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ABSTRACT
The paper deals with jump generators with a convolution kernel. Assuming
that the kernel decays either exponentially or polynomially, we prove a
number of lower and upper bounds for the resolvent of such operators.
In particular we focus on sharp estimates of the resolvent kernel for small
values of the spectral parameter. We consider two applications of these
results. First we obtain pointwise estimates for principal eigenfunction of
jump generators perturbed by a compactly supported potential (so-called
nonlocal Schrödinger operators). Then we consider the Cauchy problem
for the corresponding inhomogeneous evolution equations and study the
behaviour of its solutions.
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1. Introduction

This paper deals with nonlocal operators with an integrable convolution kernel. The properties of
such operators depend crucially on the behaviour of the convolution kernel at infinity. We consider
different cases covering both polynomial and exponential rates of decay of its tails. Our main aim
is to investigate the behaviour at infinity of the resolvent kernel of these operators. We prove a
number of lower and upper bounds for the said resolvent kernel and, with the help of these results,
deduce pointwise bounds for the principal eigenfunction of the operator obtained from the original
convolution type operator by adding a compactly supported potential. Another application concerns
the inhomogeneous Cauchy problems for convolution type operators.

The nonlocal operators considered here are generators of Markov jump processes with the jump
distribution defined by the convolution kernel. The analysis of the behaviour of the processes can
be performed in terms of the resolvent of its generators. On the other hand, such operators appear
in the kinetic description of birth-and-death Markov dynamics of populations in spatial ecology, see
e.g. [1] and the literature therein. In this setting the tail of the kernel can be thought of as the range
of dispersion of newborn individuals. In many applications this kernel might have heavy tails.

The problem of existence of discrete spectrum and the principal eigenfunction for the perturbed
operator has been studied in recent papers [2–5]. This operator may be considered as a nonlocal
version of the Schrödinger operator in which the Laplacian is changed to a convolution type operator.
It is interesting to observe that the ground state problem for such nonlocal Schrödinger operator is
rather different comparing with that in the classical local case. We will come to this point later on.

To our best knowledge the only work in the existing literature where the behaviour of the resolvent
kernel for nonlocal operators has been studied is [5]. In the mentioned work the authors consider the
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case of nonlocal operators with the convolution kernel decaying super exponentially. The fast decay
of the kernel allows one to use the techniques of analytic functions.

In the present paper we consider both polynomially and exponentially decaying convolution
kernels. However, the main focus of this work is on polynomially decaying kernels: under some
natural conditionswe show that the resolvent kernel has the samepolynomial decay as the convolution
kernel, see Theorem 2.1. In the later case the resolvent kernel decays exponentially, see Theorems
2.2, 2.3. An important part of our study is obtaining sharp upper and lower bounds for the resolvent
kernel as the spectral parameter is getting sufficiently small. These bounds play then a crucial role
when we study the spectral problem for nonlocal Schrödinger operators being a perturbation of the
convolution operator by a bounded localized potential. If the perturbation is “small enough”, then
the corresponding principal eigenvalue is small, and the behaviour of the principal eigenfunction at
infinity can be expressed in terms of the resolvent kernel with a small positive value of the spectral
parameter, see Theorem 3.2.

Notice that, in the case of exponentially decaying convolution kernels, the exponential decay of the
corresponding resolvent kernel can be deduced from Paley–Wiener theorem, see e.g. [6]. However,
our approach allows us to find sharp estimates for the rate of decay and, in some cases, even the
asymptotics of the resolvent kernel.

We also consider in this work the behaviour of solutions to the Cauchy problem for a nonlocal
heat equations with a stationary source term. In particular, we provide lower and upper bounds for
the solutions and prove the convergence to the stationary solution. Previously a number of qualitative
results for nonlocal heat equations have been obtained in a number of works, see [7,8] and references
therein.

The paper is organized as follows. Section 2 deals with the behaviour of the resolvent of integral
operators with convolution kernels. In Section 2.1 we study the case of polynomially decaying kernels
while Section 2.2 is devoted to the case of exponentially decaying tails.

These results are then used in Section 3 to study the properties of the principal eigenfunction
of the perturbed operator and the large time behaviour of solutions to the Cauchy problem for the
corresponding non-homogeneous evolution equation.

