked that the derivative at λ = 0 of the steady state
of the operator Lλ (symmetric diffusion operator perturbed by a constant drift of
strength λ in the direction e1) coincides up to multiplication by a factor − 1

2 with
the corrector of the symmetric drift-less operator L0 in the direction e1.

Remark 7.1. The Einstein relation, in our context, is the equality between the so-
called mobility (the derivative at λ = 0 of the effective drift) and the diffusion
matrix for the drift-less operator L0, see [7].

Onemayobserve that theEinstein relation in the periodic settingdirectly follows
from the discussion at the beginning of this introduction. Indeed, one deduces from
the ergodic theorem that the process Xλ

0 satisfies a law of large numbers: 1
t X

λ
0 (t)

P-almost surely converges to the effective drift

�(λ) =
∫
T
(b(ẋ) + λa(ẋ)e1) f λ(ẋ)dẋ ,

and therefore
d

dλ
�(λ) · e1|λ=0 =

∫
T
(e1 · b(ẋ) f ′(ẋ) + e1 · a(ẋ)e1 f 0(ẋ)) dẋ .

Recall that f 0 = 1. Thus,∫
T
e1 · ae1 f 0 =

∫
T
e1 · ae1.

We recall that X0(t) · e1 satisfies the Central Limit Theorem with asymptotic
variance

�1 =
∫
T
(e1 + ∇χ1(ẋ)) · a(ẋ)(e1 + ∇χ1(ẋ)) dẋ . (7.52)

On the one hand, integration by parts, Equations (7.51) and the definition of b imply
that

1

2

∫
T

∇χ1 · a∇χ1 = −
∫
T
(L̇0χ1)χ1 =

∫
T
b · e1 χ1

= 1

2

∫
T
diva · e1 χ1 = −1

2

∫
T
e1 · a∇χ1 ,

so that (7.52) also reads

�1 =
∫
T
(e1 · ae1 − ∇χ1 · a∇χ1). (7.53)

Use the equation satisfied by f ′, see (7.50) and (7.51), to get that∫
T
e1 · b f ′ = −2

∫
T
e1 · b χ1 = −

∫
T
e1 · diva χ1

=
∫
T
e1 · a∇χ1 = −

∫
T

∇χ1 · a∇χ1.

Thus we obtain that
d

dλ
�(λ) · e1|λ=0 =

∫
T
(−∇χ1 · a∇χ1 + e1 · ae1) = �1. (7.54)
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Remark 7.2. Let us further comment on the main differences between the periodic
and random cases.

The first difficulty one would face if trying to follow the PDE approach in the
random environment setting is the necessity to solve Equation (7.49) (which is
now an equation in the space of environments �). This is because we do not even
know how to make sense of Equation (7.49) on �, that we used the construction of
regeneration times from Sect. 4.1. The price we pay is Assumption 4.

A possible approach to Equation (7.49) could be to try to express its solution
as a power series in λ. This may not be sufficient to solve (7.49) for all values of λ

but could be good enough to get a solution for small λ’s and, provided the power
series nicely converges, one would even get the fluctuation–dissipation relation by
looking at the first term of the expansion. Indeed the linear term of the expansion
should be given by the equation for the corrector. However already the equation
that the quadratic term should satisfy is problematic.

To the best of our knowledge, this ‘expansion approach’ to construct steady
states only works for dynamics satisfying a spectral gap assumption. Then all
square-integrable functions belong to H−1 and this opens the way to iterate the
corrector equation to build the different terms of the expansion. This approach is
detailed in [19]where the authors prove a power series expansion of the density of νλ

for small λ and obtain some version of the Einstein relation. Under the spectral gap
assumption for the un-perturbed dynamics, the perturbed dynamics with a small but
positive λ also satisfy the spectral gap inequality uniformly in λ. Therefore the time
it takes for the process to equilibrate stays of order 1 as λ tends to 0. This is a major
difference with the situation of diffusions in a random environment as discussed
in the paper at hands where the time it takes for the perturbed process to reach
equilibrium - understood as the regeneration time - is of order λ−2. In other words,
the approach through regeneration times shows that the fluctuation–dissipation re-
lations are much much more general than what purely analytic arguments based
on computations of spectral gaps and perturbation methods would a priori suggest.
How general they are is an open problem.

