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The paper deals with a family of jump Markov process defined in a
medium with a periodic or locally periodic microstructure. We assume that
the generator of the process is a zero order convolution type operator with
rapidly oscillating locally periodic coefficient and, under natural ellipticity
and localization conditions, show that the family satisfies the large deviation
principle in the path space equipped with Skorokhod topology. The corre-
sponding rate function is defined in terms of a family of auxiliary periodic
spectral problems. It is shown that the corresponding Lagrangian is a convex
function of velocity that has a superlinear growth at infinity. However, neither
the Lagrangian nor the corresponding Hamiltonian need not be strictly con-
vex, we only claim their strict convexity in some neighbourhood of infinity.
It then depends on the profile of the generator kernel whether the Lagrangian
is strictly convex everywhere or not.

1. Introduction. The goal of this work is to show that for a family of jump Markov
process defined in a d-dimensional medium with a (locally) periodic microstructure the large
deviation principle holds. We assume that the generators of these processes are of the form

Aεu(x) = 1

εd+1

∫
Rd

a

(
x − y

ε

)
�ε(x, y)

(
u(y) − u(x)

)
dy,(1)

where ε is a small positive parameter that characterizes the microscopic length scale, a(·) is
a nonnegative integrable convolution kernel that decays super exponentially at infinity, and a
positive bounded function �ε represents the local characteristics of the medium. We consider
both the case of a periodic function �ε , and the case of a locally periodic one. In the former
case, �ε(x, y) = �(x

ε
,

y
ε
), where �(ξ,η) is a periodic function in R

2d . In the latter case,
�ε(x, y) = �(x,y, x

ε
,

y
ε
), where �(x,y, ξ, η) is periodic in ξ and η.

Previously, the large deviation principle for trajectories of a diffusion process with a small
diffusion coefficient has been justified in [10, 11]. It was shown that the large deviation prin-
ciple holds in the space of continuous functions and that the corresponding rate function
is defined as an integral along the curve of an appropriate Lagrangian. The Lagrangian is
explicitly given in terms of the coefficients of the process generator.

Large deviation problem for a diffusion in environments with a periodic microstructure
was studied for the first time in [1], where a pure diffusion without drift has been considered.
The case of a small diffusion with a drift in locally periodic media was studied in [9]. Here
the Lagrangian is defined in terms of an auxiliary PDE problem on the torus.

Large deviation problems for jump processes with independent increments have been in-
vestigated in [2, 16, 17, 19] and other works. In [2] the author considered the one-dimensional
case. The LDP was obtained in the Skorokhod space with a weak topology under the Cramer
condition on the convolution kernel. These results were improved in [16, 17], where the LDP
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was proved in the Skorokhod space with strong topology and the topology of uniform con-
vergence. In the multidimensional case similar results were obtained in [19].

A number of interesting results on large deviations for Markov processes that combine a
diffusive behaviour and many small jumps can be found in [20].

The monograph [6] focuses on LDP for rather general classes of Markov processes in met-
ric spaces. The approaches developed in this book rely on exponential tightness, convergence
of nonlinear contraction semigroups and theory of viscosity solutions of nonlinear equations.
In particular, this allows to consider the case of processes whose rate function might be finite
for sample paths with discontinuities.

A rather general approach to obtaining the LDP for Markov processes with a quasi-
compact Markov generator has been developed in [13]. This approach was developed further
in the works [7, 8], where the higher order large deviation asymptotics were obtained. Notice
however that, at least for a certain class of kernels, this approach does not apply to the pro-
cesses studied in the present paper. In particular, the operators obtained by the exponential
transformation need not be quasi-compact and might have only a continuous spectrum.

To our best knowledge, large deviation problems for jump Markov processes with convolu-
tion type generators in periodic environments have not been studied in the existing literature.

In the present paper we consider a family of jump Makov processes ξε(t), 0 ≤ t ≤ T ,
with the generator defined in (1). Under the assumptions that the convolution kernel a(·)
is integrable and decays super exponentially at infinity, and that the function �ε is strictly
positive, bounded and has a periodic or locally periodic microstructure we prove that the
family {ξε(t)} satisfies the large deviation principle in the Skorokhod space D([0, T ];Rd)

equipped with the strong topology. The corresponding rate function is good, it is finite only
for absolutely continuous functions and is given by

I
(
γ (·)) =

∫ T

0
L
(
γ (t), γ̇ (t)

)
dt,

where the Lagrangian L(x, ζ ) is convex and has a super linear growth as a function of ζ

while in x it is continuous. This Lagrangian is constructed in terms of a family of auxiliary
periodic spectral problems on the torus for operators which are derived from the generator of
the process by the exponential transformation.

Our strategy is natural for a family of Markov process. We approximate trajectories of the
process by piece-wise linear functions and, for each segment of this function, apply finite-
dimensional techniques. This leads to the said family of spectral problems which is of special
interest.

Let us recall that in the case of diffusion processes with a small diffusion in an environment
with a periodic microstructure the mentioned exponential transformation leads to a family of
elliptic operators with a compact resolvent defined on the torus. The Krein–Rutman theorem
applies to these operators, and the upper border of their spectrum coincides with the principal
eigenvalue. Then, using for example, the arguments of the homogenization theory, one can
show that this eigenvalue is a strictly convex function of the parameter. This implies that
the corresponding Lagrangian is strictly convex and the Gärtner–Ellis theorem applies. In
contrast with the case of diffusion processes for the jump Markov processes considered in the
present paper the exponential transformation leads to a family of bounded operators which,
in a typical situation, have a nontrivial continuous spectrum. The essential spectrum of these
operators is real and does not depend on the transformation parameter. The Krein–Rutman
theorem in this case does not apply, at least directly, and we need more delicate techniques
to study the spectral properties of this family. It turns out that the discrete spectrum of these
operators need not be real and might be empty. However, the eigenvalue with the largest
real part, if it exists, is real and simple. It is shown that for large values of the parameter of
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exponential transformation the discrete spectrum is not empty and that the upper border of
the spectrum coincides with the principal eigenvalue. Using the arguments of homogenization
theory for jump Markov processes (see [18]) one can prove that this eigenvalue is a smooth
strictly convex function of the parameter. This implies that in the vicinity of infinity both the
Hamiltonian and the Lagrangian are strictly convex and smooth functions.

However, in the complement to the mentioned neighbourhood of infinity there might be a
region where the discrete spectrum is empty. In this region the upper bound of the spectrum
coincides with the border of the continuous spectrum. Then the Hamiltonian is equal to a
constant, while at the border of this region it need not be differentiable so that the graph of
the corresponding Lagrangian might belong to a conical surface in a neighbourhood of the
origin. This is one of the interesting features of the studied problem. The structure of the
Lagrangian is studied in detail in Sections 4.3–4.5.

A possible behaviour of the Hamiltonian and Lagrangian is illustrated with two examples.
The first one shows that the Hamiltonian indeed might have a flat area with a nonempty
interior.

In the second example we construct an operator for which the Hamiltonian is not C1

function, and the corresponding Lagrangian is not strictly convex.
Due to the lack of strict convexity the Gärtner–Ellis theorem does not give a complete pic-

ture for finite-dimensional distributions. However, the results on the large deviations asymp-
totitcs remain valid. Our arguments rely on the particular structure of the Hamiltonian and
the Lagrangian and on the Markov property of the process.

The paper is organized as follows. In Section 2 we introduce the studied family of jump
Markov processes, provide all our assumptions and formulate the main result.

In Section 3 we recall some of the existing large deviation results for jump process with
independent increments.

The case of purely periodic environment is considered in Section 4. First we introduce a
family of auxiliary operators with periodic coefficients, consider the corresponding spectral
problems on the torus and study the structure of their spectrum. Then we define the Hamil-
tonian and the Lagrangian that are required for formulating the large deviation results, and
investigate their properties. In the last part of this section we formulate and prove the large
deviation theorems, first for the distribution of the process in R

d at a fixed time, and then in
the path space.

Section 5 deals with the media that do not depend on fast variables. Here we combine
the results obtained for the processes with independent increments and perturbation theory
arguments. Although this idea is very natural and not new, its realization requires a number
of quite delicate technical statements.

Finally, in Section 6 we consider the generic case of locally periodic media.

2. Problem setup and main result. We consider a family of continuous time jump
Markov processes ξε

x0
(t) in environments with locally periodic microstructure that depend

on a small parameter ε > 0; the subindex x0 indicates the starting point: ξε
x0

(0) = x0. The
generator of this process has the form

Aεu(x) = 1

εd+1

∫
Rd

a

(
x − y

ε

)
�

(
x, y,

x

ε
,
y

ε

)(
u(y) − u(x)

)
dy,(2)

u ∈ L2(Rd). We call x, y slow variables and x
ε
,

y
ε

fast variables.
Our goal is to show that, under proper ellipticity and exponential moment conditions,

the large deviation principle holds for this family of Markov processes. In this section we
introduce these conditions.
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For the function a(z) we assume that

a(z) ∈ L1(
R

d)∩ L∞(
R

d), a(z) ≥ 0, ‖a‖L1(Rd ) =
∫
Rd

a(z) dz = 1,(3)

and the convolution kernel a(z) satisfies the following upper bound with some p > 1, k >

0,C> 0:

0 ≤ a(z) ≤ Ce−k|z|p .(4)

The latter condition implies in particular that all exponential moments are bounded.
We assume furthermore that for all α from the unit sphere Sd−1 we have∫

	α

a(z) dz > 0 with 	α = {
z ∈R

d, z · α > 0
}
.(5)

Observe, that the integral
∫
	α

a(z) dz is a continuous function of α ∈ Sd−1 and, therefore,

min
α∈Sd−1

∫
	α

a(z) dz ≥ C0(6)

for some C0 > 0.
The function �(x,y, ξ, η) describes the locally periodic environment. We assume that the

function � is periodic in ξ and η,

�
(
x, y, ξ + j ′, η + j ′′) = �(x,y, ξ, η)

for all j ′, j ′′ ∈ Z
d and for all x, y, ξ, η ∈ R

d,
(7)

and that

�(x,y, ξ, η)

is uniformly continuous in x and yand measurable in (ξ, η) for each x and y.
(8)

We assume furthermore that � is bounded from above and from below:

0 < �− ≤ �(x,y, ξ, η) ≤ �+ < ∞.(9)

At the end of this section we formulate our main result in a vague form, for the detailed
version of this theorem see Sections 4–6.

THEOREM 2.1. Under assumptions (3)–(5) and (7)–(9) for any T > 0 the family of pro-
cesses ξε

x0
(·) satisfies the large deviation principle in the Skorokhod space D[0, T ] with the

rate function

I
(
γ (·)) =

⎧⎪⎨⎪⎩
∫ T

0
L
(
γ (t), γ̇ (t)

)
dt if γ is absolutely continuous, γ (0) = x0,

+∞ otherwise;
where the Lagrangian L(x, ζ ) possesses the following properties:

• L(x, ζ ) is a continuous function of x and ζ ;
• for each x the function L(x, ·) is convex;
• |ζ |−1L(x, ζ ) tends to ∞ as |ζ | → ∞ uniformly in x;
• there exists R0 > 0 such that in the set |ζ | ≥ R0 the function L(x, ζ ) is strictly convex in ζ .