2. Bounds for resolvent kernel

We consider the operator

(L0u)(x) =
∫

Rd
a(x − y)(u(y)− u(x))dy. (1)

Throughout this paper we assume the following properties for the dispersal kernel: a( · ) ∈ Cb(R
d)∩

L1(Rd) is a nonnegative bounded even continuous function of unit mass, i.e.
∫

Rd
a(x)dx = 1. (2)

Consequently

a( · ) ∈ L2(Rd) and its Fourier transform ã( · ) =
∫

Rd
e−i(·,x)a(x)dx ∈ L2(Rd) ∩ Cb(R

d). (3)

For the further analysis it is convenient to rewrite operator L0 in (1) as follows:

L0u(x) = Sau(x)− u(x), Sau(x) =
∫

Rd
a(x − y)u(y)dy. (4)
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In this section we study the behaviour of the kernel of the resolvent for the operator L0 under the
condition that the function a(x) decays either polynomially or exponentially. Denote byRλ(x, y) the
kernel of the resolvent (λ− L0)−1. This kernel admits the representation

Rλ(x, y) = (1 + λ)−1
(
δ(x − y)+ Gλ(x − y)

)
, λ ∈ (0,∞), (5)

where Gλ(x − y) is the kernel of the convolution operator

∞∑
k=1

Sk
a

(1 + λ)k
. (6)

Denote by ak(x − y) the kernel of the operator Sk
a , then

ak(x) = a∗k(x) =
∫
Rd

. . .

∫
Rd

a(x − y1)a(y1 − y2) . . . a(yk−2 − yk−1)a(yk−1) dy1 . . . dyk−1, (7)

and

Gλ(x) =
∞∑
k=1

ak(x)
(1 + λ)k

(8)

with ak(x) defined by (7).

2.1. Polynomial tail of dispersal kernel

In this section we deal with functions a(x) that satisfy the following bounds

c−(1 + |x|)−(d+α) ≤ a(x) ≤ c+(1 + |x|)−(d+α), (9)

with an arbitrary α > 0.
Theorem 2.1: There exist constants 0 < c̃−(λ) ≤ c̃+(λ), such that

c̃−(d + |x|)−(d+α) ≤ Gλ(x) ≤ c̃+(1 + |x|)−(d+α), (10)

where Gλ(x) is defined by (6).
Furthermore, c̃+(λ) = O(λ−(2+d+α)) as λ goes to 0, and

Gλ(x) ≥ C0

λ
(1 + |x|)−(d+α)

for large enough |x| with a constant C0 > 0.

Proof: I. The upper bound. In R
(k−1)d introduce the sets

A1 = {
y ∈ R

(k−1)d : |x − y1| ≥ |x|
k

}
, A2 = {

y ∈ R
(k−1)d : |y1 − y2| ≥ |x|

k
}
, . . . ,

Ak = {
y ∈ R

(k−1)d : |yk−1| ≥ |x|
k

}
.

One can easily check that R
(k−1)d ⊂ ⋃k

j=1 Aj and, therefore,

ak ≤
k∑

j=1

∫
Aj

a(x − y1)a(y1 − y2) . . . a(yk−2 − yk−1)a(yk−1) dy1 . . . dyk−1.
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Thus considering (9) we obtain

∫
A1

a(x − y1)a(y1 − y2) . . . a(yk−2 − yk−1)a(yk−1) dy1 . . . dyk−1

≤ c+
(1 + |k−1x|)d+α

∫
A1

a(y1 − y2) . . . a(yk−2 − yk−1)a(yk−1) dy1 . . . dyk−1

≤ c+
(1 + |k−1x|)d+α

∫
Rk−1

a(y1 − y2) . . . a(yk−2 − yk−1)a(yk−1) dy1 . . . dyk−1

= c+
(1 + |k−1x|)d+α .

