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Abstract— In 1995 J. C. Lagarias and Y. Wang conjectured
that the generalized spectral radius of a finite set of matrices
can be attained on a finite product of matrices. The first
counterexample to this Finiteness Conjecture was given in
2002 by T. Bousch and J. Mairesse. In 2003 V. D. Blondel,
J. Theys and A. A. Vladimirov proposed another proof of a
counterexample to the Finiteness Conjecture which extensively
exploited combinatorial properties of matrix products.

In the paper, it is proposed one more proof of a counterexam-
ple of the Finiteness Conjecture fulfilled in a traditional manner
of the theory of dynamical systems. It is presented description
of the structure of trajectories with the maximal growing rate
in terms of extremal norms and associated with them so-called
extremal trajectories. The construction of the counterexample
is based on a detailed analysis of properties of extremal norms
of two-dimensional positive matrices in which the technique
of the Gram symbols is essentially used. At last, notions and
properties of the rotation number for discontinuous orientation
preserving circle maps play significant role in the proof.

I. INTRODUCTION

Let A = {A1, . . . ,Ar} be a finite set of real m×m ma-

trices, and ‖ · ‖ be a norm in R
m. Associate with any

finite sequence σ = {σ1,σ2, . . . ,σn} ∈ {1, . . . ,r}n the matrix

Aσ = Aσn · · ·Aσ2
Aσ1

, and define for any integer n ≥ 1 two

quantities:

ρn(A) = max
σ∈{1,...,r}n

‖Aσ‖1/n, ρ̄n(A) = max
σ∈{1,...,r}n

ρ(Aσ )1/n.

Then there exists the limit

ρ(A) = limsup
n→∞

ρn(A),

which does not depend on the choice of the norm ‖ ·‖. This

limit is called the joint spectral radius of the matrix set A.

Analogously, there exists the limit

ρ̄(A) = limsup
n→∞

ρ̄n(A),

which is called the generalized spectral radius of the matrix

set A. As is shown in [2], for finite matrix sets A the

quantities ρ(A) and ρ̄(A) coincide with each other, and for

any n the following inequalities hold

ρ̄n(A) ≤ ρ̄(A) = ρ(A) ≤ ρn(A).

In [13] J. C. Lagarias and Y. Wang conjectured that the

value ρ̄(A) in fact coincides with ρ(Aσ )1/n for some n and

This work was partially supported by grant 03-01-00258 of the Russian
Foundation for Basic Research and by grant for Scientific Schools
1532.2003.1 of the President of Russian Federation.

V. Kozyakin is with Institute for Information Transmission Problems,
Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127994
GSP-4, Russia, kozyakin@iitp.ru

σ ∈ {1, . . . ,r}n. The first counterexample to this conjecture

(which got the name Finiteness Conjecture) was proposed in

[5], and the corresponding proof was essentially based on the

analysis of the so-called Sturmian measures. Later, another

proof [3], [4] of the counterexample to the Finiteness Con-

jecture appeared which extensively exploited combinatorial

properties of permutations of products of positive matrices.

In this paper, it is given one more proof of the coun-

terexample to the Finiteness Conjecture fulfilled in a rather

traditional manner of the theory of dynamical systems. The

proof is based on the technique of the so-called extremal

norms (closely related with the usage of functionals Mañé in

[5]) and associated with them extremal trajectories for analy-

sis of “the fastest growing trajectories” generated by matrix

sets. To our knowledge, it was N. E. Barabanov [1] who

first realized the role of extremal norms in the analysis of

properties of matrix products. At a later time, the technique

of extremal norm was used in different problems related to

the investigation of properties of matrix products (see, e.g.,

[14]). In this paper, we give a more detailed analysis of

the properties of extremal norms of two-dimensional positive

matrices in which the technique of the Gram symbols, bor-

rowed from [5], is essentially used. At last, in the proposed

proof, the notion and properties of the rotation number for

discontinuous orientation preserving circle maps [6], [7], [8]

play significant role.

