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Abstract

It has been recently shown that calibration with an error less than ∆ > 0 is almost
surely guaranteed with a randomized forecasting algorithm, where forecasts are
obtained by random rounding the deterministic forecasts up to ∆. We show that
this error cannot be improved for a vast majority of sequences: we prove that, using
a probabilistic algorithm, we can effectively generate with probability close to one
a sequence “resistant” to any randomized rounding forecasting with an error much
smaller than ∆. We also reformulate this result by means of a probabilistic game.
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1 Introduction

A minimal requirement for testing any prediction algorithm is that it should be
calibrated (see Dawid [1]). An informal explanation of calibration can be given
as follows. Let a binary sequence ω1, ω2, . . . , ωn−1 of outcomes be observed by
a forecaster whose task is to give a probability pn of a future event ωn = 1. In a
typical example pn is interpreted as a probability that it will rain. Forecaster is
said to be well-calibrated if it rains as often as he leads us to expect. It should
rain about 80% of the days for which pn = 0.8, and so on. For simplicity,
we consider binary sequences, i.e. ωn ∈ {0, 1} for all n. We give a rigorous
definition of calibration later.

1 This research was partially supported by Russian foundation for fundamental
research: 06-01-00122-a.
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If the weather acts adversarially, then Oakes [11] and Dawid [2] show that any
deterministic forecasting algorithm will not always be calibrated. V’yugin [20]
presented a computable version of this result: he proved that no deterministic
algorithm can be calibrated for a vast majority of sequences generated by some
probabilistic algorithm.

Foster and Vohra [4] show that calibration is almost surely guaranteed with a
randomizing forecasting rule, i.e., where the forecasts are chosen using internal
randomization and the forecasts are hidden from the weather until weather
makes its decision whether to rain or not.

Kakade and Foster [7] presented “an almost deterministic” randomized round-
ing universal forecasting algorithm f . For any sequence of outcomes and for
any precision of rounding ∆ > 0 an observer can simply randomly round the
deterministic forecast up to ∆ in order to calibrate for this sequence with
calibration error less than ∆.

The goal of this paper is to complement the result of Kakade and Foster
with a lower bound. We prove in Theorems 1 and 2 that the upper bound ∆
cannot be improved to c∆ for c < 0.25. We also show that when the setting
of Theorem 2 is slightly modified calibration becomes impossible.

In Section 2 we discuss some approaches to universal prediction of individual
sequences in statistics and machine learning. In particular, we give Dawid’s
definition of calibration and discuss its generalizations.

In Section 3 we give the definition of randomized forecasting and randomized
rounding and formulate Kakade and Foster’s result; the construction of the
universal randomized rounding algorithm is given in Appendix A.

In Section 4 we consider some probabilistic version of the Oakes’ example for
randomized rounding algorithms. We present this example in the form of a
game between Realty, Forecaster and Skeptic in the manner of Shafer and
Vovk’s book [14]. We show that Realty and Skeptic win with probability one
if Forecaster randomly rounds deterministic forecasts up to a given positive
precision level.

In Section 5 the asymptotic calibration is considered in the algorithmic set-
ting. We present a uniform lower bound of calibration error for all computable
randomized forecasting schemes. We also show that this uniform lower bound
is valid for a vast majority of sequences generated by some probabilistic algo-
rithm. The main result of this paper - Theorem 2, shows that given ∆ > 0
it is possible, using the probabilistic algorithm, to effectively generate with
probability close to one a sequence “resistant” to any randomized rounding
forecasting with an error much smaller than ∆. The proof of the main result
is given in Section 6. Theorem 3 shows that when the setting of Theorem 2 is
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slightly modified the randomized forecasting with calibration error less than
0.25 becomes impossible. Theorem 4 shows that for a vast majority of se-
quences the calibration error can be much bigger, namely ≥ 0.25, irrespective
of the precision of rounding we use when forecasts are produced by a deter-
ministic forecasting algorithm.

This paper is an extended version of the conference paper [21].

2 Prediction of individual sequences

Predicting sequences is the key problem of machine learning and statistics.
The learning process proceeds as follows: observing a finite-state sequence
given on-line a forecaster assigns subjective probabilities to future states. The
method of evaluation of these forecasts depends on an underlying learning
approach.

According to the classical approach of statistics, we suppose that the observed
sequence is generated by some source - a finite-state stochastic process gov-
erned by an unknown (to the forecaster) probability distribution. Asymptotic
accuracy of forecasts is achieved when a forecast merges to the objective distri-
bution. In the classical statistical theory of sequential prediction, the sequence
of outcomes is assumed to be a realization of a stationary stochastic process.
In this case statistical properties of the process based on past observations
can be estimated and using this estimation efficient prediction strategies can
be constructed. In this case the performance of a prediction strategy is usu-
ally evaluated by the expected value of some loss function which measures the
distance between the predicted value and the true outcome (see, for exam-
ple, [10]).

In the case of an arbitrary source distribution, the existence of a universal
forecasting scheme was proved in the algorithmic information theory.

Solomonoff [16,17] and Levin [23] have defined a universal prior M(x) as the
probability that the output of a universal Turing machine starts with a se-
quence x when provided with fair coin flips on the input tape. Assume now
that the sequences x are generated by a probability distribution P , i.e. the
probability of a sequence starting from x is P (x) > 0. Then the probability of
observing ωn = 1 after observations ω1 . . . ωn−1 is

P (1|ω1 . . . ωn−1) = P (ω1 . . . ωn−11)/P (ω1 . . . ωn−1).

Solomonoff [17] proved that P -almost surely the universal posterior

M(1|ω1 . . . ωn−1) = M(ω1 . . . ωn−11)/M(ω1 . . . ωn−1)
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converges to P (1|ω1 . . . ωn−1) as n → ∞ if the measure P is computable.
Solomonoff’s result was further developed by Hutter [5] and Chernov et al. [6].

Hence, M is a valid predictor in the case of unknown computable P . Unfortu-
nately, the function M(1|ω1 . . . ωn−1) is non-computable, so, it can be helpful
only for a theoretical analysis.

According to a different viewpoint, we abandon the assumption that the out-
comes are generated by a well-behaved stochastic process and consider the
sequence of outcomes as produced by some unspecified mechanism, which
could be deterministic, stochastic or adversarially adaptive to our prediction
method. This setup where no probabilistic assumption is made on how the
sequence is generated is often referred as prediction of individual sequences.

At the same time, without a probabilitic model it is not obvious how to mea-
sure the performance of the prediction algorithm. Some solution of this prob-
lem was proposed by Dawid [1], whose prequential principle says that our
evaluation of the accuracy of the forecasts should not depend on any model of
generating data. Dawid started from an observation that in reality, we have
only individual sequence ω1, ω2, . . . , ωn, . . . of outcomes and that the corre-
sponding forecasts p1, p2, . . . , pn, . . . whose testing is considered may fall short
of defining a full probability distribution on the whole set of all sequences.
The prequential principle says that the evaluation of a probability forecaster
should depend only on his actual probability forecasts and the corresponding
outcomes.

The notion of calibration, originated by Dawid [1,2], checks whether the ob-
served empirical frequencies of state occurrences converge to their forecaster
probabilities. The notion of calibration complies with the prequential princi-
ple.