Notice that the properties of the Lagrangian listed in the theorem ensure that the rate
function I (·) is good that is, for any T > 0 and any c ≥ 0 the sub-level set {γ ∈ D[0, T ] :
I (γ ) ≤ c} is compact.



LARGE DEVIATIONS FOR MARKOV JUMP PROCESSES 4615

REMARK. The effective drift of the jump Markov process governed by the nonlocal op-
erator Aε that was defined in (2) is of order one, while the asymptotic diffusion of this process
is small, of order ε. Hence, this process can be interpreted as a small random perturbation of
a dynamical system.

REMARK. The key results of this work are those obtained for a periodic medium. Here
we introduce the corresponding Hamiltonian and Lagrangian and study their properties. In
particular we show that, in contrast with a homogeneous medium, both the Hamiltonian and
the Lagrangian need not be smooth, neither strictly convex. The locally periodic case is then
reduced to the periodic one with the help of perturbation theory arguments.

3. Processes with independent increments. We start with the case of constant �:
�ε(x, y) ≡ �. In this case ξε

x (·) is a continuous time process with independent increments,
or equivalently a compound Poisson process. The results on large deviations under condition
(4) are well known; see for example, [2]. In [15–17] the authors considered a wider class of
the compound Poisson processes that have exponential moments only in a neighborhood of
zero. Let us shortly repeat the construction of the rate function and the Lagrangian for this
process.

In this section the dependence of � is indicated explicitly, ξε
x,�(t) stands for a continuous

time process with independent increments whose generator is defined by

Aε
�u(x) = �

εd+1

∫
Rd

a

(
x − y

ε

)(
u(y) − u(x)

)
dy, u ∈ L2(

R
d).(10)

To apply the Gärtner–Ellis theorem we consider the family of probability measures μ
ε,x
�,t in

R
d defined as the law of the random variables ξε

x,�(t). In what follows we assume with-
out loss of generality that x = 0 and drop the index x. We also consider the process ξ�(t)

generated by

A�u(x) = �

∫
Rd

a(x − y)
(
u(y) − u(x)

)
dy, u ∈ L2(

R
d).(11)

It is worth noticing that

ξε
�(t) = εξ�

(
t

ε

)
.

We have

Eeλξ�(T ) = eT H�(λ)

with

H�(λ) = �

(∫
a(z)e−λz dz − 1

)
= �H(λ).(12)

Representation (10) for the generator Aε
� yields

Ee
λ
ε
ξε
�(t) = e

t
ε
H�(λ).(13)

Thus, we get

lim
ε→0

ε lnEe
λ
ε
ξε
�(t) = tH�(λ) = t�H(λ).(14)

Relation (12) readily implies that the function H�(λ) is a smooth, strictly convex and of
super-linear growth at infinity. Denote by L(ζ ) the Legendre transform of H(λ):

L(ζ ) = sup
λ

{
λζ − H(λ)

}
.(15)
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Then the function t�L(
ζ
t�

) is the Legendre transform of tH�(λ):

sup
λ

{
λζ − tH�(λ)

} = t� sup
λ

{
λ

ζ

t�
− H(λ)

}
= t�L

(
ζ

t�

)
.

The function L(ζ ) is nonnegative, strictly convex and finite for any ζ ∈ R
d . Consequently,

by the Gärtner–Ellis theorem LDP holds in this case:
(1) for every closed set C ⊂R

d

lim sup
ε→0

ε lnP
(
ξε
�(t) ∈ C

) ≤ − inf
ζ∈C

[
t�L

(
ζ

t�

)]
;(16)

(2) for every open set O ⊂ R
d

lim inf
ε→0

ε lnP
(
ξε
�(t) ∈ O

) ≥ − inf
ζ∈O

[
t�L

(
ζ

t�

)]
.(17)

REMARK. The case when a(z) is a symmetric kernel, that is, a(−z) = a(z), and �(·) ≡
1 has been studied in [12]. In particular, the large deviation result for the density v(x, t)

of the transition probability Pr(ξ(t) = x|ξ(0) = 0) has been proved with the rate function
�(ζ), x = ζ t (1 + o(1)), t → ∞; see Theorems 3.4 and 3.8, [12]. The rate function �(ζ)

possesses the following properties:
�(0) = 0, �(ζ) > 0 for ζ �= 0, � is a convex function, and

�(ζ) = 1

2

(
σ−1ζ, ζ

)(
1 + o(1)

)
as |ζ | → 0,(18)

where σ is the covariance matrix, σij = ∫
Rd xixja(x) dx.

If the function a(x) satisfies a two-sided estimate

C2e
−b|x|p ≤ a(x) ≤ C1e

−b|x|p , p > 1,

then the following asymptotics for the rate function �(ζ) holds:

�(ζ) = p

p − 1

(
b(p − 1)

)1/p|ζ |(ln |ζ |)p−1
p
(
1 + o(1)

)
as |ζ | → ∞.(19)

Relation (19) has an important consequence that will be used in the following sections.
Namely, under condition (4), there exists a constant c0 = c0(C,p, d) such that for all suffi-
ciently large ζ the inequality

�(ζ) ≥ c0|ζ |(ln |ζ |)p−1
p(20)

holds true.
Finally, we turn to the sample path large deviations results. Denote by Pε the distribution

of paths of the process ξε
�(t),0 ≤ t ≤ T , in the space D([0, T ];Rd). This space is equipped

with the metric

dist(f, g) = inf
π(·) max

{
sup

0≤s<t≤T

∣∣∣∣log
(

π(t) − π(s)

t − s

)∣∣∣∣, sup
0≤t≤T

∣∣f (t) − g
(
π(t)

)∣∣},

where the infimum is taken over all continuous strictly monotone functions π such that
π(0) = 0 and π(T ) = T . In what follows this set of functions is denoted by K, and
�(π) = sup0≤s<t≤T | log(π(t)−π(s)

t−s
)|.
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In the case of the studied process with independent increments the large deviation principle
(LDP) is valid for the family of probability measures {Pε} in the Skorokhod space equipped
with topology generated by the above introduced metric, the rate function being given by

I�

(
γ (·)) =

⎧⎪⎨⎪⎩
∫ T

0
�L

(
1

�
γ̇ (t)

)
dt if γ (·)is absolutely continuous,

+∞ otherwise,

with L(·) defined in (15). This means that

lim sup
ε→0

ε ln Pε(C) ≤ − inf
γ∈C

[
I�(γ )

]
(21)

for every closed set C in D([0, T ];Rd), and

lim inf
ε→0

ε ln Pε(O) ≥ − inf
γ∈O

[
I�(γ )

]
(22)

for every open set O in D([0, T ];Rd).
As a consequence, for a small neighbourhood U of a curve γ we have

ε ln Pε(U) ∼ −I�(γ ) as ε → 0.(23)

In the one-dimensional case this result was proved, under slightly weaker assumptions, by A.
Mogulskii in [16, 17], and then in the multidimensional case by A. Pukhalskii in [19].

4. Environment with periodic microstructure �(x
ε , y

ε ). In this section we consider
the process with generator given by (2) with � = �(x

ε
,

y
ε
), where �(η, ζ ) is a measurable

periodic function satisfying the lower and upper bounds in (9).

4.1. Skewed generator. Consider an operator

A0u(x) =
∫
Rd

a(x − y)�(x, y)u(y) dy −
∫
Rd

a(x − y)�(x, y) dyu(x),(24)

where �(x,y) is a periodic function satisfying bound (9), and u ∈ L2(Rd). Denote by S(t) =
etA0 the Markov semigroup with generator A0, and let ξx(t) be the corresponding continuous
time jump Markov process starting at x. Then(

S(t)f
)
(x) = etA0f (x) = Ef

(
ξx(t)

)
.(25)

LEMMA 4.1. For any λ ∈R
d and x ∈ R

d

Eeλξx(t) = eλxetAλ1,(26)

where Aλ is the operator acting in the space of periodic functions L2(Td) and defined by

Aλv(x) =
∫
Rd

a(x − y)�(x, y)eλ(y−x)v(y) dy −
∫
Rd

a(x − y)�(x, y) dyv(x).(27)

PROOF. Substitute f (z) = eλz in (25) and denote u(x, t) = Eeλξx(t). Under our standing
assumptions on a(·) the function u(·) is well defined. Indeed, denoting

p̃t
x(y) = e−t�−

δx(y) + e−t�− ∞∑
n=1

(�+)ntn

n! a�n(x − y)

with �− and �+ defined in (9) we have

pt
x(y) ≤ p̃t

x(y),
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where pt
x(·) = etA0δx(·) is the distribution of the process ξx(t). Considering (20), in the same

way as in [21], one can show that p̃t
x(y) does not exceed e−c

|x−y|
t

(ln |x−y|
t

)
p−1
p

for some c > 0
and for all y such that |x −y| ≥ (1∨ t). Consequently, the integral

∫
Rd eλypt

x(y) dy converges
for any t > 0 and λ ∈ R

d , and the function

u(x, t) =
∫
Rd

eλypt
x(y) dy,(28)

is well defined. Moreover, due to periodicity of �(x,y),

v(x, t) = e−λxu(x, t) =
∫
Rd

eλ(y−x)pt
x(y) dy = B−1

λ etA0Bλ1(29)

is a periodic function of x, that is, v(·, t) ∈ L2(Td) for any t > 0; here Bλg(x) = eλxg(x). In
fact, under our assumptions v(·, t) ∈ L∞(Td). Since Aλ = B−1

λ A0Bλ, where Aλ is defined
by (27), we have B−1

λ etA0Bλ = etAλ . This yields (26). �

Consequently, for any t > 0, we have

lim
ε→0

ε lnEe
λ
ε
ξε

0 (t) = lim
ε→0

ε ln
([

e
tAε

λ/ε1
]
(0)

) = lim
s→+∞

1

s
ln
([

etsAλ1
]
(0)

)
,(30)

where Aε
λ/ε = B−1

λ/εA
εBλ/ε . It is straightforward to check that for any λ ∈ R

d the skewed

operator Aλ is bounded in L2(Td). Denote by σ(Aλ) the spectrum of this operator in L2(Td),
and by s(Aλ) the maximum of the real parts of the elements of σ(Aλ):

s(Aλ) = max
{
Re(θ) : θ ∈ σ(Aλ)

}
.(31)

In the next subsection we will show that the limit on the right-hand side of (30) exists and is
equal to s(Aλ) multiplied by t . Our goal is to study the properties of s(Aλ) as a function of
λ.

4.2. The spectral properties of the operator Aλ. The operator Aλ defined by (27) has a
continuous spectrum

σcont = [−gmax,−gmin] := Im
{−G(x)

}
, x ∈ T

d,

if the function

G(x) =
∫
Rd

a(x − y)�(x, y) dy

is not a constant. Letting

gmax = max
x∈Td

G(x), gmin = min
x∈Td

G(x),

we have 0 < gmin ≤ gmax < ∞. The continuous spectrum, if it exists, does not depend on λ.
In addition, depending on the value of λ, Aλ might have a discrete spectrum σdisc(λ).