II. EXTREMAL NORMS AND TRAJECTORIES:

GENERAL CASE

One of the key question in the study of properties of matrix

sets A = {A1, . . . ,Ar} is how the joint (generalized) spectral

radius ρ(A) is related with the rate of growth of solutions

of the difference inclusion

xn+1 ∈ {A1, . . . ,Ar}xn, n ≥ 0, (1)

in which the value of xn+1 is chosen from the set of vectors

{A1xn, . . . ,Arxn}. Notice that each solution of (1) with some

choice of the index sequence {σn} satisfies the equation

xn+1 = Aσnxn, σn ∈ {1, . . . ,r}, n ≥ 0.

Clearly, the converse is also true.

In what follows solutions of (1) will be referred to as

trajectories defined by the matrix set A or simply trajectories

of the matrix set A. The set of all trajectories of the matrix

set A will be denoted as T (A), the set of all trajectories

{xn}∞
n=0 of the matrix set A satisfying the initial condition

x0 = x will be denoted as T (A,x). In general, for r > 1 the

map x �→T (A,x) is set-valued. In connection with this recall
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some definitions and basic facts of the theory of set-valued

maps (see, e.g., [12, §18]).

Let X and Y be topological spaces, the map f : X �→ Y

is called upper semi-continuous at a point x ∈ X if for any

open set U � f (x) there is an open set V � x such that

f (V ) ⊆ U .1 The map f is called closed (compact) if for

any closed (compact) set G ⊆ X the set f (G ) ⊆ Y is also

closed (compact). Clearly, each compact map is closed.

Denote the set of all ordered r-tuples A = {A1, . . . ,Ar} of

real m×m matrices by Mm,r. Then the set Mm,r may be

identified in a natural way with R
rm2

if to treat entries of

the matrices from A enumerated in some predefined order

as coordinates in R
rm2

. This allows to treat Mm,r as a

topological or, when needed, a metric space.

For any matrix set A the set of trajectories T (A) is

closed in the space Ω(Rm), and the map (A,x) �→ T (A,x)
is compact and upper semi-continuous.

In what follows, our prime point of interest will be so-

called irreducible matrix sets. In connection with this recall

that the matrix set A is called irreducible if the matrices

from A have no common invariant spaces except {0} and

R
m. In [9], [10], [11] such a matrix set was called quasi-

controllable.

A. Extremal Norms

In the analysis of the properties of the joint spectral radius

ideas introduced by N. E. Barabanov in [1] play an important

role. These ideas were further developed in a number of

publications amongst which we distinguish [14].

Theorem 1 (N. E. Barabanov): Let the matrix set A =
{A1, . . . ,Ar} be irreducible. Then the quantity ρ is the joint

(generalized) spectral radius of A if and only if there exists

a norm ‖ · ‖ in R
m such that

ρ‖x‖ = max{‖A1x‖,‖A2x‖, . . . ,‖Arx‖} . (2)

A norm satisfying (2) is called an extremal norm for the

matrix set A. Remark that for an irreducible matrix set A
any semi-norm ‖ · ‖ satisfying (2) is a norm, provided that

it does not equal identically to zero. So, in Theorem 1 it

is sufficient to suppose that ‖ · ‖ is not a norm but only a

semi-norm.

The set of extremal norms possesses a variety of strong

properties some of which will be described below.

Let A be an irreducible matrix set, and let x0 be a non-zero

vector from R
m. Denote by Next(A,x0) the set of all norms

‖ · ‖ extremal with respect to the matrix set A, satisfying

the calibrating condition ‖x0‖ = 1. Then Next(A,x0) can be

treated as a subset of Cloc(Rm).2

Theorem 2 (Compactness of the Set of Extremal Norms):
Let x0 	= 0 ∈ R

m and let A ∈ Mm,r be an irreducible matrix

set. Then there exists a compact neighborhood A ⊆ Mm,r
of A such that the map A′ �→ Next(A′,x0)⊂Cloc(Rm), where

A′ ∈ A , is compact and upper semi-continuous.

1The symbol f (V ) is used to denote the set ∪y∈V f (y).
2The symbol Cloc(Rm) is used to denote the linear topological space

of continuous functions defined on R
m with the topology of uniform

convergence on bounded subsets from R
m.