Let I(p) denote the characteristic function of a subinterval I ⊆ [0, 1], i.e.,
I(p) = 1 if p ∈ I, and I(p) = 0, otherwise. An infinite sequence of forecasts
p1, p2, . . . is well-calibrated for an infinite sequence of outcomes ω1ω2 . . . if for
the characteristic function I(p) of any subinterval of [0, 1] the calibration error
tends to zero, i.e.,

∑n
i=1 I(pi)(ωi − pi)∑n

i=1 I(pi)
→ 0 (1)

as the denominator of the relation (1) tends to infinity.

The indicator function I(pi) determines some “selection rule” which selects
indices i where we compute the deviation between forecasts pi and outcomes
ωi. The most general notion of selection rule was considered in Vovk and
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Shafer [18]: a selection rule is a function F (p1, ω1, . . . , pi−1, ωi−1, pi) with range
{0, 1}, where ωi ∈ {0, 1} and pi ∈ [0, 1], i = 1, 2, . . ..

The main problem of sequential forecasting is to define a universal forecasting
algorithm which computes forecasts pn given past observations ω1, . . . , ωn−1 for
each n. This universal prediction algorithm should be well-calibrated for each
infinite sequence of outcomes. Oakes [11] proposed arguments (see Dawid [3]
for a different proof) that no such algorithm can be well-calibrated for all
possible sequences: any forecasting algorithm cannot be calibrated for the
sequence ω = ω1ω2 . . ., where

ωi =

 1 if pi < 0.5

0 otherwise

and pi are forecasts computed by the algorithm given ω1, . . . , ωi−1, i = 1, 2, . . ..
The corresponding intervals are I0 = [0, 0.5) and I1 = [0.5, 1]. It is easy to see
that the condition (1) of calibration fails for this ω, where I = I0 or I = I1.

Theorem 4 given below in Section 5 presents an effective method for generating
a vast majority of sequences possessing this property. It says that using coin-
tossing and a transducer algorithm, we can generate with probability close
to one an infinite sequence ω such that each forecasting algorithm cannot be
calibrated for ω.

Foster and Vohra [4] show that calibration is almost surely guaranteed with
a randomizing forecasting rule, i.e., where the forecasts are chosen using in-
ternal randomization. Kakade and Foster [7] noticed that some calibration
results require very little randomization. They defined “an almost determin-
istic” randomized rounding universal forecasting algorithm f : an observer can
only randomly round the deterministic forecast in order to calibrate for each
sequence of outcomes regardless of the nature of the source generating it. This
approach was further developed by, among others, Lehrer [8], Sandrony et
al. [13]. These papers were only concerned with asymptotic calibration. These
authors asked only that that the entire sequence of forecasts and its certain
subsequences be properly calibrated.

Non-asymptotic version of randomized forecasting was proposed by Vovk and
Shafer [18] and by Vovk et al. [19]. This approach is based on the game-
theoretic framework of Shafer and Vovk [14]. The main requirement of this
approach that the forecasts resist any betting strategy can be interpreted by
saying that they must pass all statistical tests, not only tests of calibration.

We discuss details of the randomized forecasting algorithms in Section 3 and
in Appendix A. The game-theoretic framework is partially used in Section 4.
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In this section we also develop a probabilistic version of the Oakes’ example
for the randomized rounding algorithms and present the corresponding betting
strategy.

3 Randomized forecasting

Forecasting can be thought as a perfect-information game between two players:
Forecaster and Realty [18]. Assuming that Realty makes a binary choice at
each step, a game of deterministic forecasting is described by the protocol:

FOR n = 1, 2, . . .
Forecaster announces a forecast pn ∈ [0, 1].
Reality announces an outcome ωn ∈ {0, 1}.
ENDFOR

Let P [0, 1] be the set of all probability measures on the unit interval [0, 1]
supplied with the standard σ-algebra F of all measurable subsets of [0, 1].

A game of randomized forecasting requires a new player - Random Number
Generator. It can be described by the protocol:

FOR n = 1, 2, . . .
Forecaster announces probability distribution Pn ∈ P [0, 1].
Reality announces ωn ∈ {0, 1}.
Random Number Generator announces pn ∈ [0, 1] distributed according to Pn.
ENDFOR

By Sandrony et al. [13] a randomized forecasting scheme is a sequence of
functions ζn : {0, 1}n−1 × [0, 1]n−1 → P [0, 1]; for any n given a sequence of
past forecasts p1, . . . , pn−1 and a sequence of outcomes ωn−1 = ω1 . . . ωn−1,
ζn outputs a probability Pn for a forecast pn. We denote the randomized
forecasting scheme Pωn−1(·|p1, . . . , pn−1), n = 1, 2, . . . (ω0 = λ is the empty
sequence).

For any such randomized forecasting scheme by Ionescu-Tulcea theorem (see
Shiryaev [15]) for any sequence of outcomes ω = ω1, ω2, . . ., a unique overall
probability measure Pr on the set [0, 1]∞ of all forecasting paths - infinite
sequences p1, p2, . . ., exists such that for each n, Pωn−1(·|p1, . . . , pn−1) is a con-
ditional probability induced by Pr, i.e.,

Pωn−1(pn ∈ A|p1, . . . , pn−1) = Pr(pn ∈ A|p1, . . . , pn−1)

for all n, where A is a measurable subset of [0, 1].
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Assume that for each n, the probability distribution Pωn−1(·|p1, . . . , pn−1) is
concentrated on a finite subset Dn of [0, 1], say, Dn = {pn,1, . . . , pn,mn}. The
number ∆ = lim inf

n→∞
∆n, where

∆n = inf{|pn,i − pn,j| : i 6= j},

is called the level of discreteness of the corresponding forecasting scheme on
the sequence ω = ω1ω2 . . ..

In general case Dn is a predictable, i.e., measurable with respect to the σ-
algebra Fn−1, random variable depending on ωn−1.

A typical example is the uniform rounding: for each n, rational points pn,i
divide the unit interval into equal parts of size 0 < ∆ < 1; the probability
distribution Pωn−1(·|p1, . . . , pn−1) is concentrated on these points. In this case
the corresponding level of discreteness on arbitrary sequence ω1, ω2, . . . equals
∆.

Kakade and Foster [7] presented “an almost deterministic” universal random-
ized rounding forecasting scheme. This scheme, given a partition of the unit
interval into equal parts of size ∆, randomly rounds a deterministic forecast
computed by some algorithm to nearby points of the partition.

Notice that the random forecast pn generated by Kakade and Foster’s forecast-
ing scheme is independent on the previous forecasts p1, . . . , pn−1; it depends
only on ωn−1 (see Appendix A). In this case the overall probability distribu-
tion Pr defined by Kakade and Foster’s randomized forecasting scheme Pωn−1

is the product of independent probability distributions.

Proposition 1 (Kakade and Foster) For any infinite sequence ω = ω1ω2 . . .
and for the characteristic function I(p) of any subinterval of [0, 1] the overall
probability Pr of the event

∣∣∣∣∣ 1n
n∑
i=1

I(pi)(ωi − pi)
∣∣∣∣∣ ≤ ∆ (2)

tends to 1 as n → ∞, where Pr is the overall probability distribution defined
by Kakade and Foster’s randomized forecasting scheme Pωn−1, n = 1, 2, . . .,
and p1, p2, . . . is a sequence of forecasts distributed according to Pr.

For example, the forecast 0.8512 can be rounded up to second digit to 0.86
with probability 0.12, and to 0.85 with probability 0.88, at the next moment
of time, the forecast 0.2688 can be rounded up to second digit to 0.26 with
probability 0.12, and to 0.27 with probability 0.88.