Similarly,

∫
Aj

a(x − y1)a(y1 − y2) . . . a(yk−2 − yk−1)a(yk−1) dy1 . . . dyk−1 ≤ c+
(1 + |k−1x|)d+α

for j = 1, 2, . . . , k − 1. Finally,

ak(x) ≤ c+k
(1 + |k−1x|)d+α (11)

Denote�2 = (1 + λ), then

�−2kak(x) ≤ c+k�−k

(�k/(d+α) + |�k/(d+α)k−1x|)d+α ≤ c+k�−k

(1 + |γ x|)d+α

with γ = min
k
�k/(d+α)k−1. Notice that γ = γ (λ) > 0, and γ = O(λ) for small λ > 0. Summing up

these inequalities in k we conclude that the kernel Gλ(x) is bounded from above by

c̃+
(1 + |x|)d+α .

This completes the proof of the upper bound in (10).
We proceed with the asymptotics of c̃+(λ) as λ → 0. Using (11) we get the following upper bound

for the sum (8):

∞∑
k=1

c+k1+d+α(1 + λ)−k

(k + |x|)d+α ≤ c+
(1 + |x|)d+α

∞∑
k=1

k1+d+α(1 + λ)−k.

Consequently,

c̃+(λ) = c+
∞∑
k=1

k1+d+α

(1 + λ)k
= O(λ−(2+d+α)) as λ → 0.

In order to justify the last relation we first restrict the summation to a finite range of k. Namely,

∞∑
k=1

k1+d+α

(1 + λ)k
≥

[log 2/λ]∑
k=1

k1+d+α

(1 + λ)k
≥ 1

2

[log 2/λ]∑
k=1

k1+d+α ≥ Cλ−(2+d+α)
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To obtain an upper bound we estimate the contribution of the terms related to k ∈ Jm = {k ∈ Z
+ :

mλ−1 log 2 ≤ k ≤ (m + 1)λ−1 log 2},m ∈ Z
+:

∑
k∈Jm

k1+d+α

(1 + λ)k
≤

∑
k=Jm

k1+d+α

2m
≤ (m + 1)2+d+α

2m
λ−(2+d+α).

Summing up inm we arrive at the desired bound

∞∑
k=0

k1+d+α

(1 + λ)k
≤ Cλ−(2+d+α).

II. The lower bound. The lower bound is quite straightforward, if we take in (5) the first term of
the sum. To trace the dependence of the lower bound on λ for small values of λ > 0 we should take
into account the higher order terms in (8).

From (9) it follows that ∫
|y|≥r

a(y) dy ≤ Cr−α

with a constant C = C(c+,α, d) that only depends on c+, α and d. Then∫
|y|≤r

a(y) dy ≥ 1 − Cr−α. (12)

Lemma 2.1: For all λ ∈ (0, 1) and for all

|x| ≥
( 1
λ

) α+1
α m with m = (2C)

α+1
α , (13)

where C is the same constant as in (12), we have

Gλ(x) ≥ C0

λ
(1 + |x|)−(d+α),

where C0 is a positive constant that does not depend on λ.

Proof: After change of variables we get

ak(x) =
∫
Rd

. . .

∫
Rd

a(z1)a(z2) . . . a(zk−1)a(x − z1 − z2 − . . .− zk−1) dz1 . . . dzk−1

≥
∫
Br

a(z1)a(z2) . . . a(zk−1)a(x − z1 − z2 − . . .− zk−1) dz1 . . . dzk−1,

where Br = {z ∈ R
(k−1)d : |zj| ≤ r}. For z ∈ Br the following inequality is fulfilled:

a(x − z1 − z2 − . . .− zk−1) ≥ c−(1 + |x| + kr)−(d+α).

Moreover, ∫
Br

a(z1)a(z2) . . . a(zk−1) dz ≥ (1 − Cr−α)k−1
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with a constant C. This yields

ak(x) ≥ c−(1 − Cr−α)k−1(1 + |x| + kr)−(d+α).

Considering the properties of the function (1− x− e−2x) in the vicinity of zero, one observes that
under our choice of the constantm in (13) for all ξ ≥ m the inequality holds

1 − Cξ− α
α+1 ≥ e−2Cξ− α

α+1
. (14)

Then we consider all positive integer k that satisfy the estimate

k ≤ k0(|x|) =
[
|x| α

α+1
]

+ 1,

and set
r = r(|x|) = |x| 1

α+1 .

Then using (14) we have that

1 − Cr−α ≥ e−2Cr−α for all |x| ≥ m,

and for all k ≤ k0 we have the uniform lower bound (for all x, meeting (13)):

(1 − Cr−α)k−1 ≥ e−2Ck0r−α ≥ e−2C = C̃0.