B. Extremal Trajectories and Their Generators

A trajectory {xn} of the matrix set A will be called

extremal if in some extremal norm ‖·‖ the following identity

holds:

ρ−n(A)‖xn‖ ≡ const.

From (2) it is seen that for any x 	= 0 such an index σ ∈
{1,2, . . . ,r} can be found that ρ−1(A)‖Aσnx‖ = ‖x‖. This

allows to construct recursively, for any vector x 	= 0 ∈ R
m

and any extremal norm ‖ · ‖, an extremal trajectory {xn}
satisfying x0 = x. Hence, for an irreducible matrix set A the

set of extremal trajectories is nonempty.

Clearly, the definition of extremal trajectories depends on

the choice of the extremal norm. Nevertheless, as is stated

in Lemma 1 below for an irreducible matrix set there are

extremal trajectories which are universal in the sense that

such trajectories are extremal in each extremal norm.

Lemma 1: For any irreducible matrix set A ∈ Mm,r the

set of the universal extremal trajectories is not empty.

To prove Lemma 1 it is sufficient to note that any limiting

point in the space Ω(Rm) of the set of all weighted left-shifts

{ρ(A)−kxn+k}∞
n=0, k ≥ 0, for a given extremal trajectory

{xn}∞
n=0 will be a universal extremal trajectory of the matrix

set A.

Denote by E (A,x) the set of all extremal trajectories

{xn}∞
n=0 of the matrix set A satisfying the initial condition

x0 = x 	= 0.

Theorem 3: Let X ⊂R
m be a compact set which does not

contain the origin and let A ∈ Mm,r be an irreducible set of

matrices. Then there is a compact neighborhood A ⊆ Mm,r
of A such that the map

(
A′,x

) �→ E (A′,x), where A′ ∈ A ,

x ∈ X , is compact and upper semi-continuous.

In order to describe completely an extremal trajectory

{xn} one should know not only the information about the

sequence {xn} but also the information about the related

index sequence {σn}. Below, it will be proposed a construc-

tion which determines extremal trajectories as all possible

trajectories of some set-valued nonlinear dynamical system.

Such a construction will allow us to avoid the necessity to

describe explicitly the index sequence {σn}.

Let ‖ · ‖∗ be an extremal norm for the matrix set A =
{A1, . . . ,Ar}. Denote for each x ∈ R

m by g(x) the set all

the vectors Aix such that ‖Aix‖∗ = ρ(A)‖x‖∗ for some i ∈
{1, . . . ,r}. By the definition of an extremal norm the set g(x)
is not empty and consists of no more than m elements. Note

also that each map g(x) has a closed graph and satisfies the

identity ‖g(x)‖∗ ≡ ρ(A)‖x‖∗.

Lemma 2: The sequence {xn} is extremal for the matrix

set A in the extremal norm ‖ · ‖∗ if and only if it satisfies

the inclusion xn+1 ∈ g(xn) for all n.

According to Lemma 2 each trajectory of the set-valued

map g(·) is extremal in the norm ‖ ·‖∗. This motivates us to

call the map g(·) as the generator of extremal trajectories.

In general, the map g(·) can not be described explicitly.

Nevertheless, in Section IV for the sets of 2× 2 matrices
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we will be able to obtain a rather detailed description of the

properties of the generators of extremal trajectories.

III. EXTREMAL NORMS: THE CASE OF A PAIR OF

TWO-DIMENSIONAL MATRICES

In this Section, for the case when the set A consists of two

2×2 matrices some additional properties of extremal norms

and extremal trajectories are established.

