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Abstract. We consider discrete time systems xk+1 = U(xk; λ), x ∈ R
N , with

a complex parameter λ. The map U(·;λ) at infinity contains a principal linear
term, a bounded positively homogeneous nonlinearity, and a smaller part. We
describe the sets of parameter values for which the large-amplitude n-periodic
trajectories exist for a fixed n. In the related problems on small periodic orbits
near zero, similarly defined parameter sets, known as Arnold tongues, are more
narrow.

1. Introduction. We study bifurcations of large periodic trajectories of the system

xk+1 = U(xk;λ), x ∈ R
N , N ≥ 2, (1)

with the complex parameter λ ∈ D ⊂ C. We suppose that for sufficiently large |x|
the map U is continuous with respect to the set of its arguments and has the form

U(x;λ) = A(λ)x + Φ(x;λ) + ξ(x;λ) (2)

whereA(λ)x is the principal linear part, Φ(·;λ) is a bounded positively homogeneous
nonlinearity of order 0, and ξ(·;λ) tends to zero at infinity.

Given a λ ∈ D consider the set Pn
λ ⊂ RN of all n-periodic points of system (1).

Representation (2) implies that if the matrices A(λ) for λ ∈ D have no eigenvalues
in a fixed vicinity of the finite set {e2πmi/n, m ∈ Z}, then the union Pn =

⋃

λ∈D Pn
λ

is bounded. If A(λ) has a pair of simple complex conjugate eigenvalues µ(λ), µ̄(λ)
and the range of µ(λ) has a limit point e2πmi/n, then the set Pn may be unbounded.

The union P =
⋃

n Pn of all periodic points is unbounded in the two cases:

(i) At least one set Pn of periodic points of a fixed period n is unbounded;
(ii) The set P is unbounded, while each set Pn is bounded. Hence, the periods

increase to infinity together with the norms of periodic points.

Cases (i) and (ii) are referred to as subharmonic bifurcation and subfurcation [1],
respectively. We shall present sufficient conditions for the subharmonic bifurcation.
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Let us recall some relevant well-known facts about bifurcations of periodic tra-
jectories from the zero equilibrium of a smooth system (1). Let for small |x| (we
denote by | · | a norm in RN as well as the module of complex numbers)

U(x;λ) = A(λ)x +A2(x;λ) +A3(x;λ) + . . . , (3)

where As are polynomials of degree s with respect to x-variables. Then, generically,
for any rational q = m/n with coprime positive integer m and n there exists an
open connected set Aq called the Arnold tongue1 [2] with λq = e2πqi ∈ Aq such
that system (1) has a periodic point of the period n whenever A(λ) has an eigenvalue
µ(λ) in Aq and the norms of the n-periodic points tend to zero as µ(λ) tends to λq

along the set Aq (see, e.g. [3]). The values q = m/n with n = 1, 2, 3, 4 are called
strong resonances. For any q with n > 4, the Arnold tongue Aq has the shape shown
on the left part of Fig. 1. Locally, Aq is a cusp between two curves that meet at
the point λq and have the same tangent straight line at this point. Moreover, the

width of the cusp at a distance d from the vertex λq is of order dn/2−1 as d→ 0 [4].

Aq

C
1

e2πqi

C
1

e2πqi Aq

Figure 1.Typical shapes of the Arnold tongues at zero and at infinity.

Here, we prove that at infinity the Arnold tongues are thick sectors shown on
the right picture of Fig. 1. The angle between the boundary lines of any tongue Aq

at its vertex λq is positive except for non-generic degenerate situations.
Assume that the parameter λ varies so that the eigenvalue µ(λ) of A(λ) goes

along a smooth curve Γ through a point λq of the unit circle with a rational q,
and ℓ is a tangent line of Γ at this point. According to the approach of [3], one
observes the subharmonic bifurcation if some arc of the curve Γ with one end at λq

is contained in the Arnold tongue Aq, and the subfurcation if the curve Γ crosses
infinitely many Arnold tongues in any neighborhood of the point λq. Fig. 1 shows
that the subharmonic bifurcation can occur for a unique direction of ℓ in the local
problem at an equilibrium point of smooth system (1) (and thus the subharmonic
bifurcation is a specific non-generic case here except for points of strong resonances),
while there is a bunch of such directions in the problem at infinity.