Adding to both sides of the spectral problem Aλv = θv the constant gmax we obtain an
equivalent spectral problem that reads (Aλ +gmax)v = (θ +gmax)v. We denote the new spec-
tral parameter (θ + gmax) by ϑ . The operator on the left-hand side of the latter spectral prob-
lem is positive, its essential spectrum coincides with its continuous spectrum and is equal to
the real interval [0, gmax − gmin]. According to [4], Theorem 1, there are only two options.
Namely, either for any ϑ ∈ σ(Aλ + gmax) we have |ϑ | ≤ gmax − gmin, or there exists a real
positive eigenvalue ϑ(λ) of Aλ +gmax such that ϑ(λ) > |ϑ̃ | for any ϑ̃ ∈ σ(Aλ +gmax)\ϑ(λ).
In particular, in the latter case, ϑ(λ) > gmax − gmin. Furthermore, there is a positive eigen-
function uλ that corresponds to ϑ(λ).
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As a consequence, either the element of σ(Aλ) with the largest real part coincides with
−gmin, or it is equal to ϑ(λ) − gmax. The latter case takes place if and only if θ(λ) := ϑ(λ) −
gmax > −gmin, in this case the real part of θ̃ is less than θ(λ) for any θ̃ ∈ σ(Aλ)\θ(λ). The set
of λ ∈ R

d such that θ(λ) > −gmin is denoted by �, and θ(λ) is called the principal eigenvalue
of Aλ.

REMARK. Notice that θ(0) = 0, that is, θ(0) > −gmin. Furthermore, θ(λ) → ∞ as
|λ| → ∞. Thus, 0 ∈ �, and R

d \ � is a bounded set.

Assume that λ ∈ �. The spectral problem for Aλ reads∫
Rd

a(x − y)�(x, y)eλ(y−x)uλ(y) dy −
∫
Rd

a(x − y)�(x, y) dyuλ(x)

= θ(λ)uλ(x),

(32)

where uλ(x) is the principal eigenfunction. Denote by u�
λ(x) the principal eigenfunction of

the adjoint operator A�
λ. For θ(λ) > −gmin, the spectral problem (32) is equivalent to the

following problem:

Dλu(x) = (
G(x) + θ(λ)

)−1
∫
Rd

a(x − y)�(x, y)eλ(y−x)uλ(y) dy = uλ(x)

for the compact positive operator Dλ in L2(Td). Since θ(λ) is an eigenvalue for Aλ, 1 is an
eigenvalue for Dλ.

For an arbitrary N ∈ Z
+ denote by βN(x, y) the kernel of the operator DN

λ :

DN
λ v(x) =

∫
Td

βN(x, y)v(y) dy.(33)

Then

β1(x, y) = (
G(x) + θ(λ)

)−1 ∑
j∈Zd

a(x − y + j)�(x, y)eλ(y−x−j),

and

βN+1(x, y) =
∫
Td

β1(x, z)βN(z, y) dz.

We claim that there exist N ∈ Z
+ and constants β− > 0 and β+ such that

β− ≤ βN(x, y) ≤ β+ for all x, y ∈ T
d .(34)

The upper bound is evident, it is a direct consequence of our assumptions and holds for
any N > 0; of course, β+ might depend on N . The lower bound is less evident. The function∑

j∈Zd a(x−y+j) might be equal to zero for all x from a set of positive measure on the torus.
Thus, the lower bound in (33) need not hold for N = 1. However, as was proved for instance,
in [18], Lemma 4.1, there exists N ∈ Z

+ such that the N th convolution of a denoted by a∗N

satisfies the estimate a∗N ≥ β− for some β− > 0. Since under our assumptions βN(x, y) ≥
cNa∗N(x − y) with cN > 0, the desired lower bound follows.

Recalling that uλ is positive, by the Krein–Rutman theorem (see, e.g., [14], Section 6,
Proposition β‘), 1 is the principal eigenvalue of Dλ, and this eigenvalue is simple. Then θ(λ)

is also simple.
From (34) it readily follows that both for uλ(x) and for u�

λ(x) the following bounds hold:

c− ≤ uλ(x) ≤ c+ and c− ≤ u�
λ(x) ≤ c+ for all x ∈ T

d(35)
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for some constants c− > 0 and c+. In what follows we assume the following normalization
conditions to hold: ∫

Td
uλ(x) dx = 1,

∫
Td

uλ(x)u�
λ(x) dx = 1.(36)

We now turn to relation (30).

LEMMA 4.2. The limit on the right-hand side of (30) exists and is equal to ts(Aλ).

PROOF. According to [5], Corollary IV.2.4, the following relation holds:

lim
s→+∞

1

s
ln
∥∥etsAλ

∥∥
L(L2(Td ),L2(Td )) = ts(Aλ).

This readily yields an upper bound

lim sup
s→+∞

1

s
ln
([

etsAλ1
]
(0)

) ≤ ts(Aλ).

To obtain the lower bound we consider separately the cases λ ∈ � and λ ∈ R
d \�. If λ ∈ �,

then s(Aλ) = θ(λ), and the inequality

lim inf
s→+∞

1

s
ln
([

etsAλ1
]
(0)

) ≥ ts(Aλ)

follows from the fact that uλ is positive and that etsAλ is a positive operator.
If λ ∈ R

d \ � then s(Aλ) = −gmin. Consider an auxiliary semigroup with the generator
(Gu)(x) = −G(x)u(x). It is straightforward to check that

lim
s→+∞

1

s
ln
([

etsG1
]
(0)

) = −tgmin.

Since the operator Aλ − G = (Aλ + gmax) − (G + gmax) is positive, the operator estAλ − estG

is also positive, and we conclude that

lim inf
s→+∞

1

s
ln
([

etsAλ1
]
(0)

) ≥ −tgmin.

This completes the proof. �

Our next statement describes the behaviour of θ(λ) at infinity.

LEMMA 4.3. There exists R0 > 0 such that s(Aλ) > −gmin for all λ with |λ| ≥ R0.
Moreover, there exist constants ce > 0, ca > 0 and Cs such that

θ(λ) ≥ cae
ce|λ| − Cs

for all λ ∈ {λ ∈ R
d : |λ| ≥ R0}.

PROOF. It follows from (3) and (6) that for any α ∈ Sd−1 there exist a ball Qα ⊂ 	α

such that

cα
1 := dist

(
Qα,∂	α

)
> 0 and cα

2 :=
∫
Qα

a(−z) dz > 0.

Then, for λ = rα with r > 0 we have∫
Rd

a(x − y)eλ·(y−x)�(x, y) dy ≥ �−cα
2 ecα

1 r = �−cα
2 ecα

1 |λ|.
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By the continuity argument,∫
Rd

a(x − y)eλ·(y−x)�(x, y) dy ≥ �−cα
2 e

1
2 cα

1 |λ|

if λ
|λ| belongs to a sufficiently small neighbourhood of α. Due to the compactness of Sd−1

this implies that for some ca > 0 and ce > 0 the inequality∫
Rd

a(x − y)eλ·(y−x)�(x, y) dy ≥ cae
ce|λ|

holds for all λ ∈ R
d . Therefore, [(Aλ + gmax)1](x) ≥ cae

ce|λ|. Since the operator Aλ + gmax

is positive, this yields [(Aλ + gmax)
n1](x) ≥ cn

aence|λ| for any n ∈ Z
+, and we conclude that

ϑ(λ) ≥ cae
ce|λ|, and θ(λ) ≥ cae

ce|λ| − gmax. �

4.3. Strict convexity of the principal eigenvalue θ(λ) of the operator Aλ.

THEOREM 4.4. The function θ(λ) is strictly convex on �, that is, ∂2θ
∂λi ∂λj

(λ) is a positive
definite matrix for all λ ∈ �.

PROOF. We are going to show that the matrix ∇∇θ(λ0) coincides with an effective dif-
fusion matrix for a family of convolution type operators with periodic coefficients.

Let us start with the case λ0 = 0. Then θ(0) = 0, and the principal eigenfunction u0(x) ≡ 1.
Differentiating equality (32) in λi , i = 1, . . . , d , yields∫

Rd
a(x − y)�(x, y)(yi − xi)e

λ(y−x)uλ(y) dy

+
∫
Rd

a(x − y)�(x, y)eλ(y−x)∂λi
uλ(y) dy

−
∫
Rd

a(x − y)�(x, y) dy∂λi
uλ(x) = (

∂λi
θ(λ)

)
uλ(x) + θ(λ)

(
∂λi

uλ(x)
)
.

(37)

Relation (37) can be rearranged as follows:∫
Rd

a(x − y)�(x, y)eλ(y−x)∂λi
uλ(y) dy

−
∫
Rd

a(x − y)�(x, y) dy∂λi
uλ(x) − θ(λ)∂λi

uλ(x)

= −
∫
Rd

a(x − y)�(x, y)(yi − xi)e
λ(y−x)uλ(y) dy + (

∂λi
θ(λ)

)
uλ(x).

(38)

The solvability condition for (38) reads∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)e
λ(y−x)uλ(y)u�

λ(x) dy dx

= ∂λi
θ(λ)

∫
Td

uλ(x)u�
λ(x) dx = ∂λi

θ(λ).

(39)
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Differentiating (37) one more time in λj yields∫
Rd

a(x − y)�(x, y)(yi − xi)(yj − xj )e
λ(y−x)uλ(y) dy

+
∫
Rd

a(x − y)�(x, y)(yi − xi)e
λ(y−x)∂λj

uλ(y) dy

+
∫
Rd

a(x − y)�(x, y)(yj − xj )e
λ(y−x)∂λi

uλ(y) dy

+
∫
Rd

a(x − y)�(x, y)eλ(y−x)∂λi
∂λj

uλ(y) dy

−
∫
Rd

a(x − y)�(x, y) dy∂λi
∂λj

uλ(x) = ∂λi
∂λj

θ(λ)uλ(x)

+ ∂λi
θ(λ)∂λj

uλ(x) + ∂λj
θ(λ)∂λi

uλ(x) + θ(λ)∂λi
∂λj

uλ(x).

(40)

After rearranging (40) in the same way as (38) the solvability condition for (40) reads∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)(yj − xj )e
λ(y−x)uλ(y)u�

λ(x) dy dx

+
∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)e
λ(y−x)∂λj

uλ(y)u�
λ(x) dy dx

+
∫
Td

∫
Rd

a(x − y)�(x, y)(yj − xj )e
λ(y−x)∂λi

uλ(y)u�
λ(x) dy dx

− ∂λi
θ(λ)

∫
Td

∂λj
uλ(x)u�

λ(x) dx − ∂λj
θ(λ)

∫
Td

∂λi
uλ(x)u�

λ(x) dx

= ∂λi
∂λj

θ(λ).