Details of the Kakade and Foster’s algorithm are given in Appendix A.
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4 Oakes’ example for randomized rounding forecasting

In this section we consider some probabilistic variant of the Oakes’ example
in the form of a game. This game will be used in the proof of Theorem 2.

A generalization of Foster and Vohra’s result was obtained by Vovk and
Shafer [18]. They consider a perfect-informatin game of randomized forecasting
between the players - Forecaster, Skeptic, Reality, Random Number Genera-
tor.

The goal of Forecaster is to state probabilities that pass all possible statistical
tests in light of Realty subsequent moves. This goal is formalized by adding a
third player - Skeptic, who seeks to refute Forecaster’s probabilities.

We consider some probabilistic version of the game:

Let K0 = 1.
FOR n = 1, 2, . . .
Skeptic announced Sn : [0, 1]→ R.
Forecaster announces a probability distribution Pn ∈ P [0, 1].
Reality announces ωn ∈ {0, 1}.
Random Number Generator announces pn ∈ [0, 1] distributed according to Pn.
Skeptic updates his capital Kn = Kn−1 + Sn(pn)(ωn − pn).
ENDFOR

Restriction on Skeptic: Skeptic must choose the Sn so that his capital Kn is
nonnegative for all n no matter how the other players move.

Winner: Forecaster wins if Skeptic’s capital Kn stays bounded as n → ∞.
Otherwise Realty and Skeptic win. Random Number Generator is a neutral
player. 2

Theorem 1 of Vovk and Shafer [18] which is stated in a purely game-theoretic
setting implies for our mixed setting that there exist a randomized strategy
for Forecaster - a sequence of probability distributions
Pn = Pωn−1(·|p1, . . . pn−1), n = 1, 2, . . ., and an overall probability Pr for these
probabilities such that for each sequence ω = ω1ω2 . . . announced by Realty
the set of forecasting paths p1, p2, . . . where Forecaster wins has Pr-probability
1.

2 Our approach is not purely game-theoretic in sense of Shafer and Vovk [14].
Random Number Generator is used to introduce into consideration the forecasting
paths. A purely game-theoretic version of this game and of Theorem 1 (and even of
Theorem 2) can also be obtained, but it is out of the scope of this paper.
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By [18] (Theorem 3) and [19] Proposition 1 is a corollary of this result.

We prove that when Forecaster uses finite subsets of [0, 1] for randomization
Realty and Skeptic can defeat Forecaster in this forecasting game.

Define a strategy for Realty: at step n Realty announces an outcome

ωn =

 0 if Pn([0.5, 1]) ≥ 0.5

1 otherwise.

Let εk = 2−k, k = 1, 2, . . .. We consider two infinite sequences of Skeptic’s
auxiliary strategies:

S1,k
n (p) = −εkK1,k

n−1ξ(p ≥ 0.5), (3)

S2,k
n (p) = εkK2,k

n−1ξ(p < 0.5), (4)

where ξ(true) = 1, ξ(false) = 0 and Ks,kn−1 is the capital of Skeptic at the end

of step n − 1 when he follows the strategy Ss,kn−1, s = 1, 2 and k = 1, 2, . . .,

Ks,k0 = 1.

We combine them in the strategy Sn(p) = 1
2
(S1

n(p) + S2
n(p)), where S1

n(p) =
∞∑
k=1

εkS
1,k
n (p) and S2

n(p) =
∞∑
k=1

εkS
2,k
n (p). It follows from the definition that

Ks,k
n (p) ≤ 2n and |Ss,kn (p)| ≤ 2n−1 for s = 1, 2 and for all p, k and n. Then

these sums are finite for each n and p.

The total capital of Skeptic at step n when he follows the strategy Sn(p) equals

Kn =
1

2

∞∑
k=1

εk(K1,k
n +K2,k

n ).

Suppose Forecaster uses a randomized forecasting scheme Pωn−1(·|p1, . . . , pn−1)
for defining Pn. Since ωn−1 and Sin, i = 1, 2, are defined in terms of σ-algebra
Fn−1, by Ionescu-Tulcea theorem an overall probability distribution Pr exists
such that for each n, Pn = Pr(·|p1, . . . , pn−1) is the conditional probability
induced by Pr.

Theorem 1 Suppose Forecaster’s randomized forecasting scheme has a posi-
tive level of discreteness on each infinite sequence ω. Then using the strategies
defined above, Realty and Skeptic win with Pr-probability 1.

Proof. Suppose that for each j, pj is distributed according to Pj. Define two
sequences of random variables
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ϑn,1 =
n∑
j=1

ξ(pj ≥ 0.5)(ωj − pj),

ϑn,2 =
n∑
j=1

ξ(pj < 0.5)(ωj − pj),

where n = 1, 2, . . ..

Suppose that for any n, the probability distribution Pn is concentrated on
a finite set {pn,1, . . . , pn,mn}. Denote p−n = max{pn,t : pn,t < 0.5} and p+

n =
min{pn,t : pn,t ≥ 0.5}. 3 By definition ωn, p+

n and p−n are predictable and
p+
n − p−n ≥ ∆ for all n, where ∆ > 0. We have

E(ϑn,1) ≤
∑
ωj=0

Pj{pj ≥ 0.5}(−p+
j ) +

∑
ωj=1

Pj{pj ≥ 0.5}(1− p+
j ) ≤

−0.5
n∑
j=1

ξ(ωj = 0)p+
j + 0.5

n∑
j=1

ξ(ωj = 1)(1− p+
j ).

E(ϑn,2) ≥
∑
ωj=0

Pj{pj < 0.5}(−p−j ) +
∑
ωj=1

Pj{pj < 0.5}(1− p−j ) ≥

−0.5
n∑
j=1

ξ(ωj = 0)p−j + 0.5
n∑
j=1

ξ(ωj = 1)(1− p−j ),

where E is the mathematical expectation with respect to Pr. Then

E(ϑn,2)− E(ϑn,1) ≥ 0.5∆n (5)

for all n.

By the martingale strong law of large numbers with Pr-probability 1,

1

n
ϑn,1 −

1

n
E(ϑn,1)→ 0,

1

n
ϑn,2 −

1

n
E(ϑn,2)→ 0 (6)

as n→∞. Then by (5) and (6) with Pr-probability 1 for each δ > 0,

1

n
ϑn,2 −

1

n
ϑn,1 ≥ 0.5∆− δ (7)

for all sufficiently large n. In particular, (7) implies Corollary 1 below.

3 For technical reason, if necessary, we add 0 and 1 to the support set of Pn and
set their probabilities to be 0.
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We follow Shafer and Vovk’s [14] method of defining the defensive strategy for
Skeptic. For any k and n,

K1,k
n =

n∏
j=1

(1− εkξ(pj ≥ 0.5)(ωj − pj)), (8)

K2,k
n =

n∏
j=1

(1 + εkξ(pj < 0.5)(ωj − pj)). (9)

If Skeptic follows the strategy (3) then at step n

lnK1,k
n ≥ −εkϑn,1 − ε2kn. (10)

If Skeptic follows the strategy (4) then at step n

lnK2,k
n ≥ εkϑn,2 − ε2kn. (11)

Here we have used the inequality ln(1 + r) ≥ r − r2 for all |r| ≤ 1.