The shapes of the Arnold tongues at the points of strong resonances in the bi-
furcation problem at the origin are similar to that of the generic Arnold tongues
Aq at infinity. Moreover, there are indications that this analogy can be extended
to other aspects of dynamics at infinity (at least for finite ranges of the denomi-
nator n of q = m/n, where a particular range is defined by the nonlinearity Φ in
representation (2) and can be arbitrarily large). Our numerical experiments with
systems (1) near the points λq reveal a rich variety of dynamical scenarios at infinity,

1The wording “Arnold tongue” is used in various bifurcation problems to describe two dimen-
sional parameter sets of special form.
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which are typical for strong resonances of smooth systems at the origin. This paper
concentrates on periodic trajectories and triangle shapes of the Arnold tongues.

A simple change of variables of the type x→ Bx/|x|2 transforms the bifurcation
problem at infinity to that near the origin. Hence all our results can be reformulated
in terms of the local behavior of the transformed system near its zero equilibrium.
The evolution operator of the latter system does not have the form (3).

2. Main results.

2.1. Assumptions on the map. Consider system (1) with the map U of the
form (2). Assume that the function Φ = Φ(x;λ) is positively homogeneous of order
zero in x for each λ ∈ D, and the term ξ = ξ(x;λ) vanishes at infinity, i.e.

Φ(θx;λ) = Φ(x;λ) for all |x| = 1, θ > 0, λ ∈ D; ξ(x, λ) → 0 as x→ ∞. (4)

For the sake of simplicity it is assumed that λ and λ̄ are the eigenvalues of
the matrix A(λ), i.e. a simple complex eigenvalue λ of A = A(λ) is used as a
parameter of the system. Throughout the paper it is supposed that λ ranges over
some neighborhood D ∈ C of a closed subset Λ of the unit circle {λ ∈ C : |λ| = 1}
and that all the eigenvalues σj = σj(λ) of A(λ) different from λ and λ̄ satisfy

||σj(λ)| − 1| ≥ δ > 0 for all λ ∈ D, j = 1, . . . , N − 2. (5)

All the three terms in the right-hand side of (2) are supposed to be continuous with
respect to the set of their arguments x and λ. Non-constant homogeneous functions
Φ satisfying (4) have discontinuity at the origin. We consider our system for x 6= 0.

2.2. Main theorem. Denote by Eλ the proper plane of the matrix A(λ) corre-
sponding to the pair of its eigenvalues λ, λ̄ and by E′

λ the proper (N−2)-dimensional
subspace of A(λ), which is complementary to Eλ. Denote by Pλ the linear projector
onto the plane Eλ along the subspace E′

λ; Pλ commutes with A(λ). Choose a basis
{eλ

1 , e
λ
2} in Eλ depending continuously on λ such that A(λ) has the form

(

ℜe λ −ℑmλ
ℑmλ ℜeλ

)

on Eλ. Let Qλ be a linear invertible map of the complex plane C onto Eλ defined
by Qλ1 = eλ

1 , Qλi = eλ
2 . Hence Qλ satisfies

Q−1
λ A(λ)Qλ z = λz, z ∈ C. (6)

Formulations below are independent of the particular choice of the map Qλ satisfy-
ing (6) and the norm | · | in RN . The map Qλ defines the complex structure in Eλ,
which simplifies the notation below.

Consider the complex-valued 2π-periodic function

Ψλ(ϕ) = Q−1
λ PλΦ(Qλe

iϕ;λ), ϕ ∈ R, (7)

and its Fourier series

Ψλ(ϕ) =

∞
∑

k=−∞

ψλ
ke

ikϕ, ψλ
k ∈ C. (8)