A. Definition and Properties of the Matrix Set

Consider the pair of matrices

A0 = α
∥∥∥∥ a b

0 1

∥∥∥∥ , A1 = β
∥∥∥∥ 1 0

c d

∥∥∥∥ , (3)

where α,β > 0 and

bc ≥ 1 > a,d > 0, bc > (1−a)(1−d). (4)

Associate the ray t(x0,x1), t > 0, passing the point

(x0,x1) 	= 0, x0,x1 ≥ 0, with the number ξ = x1/(x0 + x1) ∈
[0,1]. Then the matrix A0 maps the ray with the coordinate

ξ at the ray with the coordinate ϕ0(ξ ), where

ϕ0(ξ ) =
ξ

a(1−ξ )+bξ +ξ
, (5)

while the matrix A1 maps the ray with the coordinate ξ at

the ray with the coordinate ϕ1(ξ ):

ϕ1(ξ ) =
c(1−ξ )+dξ

c(1−ξ )+dξ +1−ξ
. (6)

Under the condition bc ≥ 1, for any 0 ≤ ξ ,ζ ≤ 1 the

inequalities ϕ1(ξ )≥ ϕ0(ζ ) hold. Moreover, under conditions

(4) both of the functions ϕ0(ξ ) and ϕ1(ξ ) strictly increase.

Consider also the pair of matrices conjugate to the matrices

A0 and A1:

A′
0 = α

∥∥∥∥ a 0

b 1

∥∥∥∥ , A′
1 = β

∥∥∥∥ 1 c
0 d

∥∥∥∥ .

The matrix A′
0 maps the ray with the coordinate ξ at the

ray with the coordinate ψ0(ξ ), where

ψ0(ξ ) =
b(1−ξ )+ξ

a(1−ξ )+b(1−ξ )+ξ
,

while the matrix A′
1 maps the ray with the coordinate ξ at

the ray with the coordinate ψ1(ξ ):

ψ1(ξ ) =
dξ

1−ξ + cξ +dξ
.

B. Structure of the Switching Set

Denote by M � ⊂M2,2 the set of all matrix sets A consist-

ing of the matrices A0 and A1 of the form (3) satisfying (4).

Clearly, the matrix set A ∈ M � is irreducible. Given some

extremal norm ‖·‖ in R
2 corresponding to A, define the sets

Xi = {x : ‖Aix‖ = ρ‖x‖}, i = 0,1. (7)

Each of these sets is closed, conic (i.e. contains any vector

tx along with the vector x 	= 0), and X0 ∪X1 = R
2 by the

definition of an extremal norm. The set Θ = X0 ∩X1 will

be called the switching set of the extremal norm ‖ · ‖. To

analyze the structure of the sets X0,X1 and Θ we will need

additional data.

Given a pair of vectors x,y ∈R
2 and a pair of linear func-

tionals u(w) = 〈u,w〉 and v(w) = 〈v,w〉, where u,v,w ∈ R
2.

Then the Gram symbol of the ordered four-tuple {u,v,x,y}
is the expression{

u x
v y

}
:= u(x)v(y)−u(y)v(x) ≡

≡ 〈u,x〉〈v,y〉−〈u,y〉〈v,x〉.
The geometrical sense of the Gram symbol is that the

ordered pair of the vectors {x,y} has the same orientation as
the ordered pair of the vectors {u,v} if and only if the Gram
symbol of the corresponding ordered four-tuple of the vectors
{u,v,x,y} is positive.

Denote by K+ the cone of vectors in R
2 with the non-

negative coordinates.

Lemma 3: Let x,y 	= 0 be a pair of the vectors satisfying

x∈X0∩K+, y∈X1∩K+. Then there are such nonzero vectors

u,v ∈ K+ for which the following relation is valid{
A′

0u x
A′

1v y

}
= 〈A′

0u,x〉〈A′
1v,y〉−〈A′

0u,y〉〈A′
1v,x〉 ≥ 0.

This Lemma is a key point in the analysis of the structure

of the sets X0 ∩K+ and X1 ∩K+.

Theorem 4: Let A = {A0,A1} be the matrix set defined by

(3) and satisfying (4), and let ‖ · ‖ be an extremal norm of

the matrix set A. Then each of the sets X0∩K+ and X1∩K+
is a sector, and the intersection of these sectors is the ray

Θ = X0 ∩X1 ∩K+ = {tϑ : t ∈ R+} passing a nonzero vector

ϑ ∈ K+, ‖ϑ‖ = 1.

Moreover, the vector ϑ is a single solution to the system

of equations ‖A1x‖ = ‖A2x‖ and ‖x‖ = 1, where x ∈ K+, it

depends continuously on the matrices A0, A1 and the norm

‖ ·‖, and belongs to the sector formed in K+ by the straight

lines

L0 = {(x0,x1) : bx1 = (1−a)x0},
L1 = {(x0,x1) : (1−d)x1 = cx0}.