In addition,
(1 + |x| + kr)−(d+α) ≥ (1 + 2|x|)−(d+α).

Finally, we have

ak(x) ≥ C0(1 + |x|)−(d+α), C0 = 2−(d+α)C̃0c−, α > 0. (15)

Summing up in k and recalling inequality (13), we obtain

Gλ(x) ≥ C0(1 + |x|)−(d+α)
k0(|x|)∑
k=1

(1 + λ)−k

≥ C0(1 + |x|)−(d+α) 1 − (1 + λ)−|x| α
α+1

λ
≥ C0

2λ
(1 + |x|)−(d+α).

We used in the last inequality that the function g(u) = (1 + u)− 1
u is increasing as u ∈ (0, 1), and

g(0) = e−1, g(1) = 1
2 . This completes the proof of Lemma 2.1 and of Theorem 2.1.

In the next section we study the behaviour of the function Gλ(x) in the case of exponentially
decaying convolution kernel a(x).

2.2. Exponential tail of dispersal kernel

In this section we consider the exponentially decaying dispersal kernels. Namely, we assume that in
addition to (2) - (3) the function a(x) satisfies the following upper bound:

a(x) ≤ c exp{−δ|x|} (16)
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with a positive constant δ. We prove here that the function Gλ(x) defined by (6) decays also
exponentially and find the rate of decay of the function Gλ(x) for small enough λ.
Theorem 2.2: There exist positive constants k = k(λ), m = m(λ), such that the function Gλ(x)
satisfies the following upper bound:

Gλ(x) ≤ k(λ)e−m(λ)|x|. (17)

Moreover, k(λ) → ∞ and m(λ) = O(λ), as λ → 0.

Proof: Since the function Gλ(x) has the following representation in terms of the Fourier transform
ã(p):

Gλ(x) = 1
(2π)d

∫
Rd

ã(p)
λ+ 1 − ã(p)

ei(p,x)dp, (18)

then for a fixed λ > 0 inequality (17) is a consequence of the Paley–Wiener theorem, see e.g.
[6, Theorem IX.14]. However, our goal is to obtain sharp estimates on k(λ), m(λ) for small values of
λ. To this end we use probabilistic arguments based on the following statement.
Lemma 2.2: Let Xi be i.i.d. random variables taking values in R

d with the distribution density a(x)
satisfying the upper bound (16), and denote Sn = X1 + . . .+Xn. Then for any unit vector θ ∈ R

d there
exists a constant c1 = c1(c, δ) such that for all n ≥ 1 the following estimates hold:

P{θ · Sn > r} ≤
{
e−

r2
4c1n , 0 < r ≤ δc1n

e− δr
4 , r > δc1n

(19)

where δ is the same as in (16).

Proof: Estimate (16) on the density a(x) is isotropic, hence we can take θ = e1 and consider an 1-d
random variable ξ = θ · X1 = X(1)1 . The distribution aξ (x) of ξ satisfies the estimate similar to (16)
with the same δ and some constant c̃ = c̃(c, δ):

aξ (x) ≤ c̃e−δ|x|, x ∈ R
d .

Let k ∈ (0, δ2 ] be a constant, then using the Taylor decomposition for the exponent ekξ and estimates
on the moments of ξ we get

Eek ξ ≤ ec1k
2

for 0 < k ≤ δ

2
(20)

with a constant c1 = c1(c̃, δ).
Let us take a unit vector θ ∈ R

d andfixn ∈ N. Thenusing theMarkov inequality, the independence
of random variables Xj and (20) we get for the 1-d random variable θ · Sn:

P{θ · Sn > r} = P{kθ · Sn > kr} = P{ekθ ·Sn > ekr}
≤ min

0<k≤ δ
2

(Eekθ ·X1)n

ekr
≤ min

0<k≤ δ
2

ec1k
2n−kr = exp

{
min
0<k≤ δ

2

f (k)
}

with f (k) = c1k2n − kr. We consider two cases. If

k0 = argminf (k) = r
2c1n

≤ δ

2
,
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then min
0<k≤ δ

2

f (k) = f (k0) = − r2
4c1n , and

P{θ · Sn > r} ≤ e−
r2
4c1n .