For any rational q = m/n > 0 (here and henceforth m and n are coprime integers)
denote λq = e2πqi and define the continuous 2π-periodic function Ψres

q : R → C by

Ψres
q (ϕ) = −

∞
∑

k=−∞

ψ
λq

kn+1e
ikϕ ≡ −

e−iϕ/n

n

n−1
∑

j=0

Ψλq
(
ϕ+ 2jπ

n
)e−2jπi/n. (9)
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Suppose Ψres
q is not identically zero and consider the real function arg Ψres

q (ϕ) on
the open domain Dq = {ϕ ∈ R : Ψres

q (ϕ) 6= 0}. This domain is a unification of

disjoint intervals dµ = (ϕµ
1 , ϕ

µ
2 ) (here µ ∈ M is an index, the set M may be finite

or countable). Fix some continuous branch of the complex argument so that the
function arg Ψres

q (ϕ) is continuous on every interval dµ ∈ Dq. Denote by Bq the
range of the function arg Ψres

q : Dq → R. Our main assumption is that the interior
IntBq of the set Bq is non-empty:

IntBq 6= ∅. (10)

If Ψres
q (ϕ) 6= 0 for all ϕ ∈ R, then IntBq is an open interval whenever it is non-

empty. For example, this is always the case if ψ
λq

1 6= 0 and n is sufficiently large. If
the function Ψres

q has zeros, then the set IntBq may be a union of disjoint intervals.
Denote by Rµ the range of the function arg Ψres

q on the interval dµ. If (10)
holds, then at least one interval Rµ has interior points, therefore the set B∗ =
⋃

µ∈M
IntRµ is nonempty. Generically, B∗ = IntBq, counterexamples are cumber-

some and degenerate.

Theorem 1. Let (10) hold for some rational positive q = m/n. Let B ⊂ B∗ be

a closed non-empty set. Then there are positive numbers ε = ε(q,B) and rj =
rj(q,B), j = 1, 2 such that for every λ from the set

Sq = Sq(B) = {λ ∈ D ⊂ C : 0 < |λ− λq| ≤ ε, arg(λ− λq) ∈ B}

system (1) has at least one periodic point xλ with the minimal period n and a norm

|xλ| ∈
(

r1|λ− λq|
−1, r2|λ− λq|

−1
)

.

Assume that we let λ vary along the ray arg(λ− λq) = ν for some fixed ν ∈ B∗.
Consider the points ϕν satisfying arg Ψres

q (ϕν) = ν. Let us call ϕλ robust if the
function arg Ψres

q is strictly monotone in a vicinity of ϕλ. Generically, all ϕλ are
robust and there exists a finite number of such points. Each robust point ϕν defines
the n-periodic orbit (x1, . . . , xn), which satisfies asymptotically

xk = |λ− λq |
−1

|Ψres
q (ϕν)|Qλq

(ei(ϕj
ν+2πk)/n) + o(|λ− λq|

−1)

as |λ − λq | → 0. Thus, the number of periodic orbits for a fixed ν is generically
equal to the number of robust points ϕν if these points are identified modulo 2π.

Let an open set B′ contain the closure Bq of the set Bq. It follows from the proof
of Theorem 1 that system (1) does not have n-periodic points with a sufficiently
large norm for arg(λ − λq) 6∈ B′ if |λ − λq| is sufficiently small. Hence Theorem 1
describes pretty accurately the Arnold tongue near its vertex λq.

2.3. Geometric interpretation of Theorem 1. In two dimensions, system (1)
can be rewritten as zk+1 = U(zk;λ) (everything is complexified) where

U(z;λ) = λz + Φ(eiϕ;λ) + o(1), z = reiϕ ∈ C. (11)

We consider values of the parameter λ from a small neighborhood of the point λq =
e2πqi of the unit circle S ∈ C, q = m/n. Formula (11) implies the representation
Un(z;λ) = λnz−nλ−1

q eiϕΨres
q (nϕ) + o(1) for the n-th iteration Un of the operator

U , where the last term vanishes as z → ∞, λ→ λq and Ψres
q is defined by (9):

Ψres
q (ϕ) = −

e−iϕ/n

n

n−1
∑

j=0

Φ(e(ϕ+2jπ)i/n;λq)e
−2jπi/n.
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Consequently, using the new small parameter ξ = λ − λq and the approximation
λn = 1 + λ−1

q nξ + o(ξ), ξ → 0, we can write the equation z − Un(z;λ) = 0 for the

n-periodic points of U in the form z(nλ−1
q ξ+o(ξ)) = nλ−1

q eiϕΨres
q (nϕ)+o(1). Now,

neglecting the small terms we arrive at the natural approximation

ξr = Ψres
q (nϕ) (12)

to the equation z = Un(z;λ) with r = |z|, ϕ = arg z. In the proof of Theorem 1 we
show that solutions of the equations z = Un(z;λ) and (12) are close for small ξ.