IV. FREQUENCY PROPERTIES OF EXTREMAL

TRAJECTORIES: THE CASE OF

TWO-DIMENSIONAL MATRICES

In this Section, the analysis of the properties of the

extremal trajectories of the matrix sets A = {A0,A1} ∈ M �

will be continued. Our prime goal will be to prove the

following statement.

Theorem 5 (on the Switching Frequency): For any extre-

mal trajectory {xn} of the matrix set A = {A0,A1} ∈ M �

determined by the equation

xn+1 = Aσnxn, n = 0,1, . . . ,

it is defined the frequency (the switching frequency of the

trajectory)

σ = lim
n→∞

1

n

n

∑
i=1

σi
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of applying the matrix A1 in the process of computation of

the trajectory {xn}.

The frequency σ does not depend on the choice of the

extremal trajectory {xn} or on the index sequence {σn}, and

so, it may be denoted as σ(A). In addition, σ(A) depends

continuously on matrices of the matrix set A and takes

rational values if and only if the matrix set A has an extremal

trajectory corresponding to a periodic index sequence {σn}.

To prove Theorem 5, we will need auxiliary statements

and constructions.

A. Generator of Extremal Trajectories

Fix in R
2 a norm ‖ · ‖ extremal for the matrix set A, and

denote by X0 and X1 the sets (7) determined by this norm.

In this case, the generator of extremal trajectories g(·) (see

the definition in Section II-B) will take the form

g(x) =

⎧⎨
⎩

ρ−1A0x, if x ∈ X0\X1,
ρ−1A1x, if x ∈ X1\X0,

{ρ−1A0x,ρ−1A1x}, if x 	∈ X0 ∩X0.
(8)

where ρ = ρ(A).
Let us study the structure of the map g(·) in the first

quadrant, i.e. in the cone K+ := {x = (x1,x2) : x1,x2 ≥ 0}, in

more details. Introduce in K+ the coordinate system (λ ,ξ )
by setting λ (x) = ‖x‖, ξ (x) = x2/(x1 + x2) for x 	= 0 ∈ K+.

By Theorem 4 in the coordinate system (λ ,ξ ) the map f
takes the form of a map with separable variables

f : (λ ,ξ ) �→ (λ ,Φ), (9)

where

Φ = Φθ (ξ ) =

⎧⎨
⎩

ϕ1(ξ ), if ξ ∈ [0,θ),
{ϕ0(θ),ϕ1(θ)} if ξ = θ ,

ϕ0(ξ ), if ξ ∈ (θ ,1].
(10)

Here the functions ϕ0(ξ ) and ϕ1(ξ ) are defined by (5) and

(6). The graphs of the functions ϕ0(ξ ), ϕ1(ξ ) and Φθ (ξ )
are presented in Fig. 1.
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Fig. 1. Graph of the direction function Φθ (ξ )

Remark that the coordinate λ (x) characterizes “remote-

ness” of the vector x from the origin of coordinates, while the

coordinate ξ (x) characterizes the “direction” of the vector x.

In accordance with this, Φθ (ξ ) can be treated as the direction
function of the generator of extremal trajectories.

From Lemma 2, Theorem 4 and the representation (9),

(10) of the map g(·) one can get the following description

of the extremal trajectories.

Lemma 4: A nonzero trajectory {xn}⊆K+ is extremal for

the matrix set A = {A0,A1} in the extremal norm ‖ ·‖ if and

only if its elements in the coordinate system (λ ,ξ ) can be

represented in the form xn = (λn,ξn), where λn ≡ λ0, and

{ξn} is a trajectory of the set-valued map Φθ (·), i.e.

ξn+1 ∈ Φθ (ξn), n = 0,1, . . . ,

whose parameter θ satisfies the estimates θ∗ ≤ θ ≤ θ ∗ with

constants θ∗,θ ∗ ∈ (0,1) defined by the equalities θ∗ = ϕ0(θ∗)
and θ ∗ = ϕ1(θ ∗).

