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Abstract. We consider autonomous systems with a nonlinear part depend-
ing on a parameter and study Hopf bifurcations at infinity. The nonlinear
part consists of the nonlinear functional term and the Prandtl–Ishlinskii hys-
teresis term. The linear part of the system has a special form such that the
close-loop system can be considered as a hysteresis perturbation of a quasi-
linear Hamiltonian system. The Hamiltonian system has a continuum of
arbitrarily large cycles for each value of the parameter. We present sufficient
conditions for the existence of bifurcation points for the non-Hamiltonian
system with hysteresis. These bifurcation points are determined by simple
characteristics of the hysteresis nonlinearity.
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1 Problem statement

Consider the equation

L

(
d

dt

)
x = M

(
d

dt

)
f(x). (1)
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Equations (1) with arbitrary polynomials L(p), M(p) satisfying condition (i) below
are usual in control theory (see, e.g., [3, 11, 12]). If M ≡ 1, then (1) is an
ordinary autonomous higher-order differential equation. The standard definition
of solutions for equation (1) is as follows. Consider the system

z′ = Az + y, y = b f(x), x = (c, z), z, y, b, c ∈ R
�.

For any L, M , and f there exist a matrix A and vectors b, c (non-unique) such
that this system is equivalent to equation (1).

Everywhere below it is assumed that the polynomials L(p) and M(p) and
their degrees � and m satisfy the following conditions:

(i) The polynomials L(p) and M(p) are coprime and � > m;

(ii) The polynomials L(p) and M(p) are even;

(iii) The polynomial L(p) has a pair of simple imaginary roots ± iw0 (w0 > 0)
and L(iw0n) �= 0 for n = 0, 2, 3, . . .

Condition (ii) implies that (1) is a Hamiltonian equation [6]. Suppose that the
function x−1f(x) vanishes as x → ∞ (e.g., f(x) is uniformly bounded). Then due
to (iii) equation (1) has a continuum of large-amplitude periodic solutions (cycles)
xr = xr(t) of all amplitudes r = ‖xr‖C with r ≥ r0; the period Tr of xr goes to
2π/w0 as r→∞.

If the function f(x, λ) depending on the parameter λ is used in place of
f(x) in equation (1), then this equation has a continuum of arbitrarily large
cycles for each parameter value. If equation (1) with f(x, λ) in place of f(x)
is perturbed by some hysteresis term, then large periodic solutions may exist for
parameter values accumulating near some bifurcation points only. To be precise,
the following definition from [4] is used.

Definition 1 A parameter value λ0 is called a Hopf bifurcation point at
infinity (shortly, a bifurcation point or HBP) with a frequency w0 for
some equation depending on the parameter λ if for any sufficiently large r > 0
there exists a λr such that the equation with λ= λr has a Tr-periodic solution
xr =xr(t) and λr →λ0, ‖xr‖C →∞, Tr → 2π/w0 as r → ∞.

In this definition, r is an auxiliary parameter, in the sequel it is the amplitude of
the principal harmonics of xr. The use of an auxiliary parameter different from λ
is standard in Hopf bifurcations (see, e.g., [10]).

If λ0 is a HBP, then in arbitrary small vicinity of λ0 there exist values λ
such that the equation with these λ has arbitrarily large periodic solutions with
periods arbitrarily close to 2π/w0. Let us stress that for equations with hysteresis
the state of the hysteresis nonlinearity must be also periodic with the same period
as the solution.
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Usually Hopf bifurcations are studied for equations where the linear part
(the coefficients of the polynomials L and M) depends on λ. In this situation, the
bifurcation points are typically determined by the linear part only. The following
result (see, [4]) is well-known for the equation

L

(
d

dt
;λ

)
x = M

(
d

dt
;λ

)
f(x, λ); (2)

here the polynomials L and M depend continuously on λ and their degrees are
supposed to be the same for all λ.

Statement 1 Let

lim
x→∞ sup

|λ−λ0|≤ε

∣∣∣∣f(x, λ)
x

∣∣∣∣ = 0

for some ε > 0. Let the polynomial L(p;λ) have a pair of simple conjugate roots
σ(λ) ± w(λ)i, let σ(λ0) = 0, w0 = w(λ0) > 0. Let the function σ(λ) take values
of both sign in every neighborhood of the point λ0. Let L(iw0n;λ0) �= 0 for n =
0, 2, 3, . . . Then λ0 is a HBP with the frequency w0 for equation (2).