(41)

At λ = 0 relation (41) takes the form

∂λi
∂λj

θ(0) =
∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)(yj − xj )u
�
0(x) dy dx

+
∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)∂λj
u0(y)u�

0(x) dy dx

+
∫
Td

∫
Rd

a(x − y)�(x, y)(yj − xj )∂λi
u0(y)u�

0(x) dy dx

− ∂λi
θ(0)

∫
Td

∂λj
u0(x)u�

0(x) dx − ∂λj
θ(0)

∫
Td

∂λi
u0(x)u�

0(x) dx.

(42)

LEMMA 4.5. The matrix ∇∇θ(0) is positive definite.

PROOF. Notice that the matrix defined on the right-hand side of (42) coincides with the
symmetric part of the effective diffusion matrix

�ij = 1

2

∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)(yj − xj )u
�
0(x) dy dx

(43)
−
∫
Td

∫
Rd

a(x − y)�(x, y)(xi − yi)κj (y)u�
0(x) dy dx + bi

∫
Td

κj (x)u�
0(x) dx,

that was constructed in [18] for the convolution type operator A0.
Indeed, at λ = 0 relation (39) takes the form

∂λi
θ(0) =

∫
Td

∫
Rd

a(x − y)�(x, y)(yi − xi)u
�
0(x) dy dx,(44)
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where u�
0 is the eigenfunction of the adjoint operator A�

0 corresponding to the principal eigen-
value θ(0) = 0. Observe that the expression on the right-hand side of (44) taken with the neg-
ative sign, coincides with that for the ith coordinate of the effective drift bi of the operator
A0; see [18]. That is,

∂λi
θ(0) = −bi.(45)

Letting λ = 0 in (38), substituting (45) into (38), considering the relation u0(x) ≡ 1 and
recalling the equation for the corrector κ (see [18]), we conclude that

∂λi
uλ(x)|λ=0 = κi (x).(46)

Finally, by (45) and (46) we obtain ∂λi
∂λj

θ(0) = �ij +�ji . Then positive definiteness of the
matrix ∇∇θ(0) follows from [18], Proposition 6.1. �

We turn to the case λ = λ0 + r with λ0 �= 0, λ0 ∈ � and r belonging to a small neighbour-
hood of the origin. Then

Aλu(x) =
∫
Rd

a(x − y)�(x, y)eλ0(y−x)er(y−x)u(y) dy

−
∫
Rd

a(x − y)�(x, y) dyu(x).

(47)

Let us consider the operator Ãλ = R−1
λ0

AλRλ0 , where Rλ0f (x) = uθ(λ0)(x)f (x) is the opera-
tor of multiplication by the principal eigenfunction uθ(λ0) of the operator Aλ0 .

The operators Aλ and Ãλ are similar, thus they have the same spectrum. In particular, the
spectral problem for Ãλ reads∫

Rd
a(x − y)�(x, y)u−1

θ(λ0)
(x)uθ(λ0)(y)eλ0(y−x)er(y−x)v(y) dy

−
∫
Rd

a(x − y)�(x, y) dyv(x) = θ(λ)v(x),

(48)

where θ(λ) is the principal eigenvalue of Aλ. Denote

θλ0(r) = θ(λ) − θ(λ0) with r = λ − λ0.(49)

For λ = λ0 we have, from (47),

Aλ0uθ(λ0)(x) =
∫
Rd

a(x − y)�(x, y)eλ0(y−x)uθ(λ0)(y) dy

−
∫
Rd

a(x − y)�(x, y) dyuθ(λ0)(x) = θ(λ0)uθ(λ0)(x).

(50)

Dividing this equation by uθ(λ0)(x) we get∫
Rd

a(x − y)�(x, y)u−1
θ(λ0)

(x)uθ(λ0)(y)eλ0(y−x) dy

=
∫
Rd

a(x − y)�(x, y) dy + θ(λ0).

(51)

Thus (48), (49) and (51) imply∫
Rd

a(x − y)�(x, y)u−1
θ(λ0)

(x)uθ(λ0)(y)eλ0(y−x)er(y−x)v(y) dy

=
[∫

Rd
a(x − y)�(x, y) dy + θ(λ0)

]
v(x) + θλ0(r)v(x)

=
∫
Rd

a(x − y)�(x, y)u−1
θ(λ0)

(x)uθ(λ0)(y)eλ0(y−x) dyv(x) + θλ0(r)v(x).

(52)
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This spectral problem is similar to that in (27), if we replace the kernel a(x − y)�(x, y) with
the kernel

a(λ0)(x − y)�(λ0)(x, y) = a(x − y)eλ0(y−x)�(x, y)u−1
θ(λ0)

(x)uθ(λ0)(y).

According to (49),

∂2θ(λ0)

∂λi ∂λj

= ∂2θλ0(0)

∂ri ∂rj
,

and the desired positive definiteness follows. �

REMARK. The structure of the set � = {λ ∈ R
d : θ(λ) > −gmin} depends on the kernel

a(x−y)�(x, y) of the operator A0. For example, if a(−z) = a(z) and �(x,y) is a symmetric
periodic function, then θ(−λ) = θ(λ) and θ(0) = 0 is the minimum of θ(λ) (as a function of
λ). Consequently, in this case � = R

d and θ(λ) ≥ 0 for all λ.
Also, � = R

d if �(x,y) = �(x − y). In this case gmin = gmax, and the spectrum of Aλ

coincides with the spectrum of the operator

u �→
∫
Rd

a(x − y)�(x − y)eλ(y−x)u(y) dy, u ∈ L2(
T

d),
shifted by −gmin. The latter operator is compact and maps positive functions to positive
functions. One can show that the Krein–Rutman theorem applies, and thus this operator has
a positive real eigenvalue. This implies the claim.

The following example illustrates that in general the set � need not coincide with R
d .

EXAMPLE 1. Take a(z) = 1[− 1
2 , 1

2 ]d equal to the characteristic function of the period, and
�(x,y) = b(x)�0(x − y). We assume that �0(z) is a smooth periodic function, 0 < α1 ≤
�0(z) ≤ α2 < ∞, and �0 has the form of a single peak:

�0(z) =
⎧⎨⎩α2, |z − z0| < c

2
,

α1, |z − z0| > c.

Here z0 �= 0, z ∈ T
d , and we choose sufficiently small constants α1 and c and sufficiently

large constant α2 so that the following normalization condition holds:∫
Rd

a(z)�0(z) dz =
∫
Td

a(z)�0(z) dz = 1.

Then the spectral problem (32) for Aλ reads

b(x)

∫
Td

a(x − y)�0(x − y)eλ(y−x)uλ(y) dy

= b(x)

∫
Td

a(x − y)�0(x − y)dyuλ(x) + θ(λ)uλ(x),

and, after straightforward rearrangements,

b(x)

b(x) + θ(λ)

∫
Td

a(x − y)�0(x − y)eλ(y−x)uλ(y) dy = uλ(x),(53)

where uλ > 0 is the principal eigenfunction.
We now take a periodic continuous positive function b(x),0 < bmin = minx∈Td b(x) ≤

b(x) ≤ 1, such that for some κ ∈ (0, 1
2) it holds∥∥∥∥ b(x)

b(x) − bmin

∥∥∥∥
L2(Td )

< 1 +κ.(54)
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Obviously, inequality (54) remains valid for b(x)
b(x)+θ(λ)

with any θ(λ) > −bmin. Then the op-

erator on the left-hand side of equation (53) is positive and compact in L2(Td). Observe that
in this example gmin = bmin.

Assuming that α1 is small enough we conclude that there exists λ0 such that λ0z0 > 0 and

0 < a(z)�0(z)e
−λ0z <

1

2
for all z ∈ T

d .(55)

Then from (54), (55) it follows that the L2(Td) norm of the left-hand side in (53) is strictly
less than ‖uλ0‖L2(Td ). Therefore, equation (53) has no positive solution u(x) ∈ L2(Td), and
there are no points of the discrete spectrum of Aλ0 located above the continuous spectrum,
that is,

σdisc(Aλ0) ∩ (−gmin,+∞) =∅.

Observe that in this example equation (53) has no positive solutions for all λ situated in a
sufficiently small neighbourhood of λ0, thus λ0 is an interior point of Rd \ �.

REMARK. In the above example in dimensions 3 and more one can choose C2 smooth
functions b(·) and �0(·) so that �(x,y) = b(x)�0(x − y) is also a C2 function. Clearly, a
small C2 perturbation of the kernel �(·) does not change the structure of the Hamiltonian.
Thus, in the class of C2 coefficients �, the presence of a nonempty set Rd \ � (the flat area
of the Hamiltonian) is one of the cases of the general position.

It is also important to note that the gradient of θ(λ) need not be equal to zero at the
boundary ∂(Rd \ �). This is demonstrated in the second example.

EXAMPLE 2. In dimension 1 we consider the following functions:

a(z) =
{

1 if z ∈ [−1, δ],
0 otherwise,

,

�0(z) =

⎧⎪⎪⎨⎪⎪⎩
3

1 + 3δ
if z ∈

[
−1 + δ,−3

4
+ δ

]
,

1

3(1 + 3δ)
if z ∈

(
−3

4
+ δ, δ

)
,

�0(·)is 1-periodic,

b(x) = min
{

1,

(
δ−1

∣∣∣∣x + 1

2

∣∣∣∣0.1
+ 1

10

)}
,

and, as in the previous example, define �(x,y) = �0(x − y)b(x); here δ > 0 is a small
parameter that will be chosen later on. Notice that gmin = 0.1.

For λ = −2 and for sufficiently small δ > 0 straightforward computations yield∑
j∈Z

a(x − y − j)�0(x − y)e2(j+y−x) < 0.7.

Using the same arguments as in the previous example we conclude that for sufficiently small
δ > 0 the point λ = −2 does not belong to �. We recall that the function s(Aλ) introduced
in (31) is convex. Since 0 ∈ �, then s(Aλ) is an increasing function of λ on the segment
[−2,0]. Consequently, there exists λ0 ∈ (−2,0) such that s(Aλ) = θ(λ) > − 1

10 if λ > λ0,
and s(Aλ) = − 1

10 if −2 ≤ λ ≤ λ0.
For any λ ∈ [0, λ0] we have

1

3
e−2 <

∑
j∈Z

a(x − y − j)�0(x − y)eλ(j+y−x) < 6.(56)

Recalling (53) and the normalization ‖uλ‖L1(T1) = 1 we obtain 1
3e−2 < uλ(x) < 6

b(x)−0.1 .
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We turn to u∗
λ. It is straightforward to check that the function U∗

λ (x) = b(x)u∗
λ(x) satisfies

the equation

b(x)

b(x) + θ(λ)

∫
R

a(y − x)�0(y − x)eλ(x−y)U∗
λ (y) dy = U∗

λ (x).

Then, by the same arguments as above we obtain

1

6
e−2 ≤ U∗

λ (x)

‖U∗
λ‖L1(T1)

≤ 6

b(x) − 0.1
.