In addition, the trajectory {xn} satisfies the equation

xn+1 = Aσn xn for n ≥ 0 with some index sequence {σn}
if and only if the trajectory {ξn} satisfies the equation

ξn+1 = ϕσn(ξn) for n ≥ 0.

Remark that in spite of the fact that the extremal norm

‖ · ‖∗ is, in general, not known explicitly, the direction

function Φθ (ξ ) of the generator of extremal trajectories is

“defined rather unambiguously” which means that according

to (10) it is uniquely defined by the triplet (ϕ0,ϕ1,θ) with the

only unknown parameter θ . At the same time, by Theorem 4

and relations (8), (10) the parameter θ is a single-valued

function of the matrix set A and the related extremal norm

‖ · ‖, i.e. θ = θ [A,‖ · ‖]. From here one can see that the

direction function Φθ (ξ ) is determined, in the long run, by

the matrix set A = {A0,A1} and by the extremal norm ‖ · ‖
corresponding to this set; in the cases when we need stress

this dependance it will be used the notation

Φθ (ξ ) = Φ [A,‖ · ‖](ξ ).

In Lemma 5 below it will be shown that the direction

function Φ [A,‖ · ‖] depends continuously on the matrix

set A and the extremal norm ‖ · ‖. To make said above

meaningful, define first the notion of closeness between set-

valued functions on the interval [0,1].
Denote by F = F ([0,1]) the set of all set-valued func-

tions f : [0,1] �→ 2R with the closed graphs. In this case the

graph Gr( f ) = {(x,y) : x ∈ [0,1],y ∈ f (x)} of the function

f is a closed bounded subset of the set [0,1]×R ⊂ R
2, and

hence, for any pair of functions f ,g ∈ F it is defined and

finite the value

χ( f ,g) = max
{

sup
x∈Gr( f )

χ̄(x,g), sup
y∈Gr(g)

χ̄(y, f )
}
,

where χ̄(u,h) = infv∈Gr(h) |u− v| and | · | is some norm in

R
2. The value χ is called the Hausdorff distance between

the graphs of the maps f and g, it is a metric in the space

F . In its turn, the space F , being equipped with the metric

χ , is complete.
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Lemma 5: Let x0 ∈ R
2 be a nonzero vector. Then for any

pair
(
A,‖·‖), where A ∈M � and ‖·‖ ∈ Next(A,x0), the map(

A,‖·‖) �→ Φ [A,‖·‖] is uniquely defined and continuous by

the metric of the space F .

Properties of maps, graphs of which are like those pre-

sented in Fig. 1, are studied below in more details.

B. Orientation Preserving Discontinuous Circle Maps

Maps of the interval [0,1) in itself is convenient to treat as

maps of the circle S≡R/Z. Discontinuous maps of the inter-

val [0,1) were studied by various authors (see, e.g., [6], [7],

[8] and the bibliography therein), but unfortunately no one of

results, known to the author, can be immediately applied to

the analysis of the properties of the map Φθ (ξ ). For example,

in [6] main results are established for the set-valued maps

with connected images while in [7], [8] properties of the

single-valued discontinuous maps are investigated, whereas

in our case Φθ (ξ ) is a set-valued map with disconnected

images. In view of this, in what follows we will recall basic

facts of the theory of orientation preserving discontinuous

circle maps, following primarily to the work [6], and then

deduce from these results properties of the map Φθ (ξ )
needed below.

Let η : [0,1) → [0,1) be some, in general, discontinuous,

set-valued function. The function h : R → R is called the lift
of η if it satisfies conditions

h(ξ +1) ≡ h(ξ )+1, (11)

η(ξ ) = h(ξ ) (mod 1), ξ ∈ [0,1). (12)

As is easy to see, each circle map has a lift, and conversely,

each map h of the straight line in itself satisfying (11) is a

lift of the circle map η(·) defined by (12).

The map η : [0,1) → [0,1), treated as a map of the circle

S ≡ R/Z in itself, will be called orientation preserving if it

has a strictly increasing lift3. A strictly increasing lift h of the

map η will be called standard if it satisfies h(0) = η(0). The

orientation preserving map η : [0,1) → [0,1) will be called

closed if it has a strictly increasing lift with the closed graph.