If r > δc1n, then k0 > δ
2 . Consequently, min

0<k≤ δ
2

f (k) = f ( δ2 ) and

P{θ · Sn > r} ≤ e
c1δ

2n
4 − δr

2 = e(
c1δ

2n
4 − δr

4 )− δr
4 ≤ e−

δr
4 .

For a d-dimensional random vector η and arbitrary ε > 0 one can find a finite collection of unit
vectors θ1, . . . , θN , N = N(ε, d) such that

{|η| > r} ⊂
N⋃
i=1

{θi · η > (1 − ε)r}

Then

P{|η| > r} ≤ N(ε, d) P{θ1 · η > (1 − ε)r}. (21)

Together with the result of Lemma 2.2 it gives

P{|Sn| > r} ≤
{
c2 e

− r2
4c1n , 0 < r ≤ d1n

c3 e−
δr
4 , r > d1n

(22)

with constants c2, c3, d1 which do not depend on r and n.
Next we show that the density an(x) satisfies the estimate similar to (22). Indeed, denote by Fn(y)

the distribution function of Sn, then from (16) it follows

an+1(x) =
∫
Rd

a(x − y) dFn(y) ≤ c
∫
Rd

e−δ|x−y| dFn(y)

= c
∫

|y−x|≤ 1
2 |x|

e−δ|x−y| dFn(y)+ c
∫

|y−x|> 1
2 |x|

e−δ|x−y| dFn(y) ≤ cP
{|Sn| ≥ 1

2
|x|} + ce−

1
2 δ|x|.

Together with (22) this yields for all n ≥ 1:

an(x) ≤
⎧⎨
⎩ c̃1 max

{
e−l1 |x|2

n , e−
1
2 δ|x|

}
, |x| ≤ Bn

c̃2 e−
δ
8 |x|, |x| > Bn

(23)
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with constants c̃1, c̃2, l1,B which do not depend on |x| and n. Let us estimate now Gλ(x) from above
using (8) and (23):

Gλ(x) =

[ |x|
B

]
∑
n=1

an(x)
(1 + λ)n

+
∑

n>
[ |x|

B

]
an(x)
(1 + λ)n

≤ c̃2
λ
e−

δ
8 |x| + c̃1

∑
n≥

[ |x|
B

]
1

(1 + λ)n
≤ c̃3

λ

(
e−

δ
8 |x| + e−l3(λ)|x|

)
≤ k(λ)e−m(λ)|x|

with k(λ) = 2c̃3
λ
, and l3(λ) = 1

B ln (1+λ),m(λ) = min{ δ8 , l3(λ)}. Consequently, if λ is small enough,
thenm(λ) = l3(λ) = λ

B (1 + o(1)).
Theorem is proved.

Remark 2.1: If we assume that there exist two constants c1, c2, such that

c1e−δ|x| ≤ a(x) ≤ c2e−δ|x|, x ∈ R
d ,

then
k1(λ)e−δ|x| ≤ Gλ(x) ≤ k2(λ)e−m(λ)|x|

with positive constants k1(λ), k2(λ),m(λ).
In the one-dimensional case, the constants m(λ) in Theorem 2.2 can be found more precisely.

We assume that the function a(x)meets the following asymptotics at infinity:

lim|x|→∞
ln a(x)

|x| = −c (24)

with a constant c > 0. Then the Fourier transform ã(p) is an analytic function in the strip |Im p| < c.
Assume additionally some smoothness of the function a(x) guaranteeing that

ãκ(v) ≡ ã(iκ + v) =
∫

a(x)eκxe−ivxdx ∈ L1(R) for any 0 ≤ κ < c. (25)

In particular, (25) is valid if a(x) ∈ C2(R) and
(
a(x)eκx

)′ ,
(
a(x)eκx

)′′ ∈ L1(R) for any 0 ≤ κ < c.
We are interested in the asymptotics at infinity ofGλ(x) introduced in (8). Let us consider solutions

p̂ = p̂(λ) of the equation
ã(p̂) = 1 + λ. (26)