Therefore,

1

6
e−2 <

1

‖U∗
λ‖L1(T1)

∫ 0

−1
uλ(x)U∗

λ (x) dx ≤ 1

‖U∗
λ‖L1(T1)

∫ 0

−1
uλ(x)u∗

λ(x) dx = 1

‖U∗
λ‖L1(T1)

and for sufficiently small δ

1

‖U∗
λ‖L1(T1)

≤ 10

‖U∗
λ‖L1(T1)

∫ 0

−1
uλ(x)U∗

λ (x) dx <

∫ 0

−1

360dx

(b(x) − 0.1)2 < 400.

Thus, 1
400 < ‖U∗

λ‖L1(T1) < 6e2, and 1
2400e−2 < U∗

λ (x) < 36e2

b(x)−0.1 . This, in turn, implies the

estimate 1
2400e−2 < u∗

λ(x) < 360e2

b(x)−0.1 . According to (39) we have

d

dλ
θ(λ) =

∫
T1

∫
R1

a(x − y)�0(x − y)b(x)(y − x)eλ(y−x)uλ(y)u�
λ(x) dy dx

>
1

22,000
e−6 − 1500e4δ

for all λ ∈ [λ0,0). If δ is small enough then d
dλ

θ(λ) > 10−5e−6, and the derivative d
dλ
s(Aλ)

has a jump at λ0.
Then the Legendre transform of s(Aλ) is a linear function on an interval [0, d

dλ
(λ0)].

4.4. Properties of the Hamiltonian. Denote

H(λ) := s(Aλ) =
{
θ(λ) λ ∈ �,

−gmin otherwise.
(57)

As a consequence of Theorem 4.4 we have

PROPOSITION 4.6. The function H(·) is convex. It is strictly convex on the set �. More-
over,

H(λ)

|λ| → +∞ as |λ| → +∞.(58)

PROOF. The convexity and the strict convexity on � have been proved in Theorem 4.4.
The relation in (58) follows from Lemma 4.3. �

By Lemma 4.2 we have

lim
ε→0

ε lnEe
λ
ε
ξε

0 (t) = tH(λ),(59)

with H(λ) defined in (57).
Concluding this subsection we summarize the properties of the function H(λ):
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FIG. 1. Possible graphs of the functions H(·) and L(·).

(1) H(λ) is convex, it is strictly convex for λ ∈ �,
(2) H(0) = 0 and H(λ) is strictly convex at λ = 0,
(3) H(λ)

|λ| → +∞ as |λ| → +∞,

(4) the function H(λ) equals a constant on the set λ ∈ ϒ = R
d \ �:

H(λ) = −gmin, λ ∈ ϒ = R
d \ �;

if the set ϒ is not empty, then it is bounded and convex. If the interior of ϒ is not empty, then
the boundary ∂ϒ is Lipschitz continuous. A typical example of one-dimensional Hamiltonian
H(·) with a nontrivial ϒ and the corresponding Lagrangian are shown on Figure 1.

4.5. The Legendre transform of H(λ) and the Gärtner–Ellis theorem. Let L and Lt be
the Legendre transform of H(·) and Ht := tH , respectively, that is,

L(ζ ) = sup
λ

(
λζ − H(λ)

)
, Lt (ζ ) = sup

λ

(
λζ − tH(λ)

) = tL

(
ζ

t

)
, ζ ∈ R

d .(60)

We recall (see, for instance, [3]) that ζ ′ ∈ R
d is an exposed point of L if for some θ ∈R

d and
all ζ �= ζ ′,

θ · ζ − L(ζ ) > θ · ζ ′ − L
(
ζ ′).

The properties of H(λ) imply the following properties of L(ζ ):
(1) L(ζ ) is a convex function, L(ζ ) < +∞ for any ζ ∈ R

d . It is strictly convex in the
neighbourhood of infinity, that is, there exists R0 such that L(ζ ) is strictly convex for all ζ

such that |ζ | ≥ R0,
(2) L(ζ ) is nonnegative: L(ζ ) ≥ 0,
(3) minL(ζ ) = L(ζ ∗) = 0 and L is strictly convex at ζ ∗,
(4) L(ζ )

|ζ | → +∞ as |ζ | → +∞, in particular, L(ζ ) has compact sub-level sets,
(5) The complement to the set of exposed points of L, if not empty, consists of segments

of bounded length with one end at 0, the restriction of L on each such segment is a linear
function. The part of the graph of L over the set of points where L is not strictly convex is a
bounded subset of a conical hypersurface centered at the origin.

Denote the set of exposed points of L by �. It should be emphasized that the origin need
not be an exposed point of L(·). In particular, the restriction of L on two segments going from
the origin in the opposite directions can form the same linear function. However, if Rd \ �

has a nontrivial interior, then 0 ∈ �. This can be justified by the convex analysis arguments if
we take into account the properties of H(·).
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THEOREM 4.7. For any t > 0 and any x0 ∈ R
d the random vector ξε

x0(t) − x0 satisfies
the large deviation principle with the rate function Lt(x) = tL(x

t
).

PROOF. As an immediate consequence of formula (59) we obtain

lim
ε→0

ε lnEe
λ
ε
(ξε

x0 (t)−x0) = tH(λ).(61)

Then the upper large deviation bound follows from the Gärtner–Ellis theorem. We have

lim
δ→0

lim
ε→0

ε log
[
P
{∣∣(ξε

x0(t) − x0)− x
∣∣ ≤ δ

}] ≤ −Lt(x).

The lower bound is slightly more tricky. By the Gärtner–Ellis theorem for any t > 0 and
any x ∈R

d such that x
t

is an exposed point of L(·) the inequality

lim
δ→0

lim
ε→0

ε log
[
P
{∣∣(ξε

x0(t) − x0)− x
∣∣ ≤ δ

}] ≥ −Lt(x)

holds. Without loss of generality we assume that x0 = 0. We first assume that 0 ∈ �. Consider
x ∈ R

d which is a nonexposed point of Lt(·) and represent it as x = rφ with φ ∈ Sd−1 and
r > 0. Since ξ(·) is a Markov process, for any κ ∈ (0,1) and for any δ > 0 we have

P
{∣∣ξε

0 (t) − x
∣∣ ≤ 2δ

}
= P

{∣∣ξε
0 (t) − rφ

∣∣ ≤ 2δ
}

≥ P
{{∣∣ξε

0 (κt)
∣∣ ≤ δ

}∩ {∣∣ξε
0 (t) − ξε

0 (κt) − rφ
∣∣ ≤ δ

}}
≥ P{{∣∣ξε

0 (κt)
∣∣ ≤ δ

}
min|y|≤δ

P
{∣∣ξε

y

(
(1 − κ)t

)− y − rφ
∣∣ ≤ 2δ

}
.

(62)

Denote by R the length of the segment (0,Rφ) = (Rd \ �) ∩ {(0, sφ) : s > 0}. Then, for
any h0 > 0, the point (R + h0)φ is exposed for Lt . Therefore, choosing κ in (62) so that

r
1−κ

= R +h0, that is, κ = R+h0−r
R+h0

, and applying the Gärtner–Ellis theorem, we arrive for all
sufficiently small δ > 0 and h0 > 0 at the following lower bound:

P
{∣∣ξε

0 (t) − x
∣∣ ≤ 2δ

}
≥ exp

[
−
(

R + h0 − r

R + h0
Lt(0) − ψ(δ)

)(
1 + o(1)

)]
× exp

[
−
(

r

R + h0
Lt

(
(R + h0)φ

)− ψ(δ)

)(
1 + o(1)

)]
≥ exp

[
−
(

R − r

R
Lt(0) + r

R
Lt(Rφ) − CLh0 − 2ψ(δ)

)(
1 + o(1)

)]
= exp

[−(
Lt(rφ) − CLh0 − 2ψ(δ)

)(
1 + o(1)

)]
,

where o(1) tends to zero as ε → 0, ψ(δ) → 0 as δ → 0, and CL is a constant which only
depends on L(·); we have used here the fact that Lt(·) is linear on the segment [0,Rφ]. This
implies the desired lower bound.

If 0 is not an exposed point then there is a segment that passes through 0, such that Lt is
linear on this segment, and there are exposed points of Lt in the intersections of any neigh-
bourhoods of the end points of this segment with the straight line that contains the segment.
In this case in the same way as above one can show that

lim
δ→0

lim
ε→0

ε log
[
P{{∣∣ξε

0 (t)
∣∣ ≤ δ

}] ≥ −Lt(0).

It remains to use one more time the same arguments as in the previous case to obtain the
required lower bound for any x ∈ R

d . This completes the proof of Theorem. �
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4.6. Large deviation principle in the paths space. The goal of this section is to show that
the process ξε

x (·) satisfies on any time interval [0, T ] the large deviation principle in the paths
space D([0, T ];Rd) with the rate function defined by

I
(
γ (·)) =

⎧⎪⎨⎪⎩
∫ T

0
L
(
γ̇ (t)

)
dt if γ is absolutely continuous and γ (0) = x,

+∞ otherwise,
(63)

where L(·) is introduced in (60). An important property of I (·) is the compactness of its
sublevel sets in the topology of uniform convergence in C([0, T ];Rd).

LEMMA 4.8. The set {γ ∈ C([0, T ];Rd) : I (γ ) ≤ s, γ (0) = x} is compact in C([0, T ];
R

d) for any s ∈ R and any x ∈ R
d .

PROOF. This statement is an immediate consequence of the Arzelà–Ascoli theorem and
the relation lim|ζ |→∞ L(ζ )

|ζ | = ∞. �

The next statement is also important for the further analysis.

PROPOSITION 4.9. Let ξε
x be a Markov process with the generator Aε that satisfies con-

ditions (3)–(9), and assume that γ (·) is an absolutely continuous function, γ (0) = x. Then
for any M > 0 there exists a function δ0(δ), δ0 : (0,1] �→ R

+ such that δ0(δ) → 0 as δ → 0,
and for any π ∈ K with �(π) ≤ δ we have

P

{{
sup

0≤t≤T

∣∣ξε
x (t) − γ

(
π(t)

)∣∣ ≥ δ0

}
∩
{∣∣ξε

x (jδ) − γ
(
π(jδ)

)∣∣ ≤ δ, j = 0, . . . ,
T

δ

}}

≤ exp
{
−M

ε

}
for all sufficiently small ε > 0. Moreover, for any s > 0 and for all sufficiently small ε > 0,

sup
γ∈�(s)

P

{{
sup

0≤t≤T

∣∣ξε
x (t) − γ

(
π(t)

)∣∣ ≥ δ0

}
∩
{∣∣ξε

x (jδ) − γ
(
π(jδ)

)∣∣ ≤ δ, j = 0, . . . ,
T

δ

}}

≤ exp
{
−M

ε

}
,

where �(s) = {γ ∈ D([0, T ],Rd) : I (γ ) ≤ s, γ (0) = x}.