The inequalities (7), (10) and (11) imply

lim sup
n→∞

lnK1,k
n + lnK2,k

n

n
≥ 1

2
εk∆− 2ε2k ≥ 2ε2k (12)

is valid with Pr-probability 1, where εk ≤ 1
8
∆.

Using (12), for s = 1 or for s = 2 with Pr-probability 1

lim sup
n→∞

lnKs,kn
n

≥ ε2k. (13)

By definition for s = 1, 2 and for all k, Ks,kn ≥ 0 for all n no matter how
the other players move. By (13) if εk ≤ 1

8
∆ then for s = 1 or for s = 2,

lim sup
n→∞

Ks,kn =∞ with Pr-probability 1.

Since Kn is the weighted sum of Ks,kn , we have lim sup
n→∞

Kn = ∞ on a set of

forecasting paths p1, p2, . . . of Pr-probability 1. 4

We also obtain a lower bound of calibration error.

Corollary 1 Suppose Forecaster’s randomized forecasting scheme has a pos-
itive level of discreteness on each infinite sequence ω. Then using the strategy
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defined above, Realty announces a sequence ω such that, for i = 1 or for i = 2,
with Pr-probability 1

lim sup
n→∞

∣∣∣∣ 1nϑn,i
∣∣∣∣ ≥ 0.25∆. (14)

This corollary follows from (7).

5 Uniform lower bounds of calibration error

In this section we study the asymptotic calibration in the algorithmic setting.
In particular, we present a computable uniform version of Theorem 1. We
show that the lower bound (14) of calibration error also is a uniform lower
bound for all computable randomized forecasting schemes. We also show that
this uniform lower bound is valid for a vast majority of sequences generated
by some probabilistic algorithm.

Let Ω = {0, 1}∞ be the set of all infinite binary sequences, Ξ = ∪∞n=1{0, 1}n
be the set of all finite binary sequences, and λ be the empty sequence. For
any finite or infinite sequence ω = ω1 . . . ωn . . ., we write ωn = ω1 . . . ωn (we
put ω0 = ω0 = λ). Also, l(ωn) = n denotes the length of the sequence ωn. If x
is a finite sequence and ω is a finite or infinite sequence then xω denotes the
concatenation of these sequences; x v ω means that x = ωn for some n.

We need some computability concepts. Let R be the set of all real numbers
extended by adding the infinities −∞ and +∞.

For any set of of finite objects A, we suppose that elements of A can be effec-
tively enumerated by positive integer numbers (see Rogers [12]). In particular,
we will identify a computer program with its number. We fix some effective
one-to-one enumeration of all pairs (triples, and so on) of nonnegative integer
numbers. We identify any pair (t, s) with its number 〈t, s〉.

A function φ:A→ R is called (lower) semicomputable if the set

{(r, x) : r < φ(x), r is a rational number}

is recursively enumerable. This means that there is an algorithm which when
fed with a rational number r and a finite object x eventually stops if r < φ(x)
and never stops, otherwise. In other words, the semicomputability of f means
that if φ(x) > r this fact will sooner or later be learned, whereas if φ(x) ≤ r
we may be for ever uncertain. A function φ is upper semicomputable if −φ is
lower semicomputable.
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A standard argument based on the recursion theory shows that there exist the
lower and the upper semicomputable real functions φ−(j, x) and φ+(k, x) uni-
versal for all lower semicomputable and upper semicomputable functions from
x ∈ Ξ. 4 As follows from the definition, for every computable real function
φ(x) there exist a pair 〈j, k〉 such that

φ(x) = φ−(j, x) = φ+(k, x)

for all x. Let φ−s (j, x) be equal to the maximal rational number r such that
the triple (r, j, x) is enumerated in s steps in the process of enumeration of
the set

{(r, j, x) : r < φ(j, x), r is rational}
and equals−∞, otherwise. Any such function φ−s (j, x) takes only finite number
of rational values distinct from −∞. By definition, φ−s (j, x) ≤ φ−s+1(j, x) for
all j, s, x, and

φ−(j, x) = lim
s→∞

φ−s (j, x).

An analogous non-increasing sequence of functions φ+
s (k, x) exists for any up-

per semicomputable function.

A function φ : Ξ→ R is computable if there exists an algorithm which given
z ∈ Ξ and a degree of precision κ computes a rational approximation of φ(z)
up to κ. In more detail, let i = 〈t, k〉. We say that the function φi(x) is defined
on x if given any degree of precision - a positive rational number κ > 0, it
holds that

|φ+
s (t, x)− φ−s (k, x)| ≤ κ (15)

for some s; φi(x) is undefined otherwise. If some s exists such that (15) holds,
define φi,κ(x) = φ−s (k, x) for minimal such s, φi,κ(x) is undefined otherwise.
The function φi,κ(x) is called the rational approximation (from below) of φi(x)
up to κ.

Any measure P on Ω can be defined as follows. Let us consider intervals

Γz = {ω ∈ Ω : z v ω},

where z ∈ Ξ. We denote P (z) = P (Γz) and extend this function to all Borel
subsets of Ω in a standard way.

We also use the concept of computable operation on Ξ
⋃

Ω [22,23]. Let F̂ be
a recursively enumerable set of ordered pairs of finite sequences satisfying the

4 This means that each lower semicomputable function φ(x) can be represented as
φ(x) = φ−(j, x) for some j. The same holds for upper semicomputability.
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following properties:

• (i) (x, λ) ∈ F̂ for each x;
• (ii) if (x, y) ∈ F̂ , (x′, y′) ∈ F̂ and x v x′ then y v y′ or y′ v y for all finite

binary sequences x, x′, y, y′.

A computable operation F is defined as follows

F (ω) = sup{y | x v ω and (x, y) ∈ F̂ for some x},

where ω ∈ Ω
⋃

Ξ and sup is in the sense of the partial order v on Ξ.

Informally, the computable operation F is defined by some algorithm; this
algorithm when fed with an infinite or a finite sequence ω takes it sequentially
bit-by-bit, processes it, and produces an output sequence also sequentially
bit-by-bit.

A probabilistic algorithm is a pair (P, F ), where P is a computable measure
on the set of all binary sequences and F is a computable operation. For any
probabilistic algorithm (P, F ) and a set A ⊆ Ω, we consider the probability

P{ω : F (ω) ∈ A}

of generating by means of F a sequence from A given a sequence ω distributed
according to the computable probability distribution P . In that follows P = L,
where L(x) = L(Γx) = 2−l(x) is the uniform measure on Ω.

A deterministic forecasting system is a function f : Ξ→ [0, 1] (see Dawid [1]).
In that follows we consider total forecasting systems f , i.e., everywhere defined
on Ξ.

In that follows, we mean by a randomized forecasting system a probability
distribution Px on [0, 1], where x ∈ Ξ is a parameter. 5 The precise definition
of computable probability distribution on [0, 1] requires some technicalities.
In fact, in the construction below, we compute Px only at one set [0.5, 1]; so,
we call a randomized forecasting system Px weakly computable if Px([0.5, 1])
is a computable function from the parameter x.

Let I0 = I0(p) and I1 = I1(p) be the characteristic functions of the intervals
[0, 0.5) and [0.5, 1], correspondingly.

The following theorem gives a uniform lower bound of calibration error for
computable randomized forecasting with positive level of discretness.