C

ℜe λ

ℑm λ

1

e2πi/5

−.218

.5

0

Γ

S

ℜe ξ

ℑm ξ

C

Figure 2. Arnold tongues for Φ(eiϕ;λ) = 3| sinϕ| + i cosϕ and n = 5.

The solutions z = reiϕ of equation (12) and the set of parameter values ξ for
which these solutions exist are described straightforwardly in terms of the curve
Γq = {Ψres

q : R → C} and the set Sq =
{

ξ̃ ∈ C : ξ̃ = θΨres
q (ϕ), θ ≥ 0, ϕ ∈ R

}

,
which is generically an angle, but may have a more complex structure (see the right
picture of Fig. 3). Indeed, (12) has a non-zero solution z for ξ 6= 0 iff ξ ∈ Sq.

Moreover, each transversal intersection of the ray Lξ = {ξ̃ ∈ C : ξ̃ = θξ, θ > 0} ⊂

Sq with the curve Γq defines a different solution zj
ξ = rj

ξe
iϕj

ξ with 0 ≤ nϕj
ξ < 2π.

Because the function Ψres
q is 2π-periodic, the n points zj,s

ξ = rj
ξe

iϕj

ξ
+2πs/n, s =

0, ..., n− 1, are solutions of (12) together with each point zj,0
ξ = zj

ξ : these n points

approach (in appropriate sense) a n-periodic orbit of the system zk+1 = U(zk;λ)
as ξ → 0 under the conditions of Theorem 1. Thus, the number of large n-periodic
orbits generically equals the number of intersections of Lξ and Γq for small ξ.

Figs. 2 and 3 show various curves Γ = Γq and the corresponding sets S = Sq

(shadowed). The right picture of Fig. 2 represents the simplest (also, ‘the most
generic’) situation. Here the origin lies outside the region bounded by a simple
curve Γq and each ray Lξ ⊂ Sq, except for the two rays forming the boundary of
the angle Sq, crosses Γq at two points. Another generic case is shown on the left
picture of Fig. 3: a simple curve Γq surrounds the origin and the set Sq coincides
with C; on this picture, each ray Lξ crosses Γq at one point. However, if n is

sufficiently large then a necessary condition for Sq = C is
∫ 2π

0
Ψres

q (ϕ) dϕ = 0. Two
other pictures of Fig. 3 show exotic cases of co-dimensions 1 and 2.

The non-degeneracy condition (10) means that the angle Sq has a non-empty

interior IntSq. Consider any closed angle S̃ ⊂ IntSq ∪{0}. Theorem 1 states that

the intersection Ξε of the angle S̃ with the punctured circle 0 < |λ − λq| ≤ ε of
a sufficiently small radius ε becomes a part of the Arnold tongue Aq after shifting
by λq (see, Fig. 2), i.e. the map (11) has at least one n-periodic orbit whenever
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Figure 3. Various curves Γ = Γq and sets S = Sq (shadowed).

λ−λq ∈ Ξε and the norms of the points of this orbit are of order |λ−λq |
−1. Here ε

depends on the angle distance between the angle S̃ and the boundary of Sq. The
Arnold tongue Aq with an acute angle at its vertex λq is directed inside the unit
circle if ℜe(λ−1

q Ψres
q (ϕ)) < 0 for all ϕ, outside the unit circle if ℜe(λ−1

q Ψres
q (ϕ)) > 0

for all ϕ, and covers a part of the unit circle if the function ℜe(λ−1
q Ψres

q (ϕ)) takes
values of the both signs.