PROOF. Consider an auxiliary process ηε(·) with generator

Aε
symv(x) = 1

εd+1

∫
Rd

as

(
x − y

ε

)(
v(y) − v(x)

)
dy,

where

as(z) = C0e
−k|z|p , C0 = �+C,

with the same p, k, C and �+ as those in (4) and (9). For the transition densities of the
processes ξε

x (·) and ηε
x(·) we use the notation qε(x, y, t) and qε

s (x, y, t), respectively. We
also define a function qε+(x, y, t) as the solution of the following problem:

∂tq(x, y, t) = 1

εd+1

∫
Rd

as

(
y − z

ε

)
q(x, z, t) dz, q(0, x, y) = δ(y − x).
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By the maximum principle we have

qε(x, y, t) ≤ qε+(x, y, t) for all x, y ∈ R
dand all t ≥ 0.(64)

It is also clear that

qε+(x, y, t) = exp
(
C1t

ε

)
qε
s (x, y, t) with C1 =

∫
Rd
C0 exp

(−k|z|p)dz.

The Hamiltonian and the Lagrangian that correspond to the process ηε are defined in the
same way as in the previous section. Namely,

Hs(λ) =
∫
Rd
C0 exp

(−λ · z − k|z|p)dz − C1, Ls(ζ ) = max
λ∈Rd

(
ζ · λ − Hs(λ)

)
.

One can easily check that both Hs and Ls are smooth strictly convex functions and, moreover,
Ls(ζ )
|ζ | → +∞ as |ζ | → ∞.
Considering the continuity of γ (·) we can construct a function δ0(δ) such that:

• δ0(δ) → 0 as δ → 0.
• |γ (t ′) − γ (t ′′)| ≤ 1

4δ0 if |t ′ − t ′′| ≤ 3δ.

• minφ∈Sd−1{δLs(
δ0φ
2δ

)} → +∞ as δ → 0.

LEMMA 4.10. For any δ0 and any τ > 0 we have

P

{
sup

0≤t≤τ

∣∣ηε
x(t) − x

∣∣ ≥ δ0

}
≤ 2P

{∣∣ηε
x(τ ) − x

∣∣ ≥ δ0
}
.

PROOF. Denote by E0 and E1 the events

E0 =
{

sup
0≤t≤τ

∣∣ηε
x(t) − x

∣∣ ≥ δ0

}
,E1 = {∣∣ηε

x(τ ) − x
∣∣ ≤ δ0

}
.

Both E0 and E1 depend on ε, however, we do not indicate this dependence explicitly. Due to
the symmetry of as(·) by the Markov property we have

P(E0 ∩ E1) = P(E1|E0)P(E0) <
1

2
P(E0).

Therefore,

P
(
Ec

1
) = P

(
E0 ∩ Ec

1
)
>

1

2
P(E0),

and the desired statement follows. �

By the Gärtner–Ellis theorem for all sufficiently small ε > 0 we have

P
{∣∣ηε

x(δ) − x
∣∣ ≥ δ0

} ≤ exp
(
−δ

ε
min

φ∈Sd−1
Ls

(
δ0φ

δ

))
.

For arbitrary M > 0 we choose small enough δ > 0 such that minφ∈Sd−1 δLs(
δ0(δ)φ

2δ
) ≥ 2M .

Then, for sufficiently small ε > 0 and for any π ∈ K with �(π) ≤ δ,

P

{{
sup

0≤t≤T

∣∣ηε
x(t) − γ

(
π(t)

)∣∣ ≥ δ0(δ)
}

∩
{∣∣ηε

x(jδ) − γ
(
π(jδ)

)∣∣ ≤ δ, j = 0, . . . ,
T

δ

}}

≤ P

{
sup

0≤t≤δ

∣∣ηε
x(t + jδ) − ηε

x(jδ)
∣∣ ≥ δ0(δ)

2
for some j ≤ T

δ

}
(65)

≤ T

δ
exp

(
−δ

ε
min

φ∈Sd−1
Ls

(
δ0φ

2δ

))
≤ T

δ
exp

{
−2M

ε

}
≤ exp

{
−M

ε

}
.
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Next, for any partition of the interval [0, T ], 0 ≤ t1 ≤ · · · ≤ tN1 ≤ T , and for any collection
of domains B1, . . . ,BN1 the following inequality holds:

P

{ N1⋂
j=1

{
ξε
x (tj ) ∈ Bj

}}

=
∫
B1

qε(x, y1, t1
)
dy1

∫
B2

qε(y1, y2, t2 − t1
)
dy2 . . .∫

BN1

qε(yN1−1, yN1, tN1 − tN1−1
)
dyN1

≤
∫
B1

qε+
(
x, y1, t1

)
dy1

∫
B2

qε+
(
y1, y2, t2 − t1

)
dy2 . . .∫

BN1

qε+
(
yN1−1, yN1, tN1 − tN1−1

)
dyN1

≤ exp
(
C1T

ε

)
×
∫
B1

qε
s

(
x, y1, t1

)
dy1

∫
B2

qε
s

(
y1, y2, t2 − t1

)
dy2 . . .∫

BN1

qε
s

(
yN1−1, yN1, tN1 − tN1−1

)
dyN1

= exp
(
C1T

ε

)
P
{ N1⋂
j=1

{
ηε

x(tj ) ∈ Bj

}}
.

Combining this inequality with (65) yields the first inequality stated in the Proposition.
In order to prove the second one it suffices to observe that, due to the compactness of the set

�(s) in C([0, T ];Rd), the function δ0(δ) can be chosen in such a way that |γ (t ′) − γ (t ′′)| ≤
1
4δ0 if |t ′ − t ′′| ≤ 3δ for all γ ∈ �(s). �

PROPOSITION 4.11. For any γ ∈ D([0, T ];Rd), γ (0) = x, that is not absolutely contin-
uous we have

lim
δ→0

lim sup
ε→0

ε log
(
P
{
dist

(
ξε
x (·), γ (·)) ≤ δ

}) = −∞.

PROOF. Consider auxiliary operators defined by

Auv(x) =
∫
Rd

�+a(x − y)v(y) dy − �−v(x)

∫
Rd

a(x − y)dy

and

A+v(x) =
∫
Rd

�+a(x − y)v(y) dy − �+v(x)

∫
Rd

a(x − y)dy,

and the corresponding scaled operators

Au,εv(x) = 1

εd+1

∫
Rd

�+a

(
x − y

ε

)
v(y) dy − 1

εd+1 �−v(x)

∫
Rd

a

(
x − y

ε

)
dy

and

A+,εv(x) = 1

εd+1

∫
Rd

�+a

(
x − y

ε

)
v(y) dy − 1

εd+1 �+v(x)

∫
Rd

a

(
x − y

ε

)
dy.
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Denote by qu,ε(x, y, t), q+,ε(x, y, t) and qε(x, y, t) the solutions of the equations

∂tq = Au,εq, ∂tq = A+,εq and ∂tq = Aεq,

respectively, with the common initial condition q(x, y,0) = δ(y − x).
Since �+ ≥ �(x,y) and �− ≤ �(x,y) for all x and y from R

d , by the maximum principle
we have

qε(x, y, t) ≤ qu,ε(x, y, t) for all x, y ∈ R
d and t > 0.(66)

It is also clear that

qu,ε(x, y, t) = exp
(

(�+ − �−)t

ε

)
q+,ε(x, y, t).

For an arbitrary partition 0 ≤ t1 < t2 < · · · < tN ≤ T of the interval [0, T ], an arbitrary set
x1, . . . , xN , xj ∈ R

d and any δ > 0 we have

P

{
N⋂

j=1

{∣∣ξε(tj ) − xj

∣∣ ≤ δ
}}

=
∫
Qδ(x1)

qε(0, y1, t1
)
dy1

∫
Qδ(x2)

qε(y1, y2, t2 − t1
)
dy2 . . .∫

Qδ(xN )
qε(yN−1, yN, tN − tN−1

)
dyN

≤
∫
Qδ(x1)

qu,ε(0, y1, t1
)
dy1

∫
Qδ(x2)

qu,ε(y1, y2, t2 − t1
)
dy2 . . .∫

Qδ(xN )
qu,ε(yN−1, yN, tN − tN−1

)
dyN

= exp
(

(�+ − �−)T

ε

)
×

×
∫
Qδ(x1)

q+,ε(0, y1, t1
)
dy1

∫
Qδ(x2)

q+,ε(y1, y2, t2 − t1
)
dy2 . . .∫

Qδ(xN )
q+,ε(yN−1, yN, tN − tN−1

)
dyN .

Let γ be an arbitrary curve in D([0, T ];Rd) which is not absolutely continuous. Setting
xj = γ (tj ), taking uniform partitions of the interval [0, T ] and sending N to infinity, from
the last relation we deduce

P

{
sup

0≤t≤T

∣∣ξε(t) − γ
(
π(t)

)∣∣ ≤ δ
}

≤ exp
(

(�+ − �−)T

ε

)
P

{
sup

0≤t≤T

∣∣ξ+,ε(t) − γ
(
π(t)

)∣∣ ≤ δ
}
;

here ξ+,ε(t) is a process with independent increments whose generator is A+,ε .
Due to [19], for any γ that is not absolutely continuous this yields

lim
δ→0

lim sup
ε→0

P
{
dist

(
ξε(·), γ (·)) ≤ δ

} = −∞ = −I�(γ ).(67)

This implies the desired statement. �

The main result of this section reads as follows.
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THEOREM 4.12. Let �(x,y, ξ, η) = �(ξ,η), and assume that �(ξ,η) is a measurable
function for which conditions (3)–(7) and (9) are fulfilled. Then the process ξε

x (t), 0 ≤ t ≤ T ,
satisfies in D([0, T ];Rd) the large deviation principle with the rate function I (·) introduced
in (63).

In particular, for any γ ∈ D([0, T ];Rd), γ (0) = x, the following relation holds:

lim
δ→0

lim
ε→0

ε logP
{
dist

(
ξε
x (·), γ (·)) ≤ δ

} = −I (γ ).(68)

PROOF. For any γ (·) that is not absolutely continuous the relation

lim
δ→0

lim sup
ε→0

ε log
[
P{{dist

(
ξε
x (·), γ (·)) ≤ δ

}] = −∞

follows from Proposition 4.11.
Assume that γ (·) is absolutely continuous, and

∫ T
0 L(γ̇ ) dt < +∞. We consider a piece-

wise linear approximation of γ defined by

γN(t) =

⎧⎪⎪⎨⎪⎪⎩
γ (t) if t = 0,

1

N
,

2

N
, . . . , T ,

γ (tj ) + (
γ (tj+1) − γ (tj )

) t − tj

tj+1 − tj
if t ∈ (tj , tj+1).

For any κ > 0 there exists N0 = N0(κ) such that for any N ≥ N0

0 ≤
∫ T

0
L
(
γ̇ (t)

)
dt −

∫ T

0
L
(
γ̇N (t)

)
dt ≤ κ.