5 Such forecasting systems are used in Kakade and Foster’s universal forecasting
algorithm (see Appendix A). We can prove a game-theoretic version of Theorem 2
based on the more general Sandrony’s et al. forecasting schemes.
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Theorem 2 For any ε > 0, a probabilistic algorithm (L, F ) can be con-
structed, which with probability ≥ 1 − ε outputs an infinite binary sequence
ω = ω1ω2 . . . such that for every weakly computable randomized forecasting
system Px with the level of discreteness ∆ on ω, for ν = 0 or for ν = 1,
Pr-probability of the event

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

Iν(pi)(ωi − pi)
∣∣∣∣∣ ≥ 0.25∆ (16)

equals 1, where the overall probability Pr is defined by Pωi−1, i = 1, 2, . . ., and
p1, p2, . . . are distributed according to these probabilities.

Theorem 2 uses forecast-based selection rules - Iν(pi), ν = 0, 1. In the case
when we select random forecasts for checking using their mean value, we obtain
a lower bound does not depending on the accuracy of randomized rounding.

Let for any i, Eωi−1 =
1∫
0
pPωi−1(dp) be the mean value of the forecasts generated

by a randomized forecasting system Pωi−1 .

In the following theorem we consider randomized forecasting systems f with
computable mathematical expectations, i.e., Eωi−1 is a computable real func-
tion from the parameter ωi−1.

Theorem 3 For any ε > 0, a probabilistic algorithm (L, F ) can be con-
structed, which with probability ≥ 1 − ε outputs an infinite binary sequence
ω = ω1ω2 . . . such that for every randomized forecasting system Px with com-
putable mathematical expectation, for ν = 0 or for ν = 1, Pr-probability of
the event

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

Iν(Eωi−1,n)(ωi − pi)
∣∣∣∣∣ ≥ 0.25 (17)

equals 1, where the overall probability Pr is defined by Pωn−1, n = 1, 2, . . .,
and p1, p2, . . . are distributed according to these probabilities. 6 Here, Eωi−1,n

is a computable sequence of rational approximations of Eωi−1 up to a given
precision κn, where κn → 0 as n→∞, i = 1, 2, . . .. 7

The following theorem is a computable uniform version of the Oakes’ counter
example for deterministic forecasting systems. We expand this example to a

6 The lower bounds of Theorems 3 and 4 have been weakened comparing to the
conference version [21] (0.25 is used instead of 0.5− ε). Author does not know how
to improve these lower bounds.
7 This sequence will be constructed in the proofs of Theorems 2 and 3.
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large set of sequences generated by a probabilistic algorithm. A variant of this
result was obtained by V’yugin [20].

An outcome-based selection rule is a function δ : Ξ→ {0, 1}.

Theorem 4 For any ε > 0, a probabilistic algorithm (L, F ) can be con-
structed, which with probability ≥ 1 − ε outputs an infinite binary sequence
ω1ω2 . . . such that for every deterministic forecasting algorithm f there exists
a computable outcome-based selection rule δ such that the following inequality
holds

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

δ(ωi−1)(ωi − pi)
∣∣∣∣∣ ≥ 0.25, (18)

where pi = f(ωi−1), i = 1, 2, . . ..

For each deterministic forecasting system f , there exists a unique probability
measure P on Ω such that P (Γx1) = f(x)P (Γx) for all x ∈ Ξ. In other words,
f is a version of the conditional probability, according to P , that x will be
followed by 1. Dawid’s original notion of calibration can be considered as a
version of von Mises’ definition of an individual random sequence with respect
to the measure P (see Li and Vitányi [9] for details of algorithmic randomness).

V’yugin [20] proved that for any computable probability measure P , the mar-
tingale strong law of large numbers holds for each infinite sequence ω random
with respect to P in sense of Martin-Löf. Therefore, the probabilistic algorithm
(L, F ) from Theorem 4 outputs with probability ≥ 1 − ε an infinite binary
sequence ω which is not Martin-Löf random (it is not even Dawid random)
with respect to each computable probability distribution.

6 Proofs of Theorems 2-4

For any probabilistic algorithm (P, F ), we consider the function

Q(x) = P{ω : x v F (ω)}. (19)

It is easy to verify that this function is lower semicomputable and satisfies:

Q(λ) ≤ 1;

Q(x0) +Q(x1) ≤ Q(x)

16



for all x. Any function satisfying these properties is called semicomputable
semimeasure. For any semicomputable semimeasure Q, a probabilistic al-
gorithm (L, F ) exists such that (19) holds, where P = L (for the proof
see [22,23]).

Though the semimeasure Q is not a measure, we consider the corresponding
measure on the set Ω. Define

Q̄(Γx) = inf
n

∑
l(y)=n,xvy

Q(y)

for all x ∈ Ξ and extend this function to all Borel subsets of Ω (see [23]).

For any semimeasure P , define the support set of P

EP = {ω ∈ Ω : ∀n(P (ωn) 6= 0)}.

It is easy to see that EP is a closed subset of Ω and P̄ (EP ) = P̄ (Ω).

We will construct a semicomputable semimeasure Q as a some sort of network
flow. We define an infinite network on the base of the infinite binary tree.
Any x ∈ Ξ defines two directed edges (x, x0) and (x, x1) of length one. In
the construction below we will add to the network extra edges (x, y) of length
> 1, where x, y ∈ Ξ, x v y and y 6= x0, x1. By the length of an edge (x, y) we
mean the number l(y)− l(x). For any edge σ = (x, y) we denote by σ1 = x its
starting vertex and by σ2 = y its terminal vertex. A computable function q(σ)
defined on all edges of length one and on all extra edges and taking rational
values is called a network if for every x ∈ Ξ

∑
σ:σ1=x

q(σ) ≤ 1.

Let G be the set of all extra edges of the network q (it is a part of the domain
of q).

By q-flow we mean the minimal semimeasure P such that P ≥ R, where the
function R is defined by the following recursive equations

R(λ) = 1;

R(y) =
∑

σ:σ2=y

q(σ)R(σ1) (20)

for y 6= λ.

By definitionR is a computable function taking rational values and the semimea-
sure P is lower semicomputable.
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A network q is called elementary if the set of extra edges is finite and q(σ) =
1/2 for almost all edges of unit length. For any network q we define the network
flow delay function (q-delay function)

d(x) = 1− q(x, x0)− q(x, x1).

The construction below works with all programs i computing the functions
φi(x). 8 In the proof (see Lemma 6) we use a special class of these functions,
namely, functions of the type

φ(x) = Px([0.5, 1]), (21)

where Px, x ∈ Ξ, is a weakly computable randomized forecasting system. For
any such function φ, φ = φi for some i.

The processing of any program i is divided on sessions s = 1, 2, . . .. At each
session s, the construction works with the rational approximations φi,κs(x) of
φi(x) from below up to κs for all x ∈ Ξ, where κs = 1/s.

Besides, at each session s, we visit each rational approximation φi,κs(x) on
infinitely many steps n. To do this, we define some function p(n) such that
for any positive integer number m we have p(n) = m for infinitely many n.
For example, we can define p(〈m, k〉) = m and p′(〈m, k〉) = k for all m and
k, where 〈m, k〉 is some computable one-to-one enumeration of all pairs of
nonnegative integer numbers. Then for each step n we compute 〈i, s〉 = p(n),
where i is a program and s is a number of a session; so, i = p(p(n)) and
s = p′(p(n)).