This statement can be generalized to include equations with various classes of
nonlinearities, in particular, nonlinearities with delays and with hysteresis. Let
us remark that the polynomial L can not be even for all λ under the conditions
of Statement 11.

In [5], equations with linear parts independent of λ were considered, includ-
ing equations with delays and with the simplest hysteresis nonlinearity called stop.
Here we consider more complicated hysteresis nonlinearities.

Consider the perturbed equation

L

(
d

dt

)
x = M

(
d

dt

)
(f(x, λ) +Hλx) (3)

with the same linear part as in (1). Here the perturbation Hλx = (Hλx)(t) is the
output of a hysteresis nonlinearity with the input x = x(t) (see, [8]); characteristics
of this hysteresis nonlinearity and the function f(x, λ) depend on the parameter
λ ∈ (a, b). The block-diagram of such a system is shown in Figure 1. We consider
equation (3) with the Prandtl–Ishlinskii hysteresis nonlinearity Hλ (see, e.g., [2, 8,
9, 13] and the references therein), its exact definition is given in the next section.

The principal difference between theorems of this paper and results of [5]
(for equations with even linear parts) is that large cycles of equation (3) with the
Prandtl–Ishlinskii hysteresis term exist for different values of λ close to some HBP
λ0, while all large cycles of the equation with the stop hysteresis nonlinearity exist

1For every even polynomial the relation σ(λ0) = 0 for its simple roots σ(λ) ± w(λ)i implies
σ(λ) ≡ 0 for all λ close to λ0; the simplicity of the roots is essential.
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for a unique value λ = λ0 which is exactly the point where hysteresis disappears
and the equation becomes Hamiltonian. The stop can be consider as the simplest
degenerate Prandtl–Ishlinskii hysteresis nonlinearity.

Figure 1 Block-diagram of the system considered

The main result of this paper is a sufficient condition for λ0 to be a bifur-
cation point. Generically, it is close to necessary conditions. We prove that the
bifurcation points of equation (3) are determined by the hysteresis nonlinearity.
Rather sharp approximations of the behavior of the stop and the Prandtl–Ishlinskii
nonlinearities at infinity allow to answer the question if the large cycles of equation
(3) exist for λ < λ0 or for λ > λ0.

If a Hopf bifurcation occurs in a system without hysteresis, then the set of
large cycles is one-parametric as in the definition above. For Hopf bifurcations in
systems with the Prandtl–Ishlinskii hysteresis nonlinearities (such that the density
of the weight function has a noncompact support) the cycles typically depend on
an additional scalar parameter, i.e., the set of large cycles is two-parametric. This
is discussed in Section 5. Generically, for each λ the cycles form a band in the
phase space, the diameter of the band tends to infinity and its “width” tends to
zero as λ goes to a bifurcation point.

The paper is organized as follows. In the next section the hysteresis non-
linearity is described. In Section 3 the results are formulated as well as simple
examples. The rest of the paper contains remarks and proofs.

Hopf bifurcation points (at equilibrium or at infinity) may be studied with
various methods. We do not expect that classical analytical approaches (normal
forms, etc.) can be used to study bifurcations at infinity and equations with hys-
teresis. The method of parameter functionalization [7] seems to be applicable. Our
methods are close to that of [1, 5]. They can be briefly described as a combination
of harmonic linearization and topological methods (degree theory or vector field
rotation theory).

Similar results can be formulated for equations with the Preisach hysteresis
nonlinearities and some other types of hysteresis, equations with the linear part
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depending on the parameter2, etc. All the results may be generalized without
difficulty for equations with non-even polynomials L and M . Bifurcation points
of such equations are determined by both functional and hysteresis terms of the
nonlinearity; we consider even polynomials to indicate the situation where the
hysteresis term only is important.

2 Prandtl–Ishlinskii nonlinearity

2.1 Stop

The Prandtl–Ishlinskii hysteresis nonlinearity is a weighted sum of the elementary
hysteresis operators

ξ(t) = Uρ[t0, ξ0]x(t), t0 ≤ t ≤ t1, ρ > 0, (4)

called stops. Here the arguments are any number ξ0 ∈ [−ρ, ρ] and any continuous
function x = x(t) defined on an arbitrary segment [t0, t1]; the number is called
an initial state or initial value; the function is called an input of the stop. The
values ξ = ξ(t) of operator (4) are called outputs. The output is also a continuous
function defined on [t0, t1], it satisfies |ξ(t)| ≤ ρ for all t and its initial value is ξ0,
i.e., ξ(t0) = ξ0. For monotone inputs,

Uρ[t0, ξ0]x(t) =
{

min {ρ, ξ0+x(t)−x(t0)} if x(t) increases,
max{−ρ, ξ0+x(t)−x(t0)} if x(t) decreases. (5)

For each piecewise monotone continuous input, the output is defined by the semi-
group identity

Uρ[τ, Uρ[t0, ξ0]x(τ)]x(t) = Uρ[t0, ξ0]x(t), t ≥ τ ≥ t0.