2.4. Poincare maps of continuous time systems. A natural class of discrete
time systems (1) is generated by Poincare maps U of ODEs x′ = g(t, x), x ∈ R

N ,
with T -periodic in t smooth right-hand sides. If g(t, x) = Bx + G(t, x) + o(1),
|x| → ∞, where B is a N × N matrix and G(t, x) ≡ G(t, x/|x|) for x 6= 0, then
the Poincare map has the form U(x) = Ax + Φ(x) + o(1), |x| → ∞ (which is (2)
without a parameter), where A = eTB and the bounded term

Φ(x) = eTB

∫ T

0

e−tBG(t, eTBx) dt, x ∈ R
N ,

is positively homogeneous of order zero: Φ(x) ≡ Φ(x/|x|). Consequently, the above
results may be reformulated for such ODEs depending on a parameter.

Consider the simplest two-dimensional example written in the complex form:

z′ = νz + a(t)f(z) + b(t), z ∈ C, (13)

where a = a(t), b = b(t) are complex valued 2π-periodic functions and ν is the
complex parameter. Assume that f : C → C has a radial limit F at infinity:

lim
θ→∞

sup
z∈S

|f(θz) − F (z)| = 0, F (z) = F (z/|z|). (14)

Then the Poincare map of equation (13) equals U(z; ν) = λz + Φ(z; ν) + o(1) in
a vicinity of infinity, where λ = e2πν is our standard parameter, which lies on the
complex unit circle if ν is on the imaginary axis; the positively homogeneous term
Φ coincides with the function (7) and equals

Φ(z; ν) = Ψλ(ϕ) =

∫ 2π

0

eν(2π−t)
(

a(t)F (eνt+iϕ) + b(t)
)

dt,

where ϕ = arg z. Now, it is easy to see that given a ν = iq and the corresponding
λq = e2πν = e2πqi with any rational q = m/n, function (9) is defined by

Ψres
q (nϕ) = −

ei(2πq−ϕ)

n

∫ 2nπ

0

e−iqta(t)F (ei(qt+ϕ)) dt
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(the integral of e−iqtb(t) over the segment [0, 2nπ] is zero for each q). Equivalently,
in terms of the Fourier coefficients of the functions

a(t) =

∞
∑

k=−∞

αke
ikt, F (eiϕ) =

∞
∑

k=−∞

φke
ikϕ,

one obtains

Ψres
q (ϕ) = −2πe2πqi

∞
∑

k=−∞

α−mkφnk+1e
ikϕ.

If a(t) ≡ const, then Theorem 1 is not applicable, since Ψres
q ≡ const in this case.

The radial limit F in (14) is discontinuous in some natural applications. A simple
example is the real scalar equation x′′ + ν1x

′ + ν2x = b(t) + a(t)f(x), where f is
a nonlinearity with saturation: f(x) → f± as x → ±∞ with f+ 6= f−. For small
ν1 and positive ν2 this equation has the complex form (13) with ν close to the
imaginary axis. The corresponding limit function F (z) = F (eiϕ) is discontinuous;
more precisely, it is piecewise constant with jumps at the points ϕ = ϕ0+πk, k ∈ Z.
However, the Poincare map is continuous and Theorem 1 can be applicable to the
discrete time system generated by this map.

3. Proofs.

3.1. Reduction to planar case and the main lemma. We denote by E+
λ the

proper subspace of the matrix A(λ) corresponding to all its eigenvalues σj(λ) sat-
isfying |σj(λ)| > 1 and by E−

λ the proper subspace of A(λ) corresponding to

its eigenvalues σj(λ) satisfying |σj(λ)| < 1. Consequently, E+
λ ⊕ E−

λ = E′
λ and

E+
λ ⊕E−

λ ⊕ Eλ = RN . Let P+
λ be the linear projector onto the subspace E+

λ along

the complementary proper subspace E−

λ ⊕ Eλ of A(λ) and let P−

λ be the linear

projector onto E−

λ along the complementary proper subspace E+
λ ⊕ Eλ of A(λ) so

that P+
λ +P−

λ +Pλ = I. By these definitions, there is a norm | · |λ in RN depending
continuously on λ and a κ < 1 such that for all λ ∈ D

|A(λ)x|λ ≤ κ|x|λ, x ∈ E−

λ ; |A(λ)x|λ ≥ κ−1|x|λ, x ∈ E+
λ . (15)