For a program i, a number of session s, finite binary sequences x and y, an
elementary network q, and for a nonnegative integer number n, the predicate
B(〈i, s〉, x, y, q, n) is true if the following holds

• (i) sl(x) < n;
• (ii) l(y) = n, x v y,
• (iii) d(yk) < 1 for all k, 1 ≤ k ≤ n, where d is the q-delay function and
yk = y1 . . . yk;
• (iv) for all k such that l(x) ≤ k < sl(x) the values φi,κs(y

k) are defined in
≤ n steps and

yk+1 =

 0 if φi,κs(y
k) ≥ 0.5

1 otherwise.

8 Recall that i = 〈j, k〉 for some j, k; we use the lower and upper semicomputable
real functions φ−(j, x) and φ+(k, x) universal for all lower semicomputable and
upper semicomputable functions from x ∈ Ξ to compute values φi(x).
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It is false otherwise. Define

β(x, q, n) = min{y : p(l(y)) = p(l(x)), B(〈p(p(l(x))), p′(p(l(x)))〉, x, y, q, n)}

Here p(p(l(x))) is a program and p′(p(l(x))) is a number of a session; min is
considered for lexicographical ordering of strings; we suppose that min ∅ is
undefined.

Lemma 1 For any total function φi, β(x, q, n) is defined for all x ∈ Ξ and
for all sufficiently large n such that p(p(n)) = i.

Proof. The needed sequence y can be easily defined for all sufficiently large n
sequentially bit-by-bit, since φi,κs(z) is defined for all z and s. 4

The goal of the construction below is the following. Each extra edge σ corre-
sponds to some task number I = 〈i, s〉 such that p(l(σ1)) = p(l(σ2)) = I. The
goal of the task I is to define a finite set of extra edges σ such that for each
infinite binary sequence ω the following holds: either ω contains some extra
edge as a subword, or the network flow delay function d equals 1 on some
initial fragment of ω.

For each extra edge σ added to the network q, B(I, σ1, σ2, q
n−1, n) is true; it

is false, otherwise.

Lemma 5 shows that Q̄(EQ) > 1 − 0.5ε, where Q is the q-flow and EQ is its
support set. Lemma 6 shows that for each ω ∈ EQ, the event (16) holds with
the overall probability 1.

Construction. Let ρ(n) = (n+ n0)
2 for some sufficiently large n0 (the value

n0 will be specified below in the proof of Lemma 5).

Using the mathematical induction by n, we define a sequence qn of elementary
networks. Put q0(σ) = 1/2 for all edges σ of length one.

Let n > 0 and a network qn−1 be defined. Let dn−1 be the qn−1-delay function
and let Gn−1 be the set of all extra edges. We also suppose that l(σ2) < n for
all σ ∈ Gn−1.

Let us define a network qn. At first, we define a network flow delay function
dn and a set Gn. The construction can be split up into three cases.

Let w(I, qn−1) be equal to the minimal m such that p(m) = I and m > sl(σ2)
for each extra edge σ ∈ Gn−1 such that p(l(σ1))) < I, where s = p′(p(I)) is
the number of the session assigned with the task I.

The inequality w(I, qm) 6= w(I, qm−1) can be induced by some task J < I
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that adds an extra edge σ = (x, y) such that l(y) > w(i, qm−1) and p(l(x)) =
p(l(y)) = J . Lemma 2 (below) will show that this can happen only at finitely
many steps of the construction.

Case 1. w(p(n), qn−1) = n (the goal of this part is to start a new task I = p(n)
or to restart the existing task I = p(n) if it was destroyed by some task J < I
at some preceding step).

Put dn(y) = 1/ρ(n) for l(y) = n and define dn(y) = dn−1(y) for all other y.
Put Gn = Gn−1.

Case 2. w(p(n), qn−1) < n (the goal of this part is to process the task I = p(n)).

Let Cn be the set of all x such that w(I, qn−1) ≤ l(x) < n, 0 < dn−1(x) < 1,
the function β(x, qn−1, n) is defined 9 and there is no extra edge σ ∈ Gn−1

such that σ1 = x.

In this case for each x ∈ Cn define dn(β(x, qn−1, n)) = 0, and for all other y of
length n such that x < y define

dn(y) =
dn−1(x)

1− dn−1(x)
.

Define dn(y) = dn−1(y) for all other y. We add an extra edge to Gn−1, namely,
define

Gn = Gn−1 ∪ {(x, β(x, qn−1, n)) : x ∈ Cn}.

We say that the task I = p(n) adds the extra edge (x, β(x, qn−1, n)) to the
network and that all existing tasks J > I are destroyed by the task I.

After Case 1 and Case 2, define for any edge σ of unit length

qn(σ) =
1

2
(1− dn(σ1))

and qn(σ) = dn(σ1) for each extra edge σ ∈ Gn.

Case 3. Cases 1 and 2 do not hold.

Define dn = dn−1, qn = qn−1, Gn = Gn−1.

As the result of the construction we define the network q = lim
n→∞

qn, the

network flow delay function d = lim
n→∞

dn and the set of extra edges G = ∪nGn.

9 In particular, p(l(x)) = I and l(β(x, qn−1, n)) = n.
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The functions q and d are computable and the set G is recursive by their
definitions. Let Q denote the q-flow.

The following lemma shows that any task can add new extra edges only at
finite number of steps. Let G(I) be the set of all extra edges added by the
task I, w(I, q) = limn→∞w(I, qn).

Lemma 2 The set G(I) is finite and w(I, q) <∞ for all I.

Proof. Note that if G(J) is finite for all J < I, then w(I, q) < ∞. Hence, we
must prove that the set G(I) is finite for all I. Suppose the opposite assertion
holds. Let I be the minimal such that G(I) is infinite. By choice of I the sets
G(J) for all J < I are finite. Then w(I, q) <∞.

By definition if d(ωm) 6= 0 then pm = 1/d(ωm) is a positive integer number.
Besides, if (ωn, y), (ωm, y′) ∈ G(I), where n < m and l(y) = m, then pn > pm.
Hence, for each ω ∈ Ω a maximal m exists such that (ωm, y) ∈ G(I) for
some y or no such extra edge exists. In the latter case let m = w(I, q). Define
u(ω) = 1/d(ωm).

By the construction the integer valued function u(ω) is constant on the interval
Γωm , and then, it is continuous in the topology generated by such intervals.
Since Ω is compact in this topology, u(ω) is bounded. Then for some m′,
u(ω) = u(ωm

′
) for all ω. By the construction if any extra edge of Ith type was

added to G(I) at some step then d(y) > d(x) holds for some new pair (x, y)
such that x ⊆ y. This gives us a contradiction if G(I) is infinite. 4

An infinite sequence α ∈ Ω is called an I-extension of a finite sequence x if
x v α and B(I, x, αn, n) is true for almost all n.

A sequence α ∈ Ω is called I-closed if d(αn) = 1 for some n such that p(n) = I,
where d is the q-delay function. Note that if σ ∈ G(I) is an extra edge then
B(I, σ1, σ2, n) is true, where n = l(σ2).

Lemma 3 Assume that for each initial fragment ωn of an infinite sequence
ω some I-extension exists. Then either the sequence ω will be I-closed in the
process of the construction or ω contains an extra edge of Ith type (i.e. σ2 v ω
for some σ ∈ G(I)).