Theorem 6: Let η : [0,1) → [0,1) be an orientation pre-

serving circle map with a closed lift h. Let {ξn} be a

trajectory of the map h, i.e.

ξn+1 ∈ h(ξn), n = 0,1, . . . . (13)

Then the following assertions are valid:

(i) there is a number τ , not depending on the initial value

ξ0, such that |ξn/n− τ| ≤ 1/n for n ≥ 1, and hence τ =
limn→∞ ξn/n;

(ii) if the number τ is rational of the form τ = p/q with

coprime p and q then the map η(·) has a periodic

3Remark that the lift of a circle map is determined non-uniquely.
Nevertheless, just as is in the case of continuous lifts of the circle
homeomorphisms, any two strictly increasing lifts of the same circle map
(provided that they exist) can differ from each other only on an integer
constant [7, Lemma 2]. A detailed description of the structure of single-
valued discontinuous orientation preserving circle maps and their lifts can
be found in [7], [8]. The role of the demand of strict increasing of a lift is
discussed in Remark 1.

point of period q, and any trajectory (13) converges to

a periodic trajectory of period q as n → ∞;

(iii) if the number τ is irrational then all the trajectories (13)

have the same limiting set which is either coincide with

the whole circle or is the Cantor set;

(iv) the number τ depends continuously on the graph of the

map h in the Hausdorff metric.

According to this Theorem the number τ is uniquely

determined by the map h and does not depend neither on

the choice of the initial point ξ0 of the trajectory {ξn} nor

on arbitrariness in the construction of the trajectory {ξn} by

(13). So, it is reasonable to denote the number τ by τ(h);
this number is called the rotation number of the lift h. The

value τ(h) is often called also the rotation number of the

circle map η . One should only bear in mind that the rotation

number for a circle map is defined modulo integer additives

since lifts of the circle map are also defined modulo integer

additives.

Remark 1: An orientation preserving circle map was de-

fined above as such a circle map that has a strictly increasing

lift. Theorem 6 will be no longer valid if to omit the

requirement that the corresponding lift increases strictly.

Remark 2: Theorem 6 was proven in [6] under the ad-

ditional assumption that the map η possesses a lift with

the connected graph. As is seen from the formulation of

Theorem 6, the requirement of connectedness of the graph

is not essential.

One of weak points in the definition of the rotation number

τ(η) presented above is that one should perform intermediate

steps (such as to construct the lift h(·) and to build the

trajectory {ξn} of the map h(·)) to calculate the limit τ(η) =
limn→∞ ξn/n. Therefore, it is desirable to find a method to

calculate the rotation number τ(η) directly in terms of the

map η and its trajectories. To do it, introduce the function

ν(ξ ) =
{

1 if 0 ≤ ξ < ω,
0 if ω ≤ ξ < 1,

(14)

where ω = min{y : y ∈ η(0)}4.

Theorem 7: Let η : [0,1) → [0,1) be an orientation pre-

serving circle map with the closed standard lift h. Let {ζn}
be a trajectory of the map η , i.e.

ζn+1 ∈ η(ζn), n = 0,1, . . . .

Then the uniform estimates hold∣∣∣∣∣
1

n

n

∑
i=1

ν(ζi)− τ(h)

∣∣∣∣∣ ≤
2

n
, n = 1,2, . . . ,

and so, τ(h) = limn→∞
1
n ∑n

i=1 ν(ζi).

C. Frequency Properties of the Direction Function

In this Section, we make use of the properties of the circle

maps obtained in Section IV-B to analyze the properties of

the direction function Φθ .

4Remark that the function ν(ξ ) is identically equal to zero if ω = 0.
In this case h(ξ ) ≡ η(ξ ) on the interval [0,1), and so, the function η(ξ )
strictly increases on [0,1).
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Note that the function Φθ (ξ ) differs from a function

representing an orientation preserving circle map only in

that it is defined on the closed interval [0,1] but not on the

semiopen one [0,1) as in the case of the circle maps. Let us

show that the indicated difference is not essential, and for

the function Φθ (ξ ) the notion of the rotation number can

be defined with all the “good” properties intrinsical to the

rotation number of the circle maps.