From (15) it follows the existence of a β > 0 such that

|P−

λ U(x;λ)|λ < β if |P−

λ x|λ ≤ β, (16)

|P−

λ U(x;λ)|λ < |P−

λ x|λ if |P−

λ x|λ ≥ β, (17)

|ηP+
λ U(x;λ) + (1 − η)P+

λ A(λ)x|λ > |P+
λ x|λ if |P+

λ x|λ ≥ β (18)

for every λ ∈ D and every η ∈ [0, 1]. Fix β up to the end of the proofs. Esti-
mates (16), (17), and (18) (the latter with η = 1) imply that all the periodic points
of the map U(·;λ) lie in the interior of the set

Ωλ = {x ∈ R
N : |P−

λ x|λ ≤ β, |P+
λ x|λ ≤ β}.

Consider the nonlinear projector onto the set {x ∈ R
N : |P+

λ x|λ ≤ β} defined by

Wλ(x) = x+
(

|P+
λ x|

−1
λ min{β, |P+

λ x|λ} − 1
)

P+
λ x

and define the map

Vλ(x) = U(Wλ(x);λ), x ∈ R
N , λ ∈ D.

If all the eigenvalues of A(λ) different from λ, λ̄ have module less than 1, then
Vλ(x) = U(x;λ) for all x ∈ RN ; if not, then Vλ(x) = U(x;λ) on the set {x ∈ RN :
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|P+
λ x|λ ≤ β} ⊃ Ωλ. Therefore in any case each periodic point of the map U(·;λ) is

a periodic point of the map Vλ too. But relations (16) and P−

λ Wλ(x) = P−

λ x imply

|P−

λ Vλ(x)|λ < β if |P−

λ x|λ ≤ β, (19)

while relations (18) (with η = 1) and |P+
λ Wλ(x)|λ = β if |P+

λ x|λ ≥ β imply

|P+
λ Vλ(x)|λ > β if |P+

λ x|λ ≥ β. (20)

Combining estimates (19) and (20), one concludes that for any periodic point x ∈ Ωλ

of the map Vλ all the iterations V k
λ (x), k ∈ N, also belong to the set Ωλ, where

Vλ coincides with U(·;λ). Consequently, the periodic points of U(·;λ) coincide
with the periodic points of Vλ lying in Ωλ. The map Vλ is defined in such a way
that the images of the set Ωλ under the iterated maps V k

λ have uniformly bounded
projections onto the subspace E′

λ along the subspace Eλ of RN for all k, i.e.

|(I − Pλ)V k
λ (x)|λ ≤ c0, x ∈ Ωλ, k ∈ N. (21)

Lemma 1. For any κ2 > κ1 > 0 the n-th iteration of the operator Vλ satisfies
∣

∣Q−1
λ PλV

n
λ (x) − z − nλ−1

q ((λ − λq)z − eiϕΨres
q (nϕ))

∣

∣ → 0 (22)

with z = Q−1
λ Pλx, ϕ = arg z as λ→ λq for all x from the set

Ωq,κ1,κ2

λ = {x ∈ Ωλ : κ1 ≤ |λ− λq||Q
−1
λ Pλx| ≤ κ2}.

This lemma will be proved in the last subsection.

3.2. Proof of Theorem 1. Let us cover the set Sq by a finite number of sectors

SJ = {λ ∈ D ⊂ C : 0 < |λ− λq| ≤ ε, arg(λ− λq) ∈ J},

where each closed interval J belongs to IntRµ for some µ (the intervals Rµ are
defined prior to the formulation of the theorem). Now it suffices to prove the
conclusion of the theorem for the part of Sq contained in one sector SJ . The
inclusion J ⊂ IntRµ allows us to choose a segment F = [ϕ−, ϕ+] ⊂ dµ on the ϕ
axis such that the image of F under the mapping argΨres

q contains J in its interior.
By construction, there are positive κ1, κ2 such that 0 < κ1 ≤ |Ψres

q (ϕ)| ≤ κ2, ϕ ∈ F.