8. Appendix B: Alternative Proof of Theorem 1.3

In this part of the paper, we give an alternative proof of Theorem 1.3 based
on a spectral gap argument. Recall we are assuming Assumptions 1–3. We use the
notation from Section 2.4.

In the sequel, we fix an element f in the space H−1∞ (�). To obtain an explicit
bound in the next lemma, we introduce a new norm on H−1∞ (�), that we denote
with ‖ f ‖H̄−1∞ (�)

and define as

‖ f ‖H̄−1∞ (�)
= min{‖σ−1F‖∞ ; divF = f }.

Clearly, due to Assumption 2, the two norms ‖ f ‖H̄−1∞ (�)
and ‖ f ‖H−1∞ (�)

are equiv-
alent.

Theorem 1.3 follows at once from the following Lemma:
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Lemma 8.1. Let p � 1. Then, for all λ > 0 and t > 0, we have
∫

E

[
|Aλ,ω

0, f (t)|p
]
dQ(ω) � (4λt)p

(
‖σ‖p∞ + 2γp

λ
√
t

)
‖ f ‖p

H̄−1∞
, (8.55)

where γp = ∫∞
0 ps p−1e− s2

2 ds.

Remark 8.2. Lemma 8.1 should be compared to Lemma 3.1. On the one hand,
estimate (3.24) in Lemma 3.1 gives a uniform upper bound that does not depend on
ω, unlike (8.55) where we average with respect to Q. On the other hand, the upper
bound (8.55) is more explicit than (3.24). Observe in particular that the only way
the value of σ enters in (8.55) is through the value of ‖σ‖∞ and, implicitly, in the
definition of the norm ‖ f ‖H̄−1∞ (�)

.

Proof. Let us derive anupper boundon theLaplace transform
∫
E

[
eηAλ,ω

0, f (t)
]
dQ(ω).

Using the Girsanov transform (2.18), we get that
∫

E

[
eηAλ,ω

0, f (t)
]
dQ(ω) =

∫
E

[
eηA0,ω

0, f (t)eλB̄(t)− λ2
2 〈B̄〉(t)

]
dQ(ω)

�
√

E0

[
e2ηA f (t)

]√∫
E

[
e2λB̄(t)−λ2〈B̄〉(t)

]
dQ(ω).

We have

E

[
e2λB̄(t)−λ2〈B̄〉(t)

]
= E

[
e2λB̄(t)−2λ2〈B̄〉(t)+λ2〈B̄〉(t)

]

� eλ2‖σ‖2∞ t E

[
e2λB̄(t)−2λ2〈B̄〉(t)

]
= eλ2‖σ‖2∞ t .

Therefore ∫
E

[
eηAλ,ω

0, f (t)
]
dQ(ω) �

√
E0

[
e2ηA f (t)

]
e

λ2
2 ‖σ‖2∞ t . (8.56)

We claim that for all F ∈ (L∞(�))d such that f = div(σ F),

E0

[
e2ηA f (t)

]
� e8η

2‖F‖2∞t . (8.57)

Let us prove (8.57). First we assume that there exists a smooth function F ∈
(L∞(�))d such that f = div(σ F).

We use a spectral gap argument: since we are assuming that F is smooth, then
f is a bounded function and we have |A f (t)| � ‖ f ‖∞t , for all t and Q almost

surely. In particular the Laplace transform E0

[
e2ηA f (t)

]
is finite.

Let

Qt u(ω) = E

[
u(Xω

0 (t).ω)e2ηA
0,ω
0, f (t)

]
.
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Then (Qt ; t � 0) defines a strongly continuous symmetric semigroup on L2(�)

with Dirichlet form −2η
∫

f u2 dQ + E(u, u).
Let

�(η) = sup{2η
∫

f u2 dQ − E(u, u) :
∫

u2dQ = 1}

be the largesteigenvalue of the generator of (Qt ; t � 0).
Then

E0

[
e2ηA f (t)

]
� e�(η)t . (8.58)

We now estimate �(η). Let u be a bounded function in D. Then u2 belongs to
D and we have ∫

f u2 dQ = −
∫

2uσDu · F dQ.