Proof. Assume a sequence ω is not I-closed. By Lemma 2 the maximal m exists
such that p(m) = I and d(ωm) > 0. Since the sequence ωm has an I-extension
and d(ωk) < 1 for all k, by Case 2 of the construction a new extra edge (ωm, y)
of Ith type must be added to the binary tree. By the construction d(y) = 0
and d(z) 6= 0 for all z such that ωm v z, l(z) = l(y), and z 6= y. By choice of
m we have y v ω. 4

21



Lemma 4 For any y, Q(y) = 0 if and only if q(σ) = 0 for some edge σ of
unit length located on y (this edge satisfies σ2 v y).

Proof. The necessary condition is obvious. To prove that this condition is
sufficient, assume that q(yn, yn+1) = 0 for some n < l(y) but Q(y) 6= 0. Then
by definition d(yn) = 1. Since Q(y) 6= 0, an extra edge (x, z) ∈ G exists such
that x v yn and yn+1 v z. But, by the construction, this extra edge cannot
be added to the network ql(z)−1 since d(zn) = 1. This contradiction proves the
lemma. 4

By Lemma 4 the relation Q(y) = 0 is recursive and

EQ = Ω \ ∪d(x)=1Γx, (22)

where EQ is the support set of Q.

Lemma 5 It holds that Q̄(EQ) > 1− 0.5ε.

Proof. We bound Q̄(Ω) from below. Let R be defined by (20). By definition of
the network flow delay function, we have

∑
u:l(u)=n+1

R(u) =
∑

u:l(u)=n

(1− d(u))R(u) +
∑

σ:σ∈G,l(σ2)=n+1

q(σ)R(σ1). (23)

Define an auxiliary sequence

Sn =
∑

u:l(u)=n

R(u)−
∑

σ:σ∈G,l(σ2)=n

q(σ)R(σ1).

At first, we consider the case w(p(n), qn−1) < n. If there is no edge σ ∈ G such
that l(σ2) = n then Sn+1 ≥ Sn. Assume some such edge exists. Define

P (u, σ)⇐⇒ l(u) = l(σ2)&σ1 v u&u 6= σ2&σ ∈ G.

By definition of the network flow delay function, we have

∑
u:l(u)=n

d(u)R(u) =
∑

σ:σ∈G,l(σ2)=n

d(σ2)
∑

u:P (u,σ)

R(u) =

=
∑

σ:σ∈G,l(σ2)=n

d(σ1)

1− d(σ1)

∑
u:P (u,σ)

R(u) ≤
∑

σ:σ∈G,l(σ2)=n

d(σ1)R(σ1) =

=
∑

σ:σ∈G,l(σ2)=n

q(σ)R(σ1). (24)
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Here we used the inequality∑
u:P (u,σ)

R(u) ≤ R(σ1)− d(σ1)R(σ1)

for all σ ∈ G such that l(σ2) = n. Combining this bound with (23) we obtain
Sn+1 ≥ Sn.

Let us consider the case w(p(n), qn−1) = n. Then

∑
u:l(u)=n

d(u)R(u) ≤ ρ(n) =
1

(n+ n0)2
.

Combining (23) and (24) we obtain

Sn+1 ≥ Sn −
1

(n+ n0)2

for all n. Since S0 = 1, this implies

Sn ≥ 1−
∞∑
i=1

1

(i+ n0)2
≥ 1− 0.5ε

for some sufficiently large constant n0. Since Q ≥ R, it holds that

Q̄(Ω) = inf
n

∑
l(u)=n

Q(u) ≥ inf
n
Sn ≥ 1− 0.5ε.

Lemma is proved. 4

Lemma 6 For each weakly computable randomized forecasting system Px and
and for each sequence ω ∈ EQ, the event (16) holds with Pr-probability 1,
where the overall probability Pr is defined by Pωi−1, i = 1, 2, . . ..

Proof. Assume that ω ∈ EQ and Px is a weakly computable randomized fore-
casting system, i.e., the corresponding φi(x) = Px([0.5, 1]) is defined for all
x ∈ Ξ.

Let φi,κs be a rational approximation of of φi from below up to κs = 1/s, and
let I = 〈i, s〉. Since there are infinitely many sessions s of the construction
when we visit φi, we can consider only steps n, p(n) = I, such that s is
sufficiently large.

By (22), d(ωn) < 1 for all n. Since ω is an I-extension of ωn for each n, by
Lemma 3 there exists an extra edge σ ∈ G(I) such that σ2 v ω. In that follows
k = l(σ1) and n = sk.

We reproduce the game from the proof of Theorem 1 on the edge σ.
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Recall that for any j, p−j = max{pj,t : pj,t < 0.5} and p+
j = min{pj,t : pj,t ≥

0.5}, where {pj,1, . . . , pj,mj
} is the support set of Pωj−1 . By definition of preci-

sion of rounding p+
j − p−j ≥ ∆ for all j.

Assume that pj are distributed according to Pωj−1 , where j = 1, 2, . . .. In that
follows, we use the inequality

φi,κs(ω
j−1) ≤ Pωj−1{pj ≥ 0.5} ≤ φi,κs(ω

j−1) + κs. (25)

Consider two sequences of random variables

ϑn,1 =
n∑

j=k+1

ξ(pj ≥ 0.5)(ωj − pj), (26)

ϑn,2 =
n∑

j=k+1

ξ(pj < 0.5)(ωj − pj), (27)

where ξ(true) = 1 and ξ(false) = 0.

We compute the bounds on mathematical expectations of these variables.
These expectations are taken with respect to the overall probability distribu-
tion Pr generated by the probability distributions Prωj−1 , j = 1, 2, . . . (ω is
fixed). Using the definition of the subword σ ∈ G(i) of the sequence ω, we
obtain (k < j ≤ n)

E(ϑn,1) ≤
∑
ωj=0

Pωj−1{pj ≥ 0.5}(−p+
j ) +

∑
ωj=1

Pωj−1{pj ≥ 0.5}(1− p+
j ) ≤ (28)

−0.5
n∑

j=k+1

ξ(ωj = 0)p+
j + (0.5 + κs)

n∑
j=k+1

ξ(ωj = 1)(1− p+
j ).

E(ϑn,2) ≥
∑
ωj=0

Pωj−1{pj < 0.5}(−p−j ) +

∑
ωj=1

Pωj−1{pj < 0.5}(1− p−j ) ≥ (29)

−0.5
n∑

j=k+1

ξ(ωj = 0)p−j + (0.5− κs)
n∑

j=k+1

ξ(ωj = 1)(1− p−j ).

Subtracting (28) from (29) we obtain

E(ϑn,2)− E(ϑn,1) ≥ 0.5
n∑

j=k+1

ξ(ωj = 0)(p+
j − p−j ) +

24



+0.5
n∑

j=k+1

ξ(ωj = 1)(p+
j − p−j )−

−κs
n∑

j=k+1

ξ(ωj = 1)(2− p−j − p+
j ) ≥

≥ 0.5∆(n− k)− 2κs(n− k) = (0.5∆− 2κs)(n− k). (30)

Then
E(ϑn,1) ≤ (−0.25∆− κs)(n− k)

or
E(ϑn,2) ≥ (0.25∆− κs)(n− k)

for infinitely many n, k. Since the ratio k/n and the number κs = 1/s become
arbitrary small for large n, we have

lim inf
n→∞

1

n
E(ϑn,1) ≤ −0.25∆

or

lim sup
n→∞

1

n
E(ϑn,2) ≥ 0.25∆.