Let z = reϕi ∈ C, h ∈ E′
λ, x = Qλz+h ∈ R

N , Hλ(x) = h−(I−Pλ)V n
λ (x) ∈ E′

λ.
In the space Eλ = C × E′

λ of pairs (z, h) consider the two vector fields

Wλ(z, h) =
(

n−1λqe
−iϕQ−1

λ Pλ(V n
λ (x) − x),Hλ(x)

)

,

Vλ(z, h) =
(

(λ − λq)r − Ψres
q (nϕ),Hλ(x)

)

on the set Gλ =
{

(z, h) : r ∈ Rλ, ϕ ∈ F, ‖h‖λ ≤ β
}

⊂ Eλ, where ‖h‖λ =

max{|P−

λ h|λ, |P
+
λ h|λ}, Rλ =

[

.5κ1|λ− λq|
−1, 2κ2|λ− λq|

−1
]

.
The equation x = V n

λ (x) is equivalent to Wλ(z, h) = 0. Hence, to prove the
existence of a fixed point x∗ of V n

λ we shall show that for any λ ∈ SJ sufficiently
close to λq the vector field Vλ is non-singular on the boundary ∂Gλ of the set
Gλ and its rotation γ(Vλ, ∂Gλ) on ∂Gλ is not equal to 0. Due to Lemma 1 and
Rouche’s Theorem, this implies that Vλ and Wλ are homotopic on ∂Gλ, hence
γ(Vλ, ∂Gλ) = γ(Wλ, ∂Gλ) 6= 0, which ensures that Wλ has a zero (z∗, h∗) ∈ Gλ.

The vector field Vλ is non-singular on the boundary ∂Gλ by construction: its first
component is non-singular on the boundary of Gz

λ = {z ∈ C : |z| ∈ Rλ, arg z ∈ F},
its second component is non-singular on the sphere Gh

λ = {h ∈ E′
λ : ‖h‖λ = β}.

From the Index Product Formula [5] it follows that γ(Vλ, ∂Gλ) = γ1γ2, where γ1

is the rotation of the planar vector field (λ − λq)r − Ψres
q (nϕ) on the boundary of
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the set Gz
λ and γ2 is the rotation of the vector field Hλ(Qλz + h) on the sphere

Gh
λ (the latter rotation is the same for each fixed z ∈ Gz

λ). From the definition of
the constants κj and the intervals F, Rλ it follows in a standard way that |γ1| = 1.
Relations (16) – (18) can be used to show that the vector field Hλ(x) is homotopic
to the non-degenerate linear vector field P−

λ h+An(λ)P+
λ h on the sphere Gh

λ, hence
|γ2| = 1 too, which proves |γ(Vλ, ∂Gλ)| = 1.

The rest part of the proof is to show that n is the least period of the periodic point
x∗ = Qλz∗ +h∗ of U if λ is close to λq and hence |x∗| is sufficiently large. Let k < n
be a positive integer. Fix a vicinity Oq of the point λq that does not contain points
e2pπi with rational p = s/k. For any λ ∈ Oq the matrix I −Ak(λ) is invertible and

the norm of its inverse
(

I − Ak(λ)
)−1

is uniformly bounded on Oq. Hence the set

of all fixed points of Uk is a priori bounded. �

3.3. Proof of Lemma 1. We use the denomination o(1) for the terms that vanish
as λ → λq and the denominations c, c1 etc. for constants where their exact value

does not play any role. Let x ∈ Ωq,κ1,κ2

λ . Define xk = V k
λ (x), zk = Q−1

λ Pλxk, and

z = Q−1
λ Pλx. Let us first show that for any integer k > 0

∣

∣

∣
zk − λkz −

k−1
∑

j=0

λk−j−1Q−1
λ PλΦ(Qλ(λjz);λ)

∣

∣

∣
→ 0, λ→ λq . (23)

Indeed, relations z1 = Q−1
λ PλVλ(x) = λz +Q−1

λ PλΦ(x;λ) +Q−1
λ Pλξ(x;λ) imply

|z1 − λz −Q−1
λ PλΦ(Qλz;λ)| ≤ |Q−1

λ Pλ(Φ(x;λ) − Φ(Qλz;λ) + ξ(x;λ))|,

where Φ(x;λ) − Φ(Qλz;λ) = Φ(x/|x|;λ) − Φ(Qλz/|Qλz|;λ) = o(1), ξ(x;λ) = o(1)
due to (4) and continuity of Φ (we take into account that x − Qλz = x − Pλx is
bounded for all x ∈ Ωλ and |x| → ∞ as λ → λq for x ∈ Ωq,κ1,κ2