It is easy to see, that if there exist solutions of (26), then there exists at least a pure imaginary solution
p̂ = iq, and β > q for any other solutions p̂ = α + iβ of (26). Indeed, considering the properties of
a(x)we conclude that ã(iq) is a continuous positive increasing function of q, and ã(iq) > |ã(iq+α)|.
Theorem 2.3: Assume that a(x) satisfies conditions (2), (3), (24), (25), and let λ > 0 be a positive
constant. There exist constants C(λ),C−(λ),C+(λ) such that
(1) if there exists a pure imaginary solution p̂(λ) = iq(λ) of Equation (26) with q(λ) < c, then

Gλ(x) has the asymptotics

Gλ(x) = e−q(λ)|x|(C(λ)+ o(1)), |x| → ∞; (27)

(2) otherwise we have the following two-sided bound:

C−(λ)e−(c+ε)|x| ≤ Gλ(x) ≤ C+(λ)e−(c−ε)|x| (28)
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with any ε > 0.

Remark 2.2: Notice that if

lim
q→c−

∫
R

a(x)eqxdx = +∞, (29)

then the Equation (26) has a pure imaginary solution p̂(λ) = iq(λ) for any λ > 0. In this case the
asymptotics of Gλ(x) is given by (27).

If the limit (29) is finite, then depending on the value of λ both (27) and (28) can realize.

Proof: The proof relies on the analyticity of ã(p) in an appropriate strip. We use the representation
(18) for Gλ(x) in terms of ã(p). Let x > 0, and construct a rectangular closed contour containing a
segment of a real line [−K ,K] a parallel segment [K + iκ ,−K + iκ] and two segments I1(K), I2(K)
parallel to the imaginary axis: I1(K) = [K ,K + iκ], I2(K) = [−K + iκ ,−K], where 0 ≤ κ < c.
In the first case when q < c we can take κ : q < κ < c with no other solutions of (26) in the strip
0 < Im p < κ . Then we have:

∫ K

−K

ã(p)
λ+ 1 − ã(p)

ei(p,x)dp +
∫
I1(K)∪I2(K)

ã(p)
λ+ 1 − ã(p)

ei(p,x)dp

+
∫ −K

K

ã(iκ + u)
λ+ 1 − ã(iκ + u)

ei(iκ+u)xdu = 2π i resq
(

ã(p)
λ+ 1 − ã(p)

ei(p,x)
)
,

and

Gλ(x) = 1
2π

∫
R

ã(p)
λ+ 1 − ã(p)

ei(p,x)dp = 2π i resq
(

ã(p)
λ+ 1 − ã(p)

ei(p,x)
)

+
∫

R

ã(iκ + u)
λ+ 1 − ã(iκ + u)

e−κx+iuxdu − lim
K→∞

∫
I1(K)∪I2(K)

ã(p)
λ+ 1 − ã(p)

ei(p,x)dp. (30)

Let us prove first that the limit in (30) is equal to 0. Since the function a(x)eux ≤ a(x)eκx ≤ Be−δ|x|
with some B > 0 and δ > 0 uniformly in u ∈ [0, κ], then

∫
R

a(x)euxdx < ∞ for all u ∈ [0, κ].

Consequently,

ã(K + iu) =
∫

a(x)e−i(K+iu)xdx =
∫

a(x)euxe−iKxdx → 0 as K → ∞

uniformly in u ∈ [0, κ]. Analogously, the function �̃(p) = ã(p)
λ+1−ã(p) is uniformly bounded on

I1(K) ∪ I2(K) and |�̃(K + iu)| → 0 as K → ∞ uniformly over u ∈ [0, κ]. Since |ei(±K+iu,x)| =
e−ux ≤ 1, then we obtain that∫

I1(K)∪I2(K)
ã(p)

λ+ 1 − ã(p)
ei(p,x)dp → 0 as K → ∞.

Let us consider the upper segment [−K + iκ ,K + iκ] of the contour. As above we have that the
function ã(iκ + u) is uniformly bounded for all u ∈ [−K ,K], and since a(x)eκx ∈ L1(R) we get

ã(iκ + u) =
∫

a(x)eκxe−iuxdx → 0 as |u| → ∞.
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Thus �̃(iκ + u) is uniformly bounded for all u ∈ [−K ,K], and (25) implies that∫
R

|�̃(iκ + u)|du < ∞.