By the strong law of large numbers, for ν = 1, 2, with Pr-probability 1

1

n

n∑
j=1

Iν(pj)(ωj − pj)−
1

n
E(ϑn,ν)→ 0

as n → ∞. This implies that Pr-probability of the event (16) equals 1 for
ν = 0 or for ν = 1. Lemma 6 and Theorem 2 are proved. 4

Sketch of the proof of Theorem 4. The proof is in the line of the proof of
Theorem 2, where φ(ωn−1) denotes a deterministic forecasting system. Let n,
k be the same as in the proof of Lemma 6, and let κs be a non-increasing
computable function taking rational values such that κs → 0 as s → ∞. By
definition of the sequence ω for ν = 0 or for ν = 1, Iν(φi,κs(ω

j−1)) = 1 for at
least one half of all j such that k < j ≤ n. Then we have for this ν

∣∣∣∣∣∣
n∑
j=k

Iν(φi,κs(ω
j−1))(ωj − pj)

∣∣∣∣∣∣ ≥ (0.25− κs)(n− k), (31)

where pj = φi(ω
j−1), i = p(p(n)) and s = p′(p(n)). Since the ratio k/n and

the number κs become arbitrary small for sufficiently large n, we have (18) for
some selection rule δ, where δ satisfies δ(ωj−1) = Iν(φi,κs(ω

j−1)) for k < j ≤ n.

Sketch of the proof of Theorem 3. To prove (17), we define in (21) φi(x) = Ex
- the mathematical expectation of the forecast generated by Px.

Let κs be as in the proof of Theorem 4 and Eωj−1,s = φi,κs(ω
j−1).
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Then in the proof of Lemma 6, for ν = 0 or for ν = 1, the inequality (31),
where pj is replaced by Eωj−1 , holds for infinitely many n. By the strong law
of large numbers we obtain that, for ν = 0 and for ν = 1, with Pr-probability
one

1

n

n∑
j=1

Iν(Eωj−1,s)(pj − Eωj−1)→ 0

as n → ∞, where i and s are defined as in the proof of Lemma 6. From this
(17) can be easily obtained.

A Proof of Proposition 1: the universal randomized rounding al-
gorithm

In this section we present a simplified version of Kakade and Foster’s [7]
randomized rounding algorithm. Assume ω = ω1ω2 . . . is an infinite binary
sequence given to a forecaster online. We define a randomized forecasting sys-
tem Pωn−1 such that the corresponding overall probability Pr of the event (2)
tends to 1 as n→∞.

Let the rational points vi = i∆, i = 0, 1, . . . , K, be divide the unit interval
[0, 1] on equal parts of length ∆ = 1/K. Denote V = {v0, . . . , vK}. Any real
number p ∈ [0, 1] is represented as a linear combination of two neighboring
points of the corresponding partition

p =
∑
v∈V

wv(p)v = wvi−1
(p)vi−1 + wvi

(p)vi,

where p ∈ [vi−1, vi], i = bp/∆ + 1c, and wvi−1
(p) = 1− (p− vi−1)/∆, wvi

(p) =
1− (vi − p)/∆. Put wv(p) = 0 for all other v ∈ V .

In that follows, some deterministic forecast p will be rounded to vi−1 with
probability wvi−1

(p) or to vi with probability wvi
(p). Now we define the de-

terministic algorithm computing this p. Assume the forecasts p1, . . . , pn−1 be
already defined (put p1 = 0). Define a real number pn. For any v ∈ V , we
consider an auxiliary function

µn−1(v) =
n−1∑
i=1

wv(pi)(ωi − pi).

The weighted sum of these functions can be transformed as follows
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∑
v∈V

wv(p)µn−1(v) =
∑
v∈V

wv(p)
n−1∑
i=1

wv(pi)(ωi − pi) =

n−1∑
i=1

(
∑
v∈V

wv(p)wv(pi))(ωi − pi) =

n−1∑
i=1

(w̄(p) · w̄(pi))(ωi − pi) =
n−1∑
i=1

K(p, pi)(ωi − pi),

where w̄(p) = (0, . . . , wvi−1
(p), wvi

(p), . . . , 0) is the vector of probabilities of
rounding, p ∈ [vi−1, vi], and K(p, pi) = (w̄(p) · w̄(pi)) is the dot product
(kernel function). By definitionK(p, pi) is a continuous function (it is piecewise
linear).

We have

(µn(v))2 = (µn−1(v))2 + 2wv(pn)µn−1(v)(ωn − pn) +

+(wv(pn))2(ωn − pn)2. (A.1)

Summing (A.1) by v, we obtain

∑
v∈V

(µn(v))2 =
∑
v∈V

(µn−1(v))2 + 2(ωn − pn)
∑
v∈V

wv(pn)µn−1(v) +

+
∑
v∈V

(wv(pn))2(ωn − pn)2. (A.2)

The second term of the sum (A.2) can be made less or equal to 0 for some pn.
Indeed, let pn be equal to a root p of the equation

∑
v∈V

wv(p)µn−1(v) =
n−1∑
i=1

K(p, pi)(ωi − pi) = 0 (A.3)

if a solution of (A.3) exists. Otherwise if the left part of the equation (A.3)
(which is a continuous by p function) is positive for all p when put pn = 1;
put pn = 0 if it is negative. By definition pn is the deterministic forecast.

The third term of (A.2) is bounded by 1. Indeed,

∑
v∈V

(wv(pn))2(ωn − pn)2 ≤
∑
v∈V

wv(pn) = 1.

Then by (A.2) for the forecasts pi, i = 1, . . . , n, computed above we have
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∑
v∈V

(µn(v))2 ≤
n∑
i=1

∑
v∈V

(wv(pi))
2(ωi − pi)2 ≤ n. (A.4)

Since the sum of squares is less or equal than n, each member of this sum is
less or equal than n. Hence, for any v ∈ V we have

1

n

n∑
i=1

wv(pi)(ωi − pi) ≤
1√
n
. (A.5)

Define Pωn−1(v) = wv(pi) for all v ∈ V (by definition for any p, only two
nearby values of wv(p) are nonzero).

Assume that I(p) is the characteristic function of some subinterval of [0, 1].
For each i, the mean value of the random variable I(p̃i)(ωi − p̃i), where p̃i is
distributed according to Pωn−1 , is equal to

E(I(p̃i)(ωi − p̃i)) =
∑
v∈V

wv(pi)I(v)(ωi − v).

By the martingale strong law of large numbers with Pr-probability 1

1

n

n∑
i=1

I(p̃i)(ωi − p̃i)−
1

n

n∑
i=1

E(I(p̃i)(ωi − p̃i))→ 0

as n→∞, where the overall probability Pr is defined by Pωi−1 , i = 1, 2, . . ..

By definition of pi and wv(p)

∣∣∣∣∣∑
v∈V

wv(pi)I(v)(ωi − v)−
∑
v∈V

wv(pi)I(v)(ωi − pi)
∣∣∣∣∣ ≤ ∆.

Since (A.5) holds for each v ∈ V and the set V is finite,

1

n

n∑
i=1

∑
v∈V

wv(pi)I(v)(ωi − pi)→ 0

as n→∞. Therefore, the Pr-probability of the event

∣∣∣∣∣ 1n
n∑
i=1

I(p̃i)(ωi − p̃i)
∣∣∣∣∣ ≤ ∆

tends to 1 as n→∞.
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