λ , hance x/|x| −
Qλz/|Qλz| = o(1)). Consequently (23) holds for k = 1. From the equality zk+1 =
λzk +Q−1

λ PλΦ(Wλ(xk);λ)+Q−1
λ Pλξ(Wλ(xk);λ) and relations ξ(Wλ(xk);λ) = o(1)

and (23) it follows that

zk+1 − λk+1z −

k−1
∑

j=0

λk−jQ−1
λ PλΦ(Qλ(λjz);λ) −Q−1

λ PλΦ(Wλ(xk);λ) = o(1). (24)

We assume that |λ− λq | is sufficiently small, therefore (23) implies |zk − λkz| ≤ c,
k ≤ n. Combining the estimate |P−

λ xk|λ ≤ β (which follows from (19) for all k) with

the relations (I − P+
λ )Wλ(x̃) = (I − P+

λ )x̃, |P+
λ Wλ(x̃)|λ ≤ β valid for all x̃ ∈ RN ,

we obtain |Wλ(xk) − Pλxk|λ ≤ 2β and consequently

|Wλ(xk) −Qλ(λkz)| ≤ |Wλ(xk) − Pλxk| + |Qλ(zk − λkz)| ≤ c1 <∞,

i.e. the difference Wλ(xk) − Qλ(λkz) is bounded for x ∈ Ωq,κ1,κ2

λ . Because of the
continuity and homogeneity (4) of Φ, the estimate |Wλ(xk) − Qλ(λkz)| ≤ c1 and
the relation |Qλ(λkz)| → ∞ as λ → λq (both valid for x ∈ Ωq,κ1,κ2

λ , k ≤ n) imply

that Φ(Wλ(xk);λ) − Φ(Qλ(λkz);λ) = o(1). Therefore the last term in the l.h.s. of
(24) can be replaced with the term Q−1

λ PλΦ(Qλ(λkz);λ), which transforms (24) to

zk+1 − λk+1z −
k

∑

j=0

λk−jQ−1
λ PλΦ(Qλ(λjz);λ) = o(1). (25)

Note that one obtains (25) from (23) by replacing k with k + 1. By induction we
conclude that (23) is valid for all 1 ≤ k ≤ n.
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Because the function Φ and the projectors are continuous,

n−1
∑

j=0

(

λn−j−1Q−1
λ PλΦ(Qλ(λjz);λ) − λn−j−1

q Q−1
λq
Pλq

Φ(Qλq
(λj

qz);λq)
)

= o(1). (26)

Relation λn
q = 1 implies

λn =
(

1 +
λ− λq

λq

)n

= 1 + nλ−1
q (λ− λq) +O((λ − λq)

2), λ→ λq,

and consequently |λnz − z − nλ−1
q (λ − λq)z| ≤ c2|λ − λq|, where the estimate

|z| ≤ κ2|λ− λq| is used. Combining the last estimate with (23) for k = n and (26),
we arrive at

zn − z − nλ−1
q (λ− λq)z −

n−1
∑

j=0

λn−j−1
q Q−1

λq
Pλq

Φ(Qλq
(λj

qz);λq) = o(1). (27)

Here
n−1
∑

j=0

λn−j−1
q Q−1

λq
Pλq

Φ(Qλq
(λj

qz);λq) = −nλ−1
q eiϕΨres

q (nϕ)

with ϕ = arg z, which follows from the relations

n−1
∑

j=0

λn−j−1
q Q−1

λq
Pλq

Φ(Qλq
(λj

qz);λq) =

n−1
∑

j=0

e2πq(n−j−1)iΨλq
(2πqj + ϕ)

=
n−1
∑

j=0

e−2πq(j+1)i
∞
∑

k=−∞

ψ
λq

k eik(2πqj+ϕ) = e−2πqi
∞
∑

k=−∞

ψ
λq

k eikϕ
n−1
∑

j=0

e2πqj(k−1)i

and

n−1
∑

j=0

e2πqj(k−1)i =

{

n if k − 1 is a multiple of n;
0 otherwise.

Therefore (27) coincides with (22). �
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