Consequently, we have for the integral in (30):∫
R

ã(iκ + u)
λ+ 1 − ã(iκ + u)

e−κx+iuxdu = O(e−κx), (31)

and the main contribution to the asymptotics for (18) comes from the residue at iq, and we get

Gλ(x) ∼ 2π i res
iq

(
ã(p)

λ+ 1 − ã(p)
ei(p,x)

)
= e−q(λ)x(C(λ)+ o(1)), x > 0.

In the second case of theTheorem the above sumover the closed contour is equal to 0, and themain
contribution to the asymptotics of Gλ(x) comes from the term (31) with any κ < c. Consequently, in
this case we can conclude the following upper bound (as x > 0):

Gλ(x) ≤ C+(λ)e−(c−ε)x for any ε > 0.

The lower estimate onGλ(x) immediately follows from representation (8) if we take in (8) the first
term:

Gλ(x) >
1
2
a(x) ≥ C−(λ)e−(c+ε)x with any ε > 0.

The case when x < 0 can be considered in the same way using a rectangular closed contour in the
negative imaginary semi-plane.

Remark 2.3: Since q(λ) is the solution of Equation (26), then q(λ) = O(
√
λ) for small values of

λ. Thus in the one-dimensional case the asymptotics (27) from Theorem 2.3 improves the general
bound (17).

3. Applications

In this section we present some applications of the results obtained in the previous section.

3.1. Asymptotic of the principal eigenfunctionψλ

We consider the operator

Lu(x) = L0u(x) + V(x)u(x), u(x) ∈ L2(Rd), (32)

with L0 defined by (1). For the potential V , we assume that

0 ≤ V ≤ 1, V(x) ∈ C0(R
d). (33)

The operator L is a bounded self-adjoint operator in L2(Rd). The equation for the principal eigen-
function (the ground state) ψλ of the operator L

(L0 + V − λ)ψλ = 0, λ > 0, (34)

can be rewritten in the following way

(1 + λ)ψλ(x)− Saψλ(x) = V(x)ψλ(x) =: F(x).
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where Sa stands for the convolution operator. After proper rearrangements this yields

ψλ(x) = (1 + λ)−1
(
F(x)+

∞∑
k=1

(Sk
aF)(x)

(1 + λ)k

)

= (1 + λ)−1
(
F(x)+

∫
Gλ(x − y)F(y)dy

)
, (35)

where Gλ(x) is defined by (6).
We remind below of the spectral properties of operator L and of the conditions ensuring the

existence of the principle eigenfunction ψλ(x). Notice that the operator L has these properties for
any kernel a(x) that meets conditions (2), independently on the behaviour of the tail of a(x). The
following statements have been proved in [4].

Theorem 3.1 [4]:

• The operator L has only discrete spectrum in the half-plane D = {λ ∈ C | Reλ > 0}.
• Assume that V(x) ≡ 1 on some open set in R

d. Then the ground state of L exists.
• For any δ > 0 there is ε > 0 such that for any potential V(x) that satisfies the inequality
V(x) ≥ 1 − ε on a ball of radius δ, the ground state of L exists.

• If V(x) ≥ β, β ∈ (0, 1), in a large enough ball (depending on β) then the ground state exists.
• Let d = 1, 2, and assume that

∫
Rd |x|2a(x)dx < ∞. Then for any V(x) �≡ 0 the ground state of L

exists.

We proceed with studying the asymptotic behaviour of the function ψλ(x) as |x| → ∞.
Theorem 3.2: Let V ∈ C0(R

d), and assume that V(x) �≡ 0. If

c−(1 + |x|)−(d+α) ≤ a(x) ≤ c+(1 + |x|)−(d+α), (36)

then the principal eigenfunction satisfies the estimates

c̃−(λ)(1 + |x|)−(d+α) ≤ ψλ(x) ≤ c̃+(λ)(1 + |x|)−(d+α) (37)

with 0 < c̃−(λ) ≤ c̃+(λ).
If bound (16) holds, then for ψλ(x) the following estimate holds:

ψλ(x) ≤ K(λ)e−m(λ)|x|. (38)

Let d = 1, and assume that condition (24) is fulfilled. Then

• if there exists a solution p̂(λ) = iq(λ) of Equation (26) with q(λ) < c, then

ψλ(x) = e−q(λ)|x|(C(λ)+ o(1)), |x| → ∞, (39)

• if the solution of (26) does not exists for q < c, then

C−(λ)e−(c+ε)|x| ≤ ψλ(x) ≤ C+(λ)e−(c−ε)|x| (40)

with any ε > 0.