Therefore

|
∫

f u2 dQ| � 2‖F‖∞
√
2E(u, u)

√∫
u2 dQ. (8.59)

Clearly inequality (8.59) extends by continuity to all functions u inD. In particular
the expression

∫
f u2 dQ appearing in the definition of �(η) defines a quadratic

form on D.
It follows from (8.59) that, for a function u in D such that

∫
u2dQ = 1, then

2η
∫

f u2 dQ − E(u, u) � 4η‖F‖∞
√
2E(u, u) − E(u, u) � 8η2‖F‖2∞,

So that

�(η) � 8η2‖F‖2∞
and

E0

[
e2ηA f (t)

]
� e8η

2‖F‖2∞t .

This ends the proof of (8.57) if the function f is of the form f = div(σ F) for
a smooth F .

Our goal now is to show that (8.57) holds for f in H−1∞ (�) of the form
f = div(σ F) with an arbitrary bounded function F ∈ (L∞(�))d . We proceed by
approximation: let Fn be a sequence of smooth functions in (L∞(�))d that con-
verges to F in (L2(�))d and such that supn ‖Fn‖∞ � ‖F‖∞. Let f n = div(σ Fn).
Then the sequence f n converges to f in H−1(�).

We proved, in the discussion after Lemma 2.2, that, for any t > 0, A f n (t) con-
verges towards A f (t) in L2(�). We may then extract a subsequence that converges
almost surely and apply Fatou’s Lemma to get (8.57).

We conclude from (8.56) and (8.57) that∫
E

[
eηAλ,ω

0, f (t)
]
dQ(ω) � e4η

2‖F‖2∞t+ λ2
2 ‖σ‖2∞ t .



318 P. Mathieu & A. Piatnitski

If we now optimize on the choice of F , we obtain

∫
E

[
eηAλ,ω

0, f (t)
]
dQ(ω) � e

4η2‖ f ‖2
H̄−1∞

t+ λ2
2 ‖σ‖2∞ t

. (8.60)

We now deduce (8.55) from (8.60). To make the formula more readable, we
use the shorthand notation ‖ f ‖ = ‖ f ‖H̄−1∞ .

By Markov’s inequality, we have
∫

P

[
Aλ,ω
0, f (t) � Aλt

]
dQ(ω) � e−ηAλt

∫
E

[
eηAλ,ω

0, f (t)
]
dQ(ω).

By symmetry, the same holds for −Aλ,ω
0, f (t), and using (8.60), we get that

∫
P

[
|Aλ,ω

0, f (t)| � Aλt

]
dQ(ω) � 2e−ηAλt e4η

2‖ f ‖2t+ λ2
2 ‖σ‖2∞ t .

We choose η = 1
8 Aλ‖ f ‖−1 and get that

∫
P

[
|Aλ,ω

0, f (t)| � Aλt

]
dQ(ω) � 2e

− 1
16

A2λ2

‖ f ‖2 t e
λ2
2 ‖σ‖2∞ t .

Therefore

∫
E

[
|Aλ,ω

0, f (t)|p
]
dQ(ω)

= (λt)p
∫ ∞
0

ps p−1
∫

P

[
|Aλ,ω

0, f (t)| � sλt

]
dQ(ω) ds

� (Aλt)p + 2e
λ2
2 ‖σ‖2∞ t (λt)p

∫ ∞
A

ps p−1e
− 1

16
s2λ2

‖ f ‖2 t

= (Aλt)p + 2e
λ2
2 ‖σ‖2∞ t

(
4‖ f ‖
λ
√
t

)p
(λt)p

∫ ∞
1
4 Aλ

√
t‖ f ‖−1

ps p−1e−s2 ds

� (Aλt)p + 2e
λ2
2 ‖σ‖2∞ t

(
4‖ f ‖
λ
√
t

)p
e− 1

32 A
2λ2t‖ f ‖−2

(λt)p
∫ ∞
1
4 Aλ

√
t‖ f ‖−1

ps p−1e− s2
2 ds.

Choose A2 = 16‖ f ‖2‖σ‖2∞ to get the upper bound

� (Aλt)p + 2

(
4‖ f ‖
λ
√
t

)p

(λt)p
∫ ∞

1
4 Aλ

√
t‖ f ‖−1

ps p−1e− s2
2 ds

� (Aλt)p + 2

(
4‖ f ‖
λ
√
t

)p

(λt)p
∫ ∞

0
ps p−1e− s2

2 ds

= (4λt‖ f ‖‖σ‖∞)p + 2γp(λt)
p
(
4‖ f ‖
λ
√
t

)p

.

��
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