Denote δ = 1
N

. Then, by Proposition 4.9 there exists a function δ0(δ), δ0 : (0,1] �→ R
+, such

that δ0(δ) → 0 as δ → 0, and for any π ∈ K with �(π) ≤ δ

P

{{∣∣ξε
x (tj ) − γ

(
π(tj )

)∣∣ ≤ δ, j = 0, . . . ,N
}∩

{
sup

0≤t≤T

∣∣ξε
x (t) − γ

(
π(t)

)∣∣ ≥ δ0

}}
≤ exp

(
−M

ε

(
1 + o(1)

))
,

(69)

where M = I (γ ) + 1 and o(1) → 0 as ε → 0.
In order to achieve the upper bound we fix N ≥ N0 and choose δ1 > 0 in such a way that

for any π ∈ K with �(π) ≤ δ1

P
{∣∣ξε

y (tj+1 − tj ) − (
γ
(
π(tj+1)

)− γ
(
π(tj )

))∣∣ ≤ δ1
}

≤ exp
[
− tj+1 − tj

ε

{
L

(
γ (tj+1) − γ (tj )

tj+1 − tj

)
−κ

}]

= exp
(
− tj+1 − tj

ε

{
L
(
γ̇N (t)

)
t∈(tj ,tj+1)

−κ
})

(70)

for all y such that |y − γ (π(tj ))| ≤ δ1 and for all sufficiently small ε. This choice is possible
due to Theorem 4.7. Considering the Markov property of the process ξε(t) we deduce from
(70) that for all sufficiently small ε > 0 the following inequalities hold:

P

{
sup

0≤t≤T

∣∣ξε
x (t) − γ

(
π(t)

)∣∣ ≤ δ1

}
≤ P

{∣∣ξε
x (tj ) − γ

(
π(tj )

)∣∣ ≤ δ1, j = 0, . . . ,N
}

≤
N−1∏
j=0

exp
(
− tj+1 − tj

ε

{
L
(
γ̇N (t)

)
t∈(tj ,tj+1)

−κ
})
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= exp
(
−1

ε

{∫ T

0
L
(
γ̇N (t)

)
dt − Tκ

})

≤ exp
(
−1

ε

{∫ T

0
L
(
γ̇ (t)

)
dt − (T + 1)κ

})
.

This yields the desired upper bound in (68).
The lower bound can be obtained in a similar way. It suffices to combine the statement

of Theorem 4.7 with (69) and use the Markov property of ξε(·). Indeed, for any δ0 > 0 and
κ > 0 we choose the corresponding δ > 0 and δ1 > 0 so that (69) holds and

P
{∣∣ξε

y (tj+1 − tj ) − (
γ (tj+1) − γ (tj )

)∣∣ ≤ δ1
}

≥ exp
[
− tj+1 − tj

ε

{
L

(
γ (tj+1) − γ (tj )

tj+1 − tj

)
+κ

}]

= exp
(
− tj+1 − tj

ε

{
L
(
γ̇N (t)

)
t∈(tj ,tj+1)

+κ
})

(71)

for all y such that |y − γ (tj )| ≤ δ1 and all sufficiently small ε > 0. Then considering the
statement of Proposition 4.9 we have

P

{
sup

0≤t≤T

∣∣ξε
x (t) − γ (t)

∣∣ ≤ δ0

}
≥ P

{{∣∣ξε
x (tj ) − γ (tj )

∣∣ ≤ δ1, j = 0, . . . ,N
}∩

{
sup

0≤t≤T

∣∣ξε
x (t) − γ (t)

∣∣ ≤ δ0

}}
≥ P{{∣∣ξε

x (tj ) − γ (tj )
∣∣ ≤ δ1, j = 0, . . . ,N

}− exp
(
−M

ε

)
(72)

≥
N−1∏
j=0

exp
(
− tj+1 − tj

ε

{
L
(
γ̇N (t)

)
t∈(tj ,tj+1)

+κ
})− exp

(
−M

ε

)

≥ exp
(
−1

ε

{∫ T

0
L
(
γ̇N (t)

)
dt + Tκ

})
≥ exp

(
−1

ε

{∫ T

0
L
(
γ̇ (t)

)
dt + Tκ

})
;

here we have also used that fact that M = I (γ ) + 1. This completes the proof of the lower
bound in (68).

In order to justify the large deviation principle we need one more estimate. Recall that
for any s ∈ R the symbol �(s) denotes �(s) = {γ (·) ∈ D([0, T ];Rd) : I (γ ) ≤ s, γ (0) =
x}. Observe that the set �(s) consists of absolutely continuous curves and, according to
Lemma 4.8, this set is compact.

LEMMA 4.13. For any s ∈ R, any κ > 0 and any δ0 > 0 for all sufficiently small ε > 0
the following inequality holds:

P
{
dist

(
ξε
x (·),�(s)

)
> δ0

} ≤ exp
{
−s −κ

ε

}
.(73)

PROOF. For any trajectory ξε
x (·) and any δ = T

N
, N ∈ Z

+ denote by γ ε
δ,ω(t) a piece-wise

linear function such that

γ ε
δ,ω(jδ) = ξε

x (jδ), j = 0,1 . . . ,N;
the argument ω indicates that γ ε

δ (·) is a random function, in what follows the dependence on
ω is not indicated explicitly. We choose δ > 0 such that∣∣γ (t ′)− γ

(
t ′′
)∣∣ ≤ 1

4
δ0 if

∣∣t ′ − t ′′
∣∣ ≤ δ and I

(
γ (·)) ≤ s,
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and

min
φ∈Sd−1

{
δL

(
δ0φ

2δ

)}
≥ s + 1.

Denote by E− and E+ the events

E− = {
ξε
x (·) /∈ �δ0(s), I

(
γ ε
δ

)
< s

}
, E+ = {

ξε
x (·) /∈ �δ0(s), I

(
γ ε
δ

) ≥ s
}
,

where �δ0(s) = {γ (·) ∈ D([0, T ];Rd) : dist(γ,�(s)) ≤ δ0}. By Proposition 4.9 for all suffi-
ciently small ε > 0 we have

P(E−) ≤ P

{
sup

0≤t≤T

∣∣ξε
x (t) − γ ε

δ (t)
∣∣ ≥ δ0

}
≤ exp

(
−s + 1

ε

)
.(74)

Consider a (Nd)-dimensional vector {ξε
x ((j + 1)δ)− ξε

x (jδ)}N−1
j=1 . By Theorem 4.7 taking

into account Markov property of ξε(·) we deduce that the family of random vectors {ξε
x ((j +

1)δ) − ξε
x (jδ)}N−1

j=0 satisfies for any λ0, . . . , λN−1 ∈ R
d the following relation:

lim
ε→0

ε logE

{
exp

[
N−1∑
j=0

λj · (ξε
x

(
(j + 1)δ

)− ξε
x (jδ)

)]} =
N−1∑
j=0

δh(λj ).

By the Gärtner–Ellis theorem this implies the upper large deviation bound with the rate func-
tion

Lδ(p1) + Lδ(p2) + · · · + Lδ(pN), pj ∈ R
d,

where Lδ(p) = δL(
p
δ
), as was defined in (60). For an arbitrary piece-wise linear function γ

corresponding to the partition {jδ}Nj=0 we have

I (γ ) =
N−1∑
j=0

Lδ

(
γ
(
(j + 1)δ

)− γ (jδ)
)
.

Therefore, by the Gärtner–Ellis theorem, for sufficiently small ε > 0 we have

P(E+) ≤ P
{
I
(
γ ε
δ

) ≥ s
}

= P

{
N−1∑
j=0

Lδ

(
ξε
x

(
(j + 1)δ

)− ξε
x (jδ)

) ≥ s

}
≤ exp

(
−s −κ

ε

)
.

Combining this estimate with (74) yields the desired statement. �

From the proof of Lemma 4.13 it follows that for any s0 > 0 inequality (73) holds uni-
formly in s ∈ [0, s0], that is, for any κ > 0 and δ0 > 0 there exists ε0 > 0 such that (73) holds
for all ε ≤ ε0 and all s ≤ s0.

It is then well known (see, for instance, [11]) that the lower bound in (72) and Lemma 4.13
imply the large deviation principle stated in Theorem. �

5. Environments with slowly varying characteristics. In this section we consider the
case of environments whose characteristics �(x,y) do not depend on the fast variables that
is, � is a continuous function on R

2d for which condition (9) is fulfilled. Our approach in
this section is somehow inspired by the small perturbations arguments used in the previous
works, in particular in the Wentzell–Freidlin theory; see [11]. However, the results from these
works do not apply directly to the operators considered in the present paper and require some
adaptation.



4636 A. PIATNITSKI, S. PIROGOV AND E. ZHIZHINA

Under the assumptions of this section the generator of ξε(t) takes the form

Aεu(x) = 1

εd+1

∫
Rd

a

(
x − y

ε

)
�(x,y)

(
u(y) − u(x)

)
dy, u ∈ L2(

R
d),(75)

ε > 0 is a small parameter and the convolution kernel a(z) in (75) satisfies conditions (3)–(5)
introduced in the previous section.

REMARK. According to Corollary 5.2 below the Markov jump process ξε(t) is a small
random perturbation of a deterministic trajectory determined by an ordinary differential equa-
tion ẋ = b(x) with

b(x) = −�(x,x)

∫
a(z)z dz.

5.1. Markov process with slow variables. We turn now to the case of nonconstant
�(x,y) that does not depend on the fast variables and recall that the function �(x,y) is
continuous in both variables and satisfies condition (9). Since � does not depend on the fast
variables, condition (8) can be replaced with the following continuity condition:

�(x,y) is continuous on R
d ×R

d .(76)

After changing variables x̃ = x
ε

the operator Aε in (75) takes the form

Ãεu(x̃) = 1

ε

∫
Rd

a(x̃ − ỹ)�(εx̃, εỹ)
(
u(ỹ) − u(x̃)

)
dỹ.(77)

The Hamiltonian H(x,λ) and the Lagrangian L(x, ζ ) are introduced in this case as follows:

H(x,λ) = �(x,x)

(∫
a(z)e−λz dz − 1

)
= �(x,x)H(λ),(78)

L(x, ζ ) = sup
λ

{
λζ − �(x,x)H(λ)

} = �(x,x)L

(
ζ

�(x, x)

)
.(79)

Observe that the function L(x, ζ ) is continuous and nonnegative on R
d × R

d . Moreover,
it is smooth and strictly convex in ζ ∈ R

d . The corresponding rate function I� is defined by

I�

(
γ (·)) =

⎧⎪⎨⎪⎩
∫ T

0
L
(
γ (t), γ̇ (t)

)
dt if γ is absolutely continuous,

+∞ otherwise.

THEOREM 5.1. Under assumptions (3)–(6), (9) and (76) the family of processes
{ξε(t),0 ≤ t ≤ T } satisfies, as ε → 0, the large deviation principle in the Skorokhod space
D([0, T ];Rd) with the rate function I�(·).

The proof of this Theorem is based on the large deviations results obtained for processes
with independent increments and the arguments of perturbation theory. Since, in contrast with
the case of diffusion processes, in our case the coefficient �(x,y) depends on two variables,
x and y, the results of the previous works do not apply directly and require some adaptation.
The detailed proof of Theorem 5.1 is provided in the Appendix.