Theorem 8: Let A = {A0,A1} ∈M � be the set of matrices

(3) satisfying (4), let Φθ be the direction function (10) of

some generator of extremal trajectories for the matrix set A
and let ν(·) be the function defined by (14). Then for any

trajectory {ξn}∞
n=0 of the map Φθ there are valid the non-

equalities ξn 	= 0,1, where n ≥ 1, and there is defined the

frequency

τ = lim
n→∞

1

n

n

∑
i=1

ν(ξi)

with which the elements of the trajectory {ξn} hit the interval

[0,ω), where ω = ϕ0(1).
The frequency τ does not depend neither on the choice

of the trajectory {ξn} nor on the choice of the function Φθ .

So the frequency τ may be denoted as τ(A). In addition, for

τ(A) assertions (i)–(iii) of Theorem 6 are valid, and besides,

τ(A) depends continuously on the matrices of the set A.

Now all is ready to prove Theorem 5. Let {xn} be an

extremal trajectory of the matrix set A = {A0,A1} ∈M � and

let {σn} be the corresponding index sequence, i.e.

xn+1 = Aσnxn, n = 0,1, . . . .

Then by Lemma 4 the numerical sequence ξn = ξ (xn),
satisfies the relations

ξn+1 = ϕσn(ξn) ∈ Φθ (ξn), n = 0,1, . . . ,

with some direction function Φθ . At the same time, by

Theorem 8 there is defined the frequency

τ = lim
n→∞

1

n

n

∑
i=1

ν(ξi),

and besides, ξn 	= 0,1 for n ≥ 1. Therefore, for n ≥ 1 the

value ξn+1 ∈ (0,1) is obtained from ξn ∈ (0,1) by the formula

ξn+1 = ϕ0(ξn) if and only if 0 < ξn+1 < ϕ0(1) or, what is

the same, if and only if ν(ξn+1) = 1. Consequently, σn =
1−ν(ξn+1) for n ≥ 1 and by Theorem 8 there is the limit

σ(A) = lim
n→∞

1

n

n

∑
i=1

σi = 1− lim
n→∞

1

n

n

∑
i=1

ν(ξi+1) = 1− τ(A).

Now, all the assertions of Theorem 5 follow from analo-

gous assertions of Theorem 8. �
D. Construction of the Counterexample

At last, start constructing the counterexample to the Finite-

ness Conjecture.

Lemma 6: Let the matrix set A = {A0,A1} ∈M � be such

that the number σ(A) is irrational. Then for any finite

sequence of indices σk ∈ {0,1}, k = 1,2, . . . ,n, the strict

inequality ρ(AσnAσn−1
· · ·Aσ1

) < ρn(A) is valid.

Lemma 6 directly follows from Theorem 5. Due to this

Lemma in order to construct the counterexample to the

Finiteness Conjecture it is sufficient to prove the existence of

at least one of the matrix set A = {A0,A1} ∈ M � for which

σ(A) is irrational.

Lemma 7: For any set of parameters a,b,c,d satisfying

(4) there are positive numbers γ∗ = γ∗(a,b,c,d) and γ∗ =
γ∗(a,b,c,d) such that for the corresponding matrix set A =
{A0,A1} ∈ M � the relations are valid

σ(A) =
{

0 if α/β > γ∗,
1 if α/β < γ∗.

Complete the construction of the counterexample. Fix

some set of numbers a,b,c,d satisfying (4), and consider

the family of the matrix sets A depending on α and β
as on parameters. Then by Lemma 7 σ(A) = 0 for large

values of α/β and σ(A) = 1 for small values of α/β . But

by Theorem 5 the value σ(A) depends continuously on the

matrix set A, and then on α and β . Hence, σ(A) takes all

the intermediate values between 0 and 1 when α and β vary.

In particular, for some α and β the number σ(A) takes an

irrational value. Therefore by Lemma 6 for such α and β
the generalized spectral radius ρ(A) can not be attained on

finite products of matrices from the set A.
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