Proof: Since function F(x) = V(x)ψλ(x) has a compact support and is positive, then relations (37),
(39) and (40) follow from representation (35) and estimates (10), (27)-(28) on the functionGλ(x).
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3.2. Application to the solution of the Cauchy problem

Let us consider the following Cauchy problem

∂u
∂t

= L0u(x, t)− mu(x, t)+ f (x), u(x, 0) = 0, (41)

where m > 0 is a constant, f (x) ≥ 0, f �≡ 0, f ∈ L1(Rd) ∩ Cb(R
d). Equation (41) describes the

evolution of the population density in a spacial contact model with mortality rate 1 + m and space
inhomogeneous source term f (x). In the absence of the source term, the density of the population
goes to zero as t → ∞ (see [9]). The question of interest is how a flow coming from the source into
the population may change the asymptotics of the density.

Since S(t) = et(L0−m) is a contraction semigroup both in L2(Rd) and Cb(R
d) spaces, the solution

u(x, t) of problem (41) converges to the corresponding stationary solution û(x):

‖u(x, t)− û(x)‖ → 0, t → ∞.

The convergence takes place both inL2(Rd) and inCb(R
d)norms. Concerning the stationary solution

û(x) let us observe that according to (35) it can be expressed as

û(x) = (m − L0)−1f (x) = 1
1 + m

(
f (x)+

∫
Gm(x − y)f (y)dy

)
. (42)

It turns out that the behaviour of u(x, t) and û(x) depends on both the tail of the convolution kernels
and of the source term.

As above we consider separately the cases of polynomial and exponential tails of a and f . Assume
first that the function a(x) satisfies inequalities (9) and that the function f (x) satisfies analogous
inequalities with some α1. Then, due to (10), û(x) admits the following bounds

c−(1 + |x|)−(d+α̃) ≤ û(x) ≤ c+(1 + |x|)−(d+α̃), (43)

with α̃ = min (α1,α). Moreover, u(x, t) at any time t > 0 admits the inequality

0 ≤ u(x, t) ≤ û(x). (44)

To prove this inequality we define v(x, t) = u(x, t)− û(x). Then v(x, 0) = −û(x) < 0. Since et(L0−m)

is the positivity improving semigroup, then v(x, t) < 0 for all t > 0. Therefore, u(x, t) < û(x) for all
t > 0. The lower bound in (44) follows from Duhamel’s formula.

In the case of exponentially decaying a and f both û and u decay exponentially. This can be justified
in the same way as above.

If f (x) ∈ C0(R
d), then as a direct consequence of (42), the stationary solution û(x) satisfies the

same tail estimates as the dispersal kernel.
In conclusion we provide some comments on possible interpretation of the above results.

• Consider the contact model in continuum (see [9]) describing an infection spreading process in
a society with the recovering intensity 1 + m. For m > 0 this intensity is sufficient to make the
density of infected population degenerate. Suppose that the source of the infection is localized,
for instance f (x) = λ1B(x), λ > 0, with a bounded (small) set B where infected individual
appear (from outside). Then we can estimate the density of infected population on a distance
from the infection source B which essentially depends on the infection spreading rate. Even
very small region Bmay produce a drastic effect!

• The same process we have in the information spreading in the society. Even if you will have
very strong real information delivering rate (m >> 1) the influence of a constant mass-media
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flow of wrong information may be determining for the opinion formation, especially due to
long range spreading possibilities of mass-media.

• Free Kawasaki dynamics of continuous particle system (see [10]) can be used for modelling a
pollution spreading process. Equation (41) with f = 0 and some u0 describes the evolution of
the pollution density in the presence of a self cleaning ability of the environment with intensity
m > 0. In the general case the function f ≥ 0 represents the density of the pollution source.
The solution u(x, t) is the density of the pollution after time t, and û(x) is the large time limit
of this density. The estimates (43) reflect the fact that even for a source localized in a small area,
for instance for f = λ1B(x) with a small ball B, the strong pollution spreading can be observed
at long distances from the source.
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