Denote

ζ(x) = arg min
p

L�(x,p).

It is straightforward to check that

ζ(x) = −�(x,x)

∫
Rd

a(z)z dz = �(x,x)∇H(λ)|λ=0.(80)
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Letting γ 0
x (t) be the solution of the ODE

γ̇ (t) = ζ
(
γ (t)

)
, γ (0) = x,

one can deduce from the last theorem the following.

COROLLARY 5.2. For any x ∈R
d

lim
ε→0

E

(
sup

0≤t≤T

∣∣ξε
x (t) − γ 0

x (t)
∣∣) = 0.

6. The general case of locally periodic environment �(x,y, x
ε , y

ε ). In this section we
consider the case of the most general locally periodic media. Here we assume that �ε(x, y) =
�(x,y, x

ε
,

y
ε
), where �(x,y, ξ, η) satisfies conditions (7)–(9).

Here for each x ∈ R
d we introduce a Hamiltonian H = H(x,λ) in the same way as in

(57), x being a parameter. Namely, we set

H(x,λ) := s(Ax,λ) =
{
θ(x,λ), λ ∈ �(x),

−gmin(x), otherwise;(81)

here

Ax,λu(z) =
∫
Rd

�(x, x, z, y)a(z − y)eλ·(y−z)u(y) dy −
∫
Rd

�(x, x, z, y)a(z − y)dyu(z),

and, for each x, we define �(x), θ(x,λ) and gmin(x) in the same way as in Section 4. Then
we introduce the corresponding Lagrangian L(x, ζ ). The main result of this section reads:

THEOREM 6.1. Let conditions (3)–(9) be fulfilled. Then the family of processes ξε
x (·)

with the generators Aε defined in (2) satisfies, as ε → 0, the large deviation principle in the
path space D([0, T ];Rd); the corresponding rate function is given by

I
(
γ (·)) =

⎧⎪⎨⎪⎩
∫ T

0
L
(
γ (t), γ̇ (t)

)
dt if γ is absolutely continuous and γ (0) = x,

+∞ otherwise.

PROOF. The proof relies on combining the statement of Theorem 4.7 and the arguments
used in the proof of Theorem 5.1. We leave the details to the reader. �

It is interesting to observe that for small ε > 0 the process ξε
x (·) can be interpreted as a

small random perturbation of a deterministic dynamical system defined by the ODE

γ̇ (t) = ∇λH
(
γ (t),0

)
, γ (0) = x.(82)

COROLLARY 6.2. For any x ∈R
d

lim
ε→0

E

{
sup

0≤t≤T

∣∣ξε
x (t) − γx(t)

∣∣} = 0,

where γx(·) is a solution of (82).
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APPENDIX

PROOF OF THEOREM 5.1. Consider an absolutely continuous curve γ (·) such that

I�(γ ) =
∫ T

0
L�(γ (t),γ (t))

(
γ̇ (t)

)
dt < +∞.

We first justify the upper bound. For any N ≥ 2 denote by γN a piece-wise linear interpolation
of γ such that γN(tj ) = γ (tj ) with tj = j T

N
, j = 0,1, . . . ,N , and by γ̂N the corresponding

piece-wise constant interpolation, γ̂N (t) = γ (tj ) for t ∈ [tj , tj + 1
N

). For any κ > 0 there
exists δ > 0 such that for all N ≥ δ−1 we have∫ T

0
L�(γ̂N (t),γ̂N (t))

(
γ̇N (t)

)
dt > I�(γ ) −κ.

Denote by ν(s) the modulus of continuity of L(x, y) in 1-neighbourhood of the curve γ .
Since minφ∈Sd−1 r−1L(rφ) tends to infinity as r → ∞, there exists a function δ0(δ) > 0 such

that δ0(δ) → 0 as δ → 0, and minφ∈Sd−1{δL(
rφ
δ

) : r ≥ δ0} → ∞. It is then clear that for any
sufficiently small δ > 0 there exists δ1(δ) > 0 such that∣∣∣∣∣

N−1∑
j=0

δL(�(γ (tj ),γ (tj ))+ν(δ0))

(
xj+1 − xj

δ

)
−
∫ T

0
L�(γ̂N (t),γ̂N (t))

(
γ̇N (t)

)
dt

∣∣∣∣∣ ≤ κ,

if |xj − γ (tj )| ≤ δ1, j = 0, . . . ,N .
Consider a Markov process ξε,N

x (t), 0 ≤ t ≤ T , whose generator on the interval [tj , tj + 1
N

)

is

Aε
tj
v(x) = 1

εd+1

∫
Rd

(
�
(
γ (tj ), γ (tj )

)+ ν(δ0)
)
a

(
x − y

ε

)(
v(y) − v(x)

)
dy,

j = 0,1, . . . ,N.

We also define a Markov process ξ̃ ε,N
x (t), 0 ≤ t ≤ T such that its generator on the interval

[tj , tj + 1
N

) reads

Ãε
tj
v(x) = 1

εd+1

∫
Rd

(�tj (x, y)a

(
x − y

ε

)(
v(y) − v(x)

)
dy,

j = 0,1, . . . ,N,

with �tj (x, y) = �(γ (tj ), γ (tj )) + ν(δ0) if |x| + |y| ≤ δ0, and �tj (x, y) = �(x,y) other-
wise.

Using the inequality similar to that in (66) we conclude that for any x such that |x −
γ (tj )| ≤ δ1 the density q̃ε,N (t, x, y) of the process ξ̃ ε,N

x (t), ξ̃ ε,N
x (tj ) = x, on the set {(y, t) :

tj ≤ t ≤ tj +δ, |y −γ (tj )| > 2δ0} does not exceed exp(− δ
ε
L�+(

δ0
δ
)). Denote by qε,N(t, x, y)

the density of the process ξε,N
x (t), ξε,N

x (tj ) = x. Straightforward computations show that the
difference �ε(t, x, y) = q̃ε,N (t, x, y) − qε,N(t, x, y) satisfies on the interval (tj , tj + δ) the
equation

∂t�
ε =

∫
Rd

[
�
(
γ (tj ), γ (tj )

)+ ν(δ0)
]
a

(
y − z

ε

)
(�ε(t, x, z) − (

�ε(t, x, y)
)
dz + Rε(t, x, y)

with ∣∣Rε(t, x, y)
∣∣≤ exp

(
− δ

2ε
L�+

(
δ0

δ

))
and �ε(tj , x, y) = 0.
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With the help of the standard a priori estimates this yields∥∥q̃ε,N (t, x, y) − qε,N(t, x, y)
∥∥
L2(Rd ) ≤ exp

(
− δ

4ε
L�+

(
δ0

δ

))
.

We choose δ > 0 in such a way that δ
4L�+(

δ0
δ
) > M with M = I�(γ ) + 1. Combining the

above estimates we obtain

P
{
dist

(
ξε(·), γ (·)) ≤ δ1

}
≤ exp

(
2ν(δ0)T

ε

)
P
{
dist

(̃
ξε,N(·), γ (·)) ≤ δ1

}
≤ exp

(
2ν(δ0)T

ε

)[
P
{{∣∣ξε,N(tj ) − γ

(
π(tj )

)∣∣ ≤ δ1, j = 0, . . . ,N
}}+ exp

(
−M

ε

)]
(83)

≤ exp
(

2ν(δ0)T

ε

)
exp

[
(1 + o(1))

ε

(
−
∫ T

0
L�(γ̂N (t),γ̂N (t))

(
γ̇N (t)

)
dt +κ

)]
≤ exp

(
2ν(δ0)T

ε

)
exp

[
(1 + o(1))

ε

(−I�(γ ) + 2κ
)]

,

where o(1) tends to zero as ε → 0. This implies the desired upper bound.
We turn to the lower bound. Here we introduce δ1 = δ1(δ) and δ0 = δ0(δ) in such a way

that ∣∣∣∣∣
N−1∑
j=0

δL(�(γ (tj ),γ (tj ))−ν(δ0))

(
xj+1 − xj

δ

)
−
∫ T

0
L�(γ̂N (t),γ̂N (t))

(
γ̇N (t)

)
dt

∣∣∣∣∣ ≤ κ.

Define Markov processes ξ
ε,N
−,x (t) and ξ̃

ε,N
−,x (t), 0 ≤ t ≤ T , whose generators on the interval

[tj , tj + 1
N

) read, respectively,

Aε−,tj
v(x) = 1

εd+1

∫
Rd

[
�
(
γ (tj ), γ (tj )

)− ν(δ0)
]
a

(
x − y

ε

)(
v(y) − v(x)

)
dy,

j = 0,1, . . . ,N

and

Ãε−,tj
v(x) = 1

εd+1

∫
Rd

(�−,tj (x, y)a

(
x − y

ε

)(
v(y) − v(x)

)
dy, j = 0,1, . . . ,N,

with �−,tj (x, y) = �(γ (tj ), γ (tj )) − ν(δ0) if |x| + |y| ≤ δ0, and �tj (x, y) = �(x,y) other-
wise.

By comparison with the process ξ+,ε(t) one can show that for any M > 0 for sufficiently
small δ > 0 we have

P

{
sup

tj≤t≤tj+δ

∣∣ξε(t) − ξε(tj )
∣∣ ≥ δ0

}
≤ exp

(
−M

ε

)
.

Using this inequality and choosing M = I�(γ ) + 2, in the same way as in the proof of the
upper bound we obtain

P

{
sup

0≤t≤T

∣∣ξε(t) − γ (t)
∣∣ ≤ δ0

}
≥ P

{
max

j

∣∣ξε(tj ) − γ (tj )
∣∣ ≤ δ1

}
− exp

(
−M − 1

ε

)

≥ exp
(
−2ν(δ0)T

ε

)
P

{
max

j

∣∣̃ξε,N (tj ) − γ (tj )
∣∣ ≤ δ1

}
− exp

(
−M − 1

ε

)
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≥ exp
(
−2ν(δ0)T

ε

)
P

{
max

j

∣∣ξε,N (tj ) − γ (tj )
∣∣ ≤ δ1

}
− exp

(
−M − 1

ε

)

≥ exp
(
−2ν(δ0)T

ε

)
exp

[
(1 + o(1))

ε

(
−
∫ T

0
L�(γ̂N (t),γ̂N (t))

(
γ̇N (t)

)
dt −κ

)]
≥ exp

(
−2ν(δ0)T

ε

)
exp

[
(1 + o(1))

ε

(−I�(γ ) − 2κ
)]

,

where o(1) tends to zero as ε → 0. This yields the lower bound.
We should also show that for any s ≥ 0, any δ0 > 0 and any κ > 0

P
{
dist

(
ξε
x (·),�(s)

)
> δ0

} ≤ exp
{
−s −κ

ε

}
(84)

for all sufficiently small ε. The proof of this inequality relies on the arguments from the
proof of Lemma 4.13 and that of inequality (83). One should combine these arguments in a
straightforward way. We skip the details. �
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