To define the outputs for all continuous inputs, the operator Uρ[t0, ξ0] : x(t) 
→ ξ(t)
is extended by continuity in the space C[t0, t1] from the dense set of piecewise
monotone inputs to the whole space. The correctness of this procedure is proved
in [8].

Figure 2 shows the trajectories of the point {x(t), ξ(t)} = {x(t), Uρ[t0, ξ0]x(t)}
on the plane {x, ξ}. The point is always in the closed band |ξ| ≤ ρ, which is the
join of the two boundary horizontal lines ξ = ±ρ and a continual number of the
slanting lines ξ = x − θ with x ∈ (θ − ρ, θ + ρ) (where θ ∈ R is a parameter). If
the initial value ξ0 = ξ(t0) is not ±ρ, the point {x(t), ξ(t)} goes along the slanting
line: upwards right if x(t) increases and downwards left if x(t) decreases. As the
point reaches the horizontal line, it switches to it and goes to the right along the
line ξ = ρ or to the left along the line ξ = −ρ. The point switches again to a

2In such a way that a pair of conjugate roots of L lies on the imaginary axis for all λ.
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Figure 2 Stop nonlinearity

slanting line as soon as the input x(t) switches from increasing to decreasing or
conversely.

For any ρ > 0 operator (4) satisfies the Lipschitz condition

‖Uρ[t0, ξ01 ]x1(t) − Uρ[t0, ξ02 ]x2(t)‖C ≤ |ξ01 − ξ02 | + 2‖x1(t) − x2(t)‖C (6)

for every ξ01 , ξ
0
2 ∈ [−ρ, ρ], x1, x2 ∈ C[t0, t1].

Remark 1 If the input x(t) is T -periodic and ρ ≤ ∆ := (maxx(t) − minx(t))/2,
then the output ξ(t) = Uρ[0, ξ0]x(t) is also T -periodic for a unique initial value
ξ0. This value is defined by the formula

ξ0 = Uρ[0, ξ1]x(t)
∣∣∣
t=T

and is the same for all ξ1 ∈ [−ρ, ρ]. In particular, for ρ = ∆ this value is ξ0 =
x(0)−δ, where δ := (maxx(t)+minx(t))/2. If ρ > ∆, then the output is periodic
for each initial value ξ0 = x(0) − δ + θ with |θ| ≤ ρ − ∆. In this case, periodic
input and output satisfy ξ(t) − x(t) ≡ const.

2.2 Continual set of stops

Consider the set Ξ of all the stops Uρ[·]; the variable ρ ∈ (0,∞) is a parameter.
Denote by Θ the set of all continuous functions ξ = ξ(ρ), ρ > 0, such that
|ξ(ρ)| ≤ ρ for all ρ. Functions ξ ∈ Θ are called states of the set Ξ.

For any initial state ξ0 ∈ Θ and any continuous input x(t) (t0 ≤ t ≤ t1)
define the variable state of Ξ at every moment t ∈ [t0, t1] by the formula

ξ(t; ρ) = Uρ[t0, ξ0(ρ)]x(t), ρ > 0. (7)

The inclusion ξ(t; ρ) ∈ Θ for each t follows from the properties of operator (4).
The function ξ(t; ρ) is continuous with respect to the set of its arguments.
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The output of Ξ is defined by the formula

η(t) =
∫ ∞

0
Uρ[t0, ξ0(ρ)]x(t) dµ. (8)

Here the weight function µ = µ(ρ) has a bounded variation V (r;µ) on each interval
[r,∞) with r > 0 and

∣∣∣∣
∫ ∞

0
ρ dV (ρ;µ)

∣∣∣∣ ≤ c < ∞, (9)

which implies that η(t) (t0 ≤ t ≤ t1) is a continuous function for any ξ0 ∈ Θ and
any continuous input x(t) (t0 ≤ t ≤ t1). Both in (8) and (9) we use the improper
Riemann–Stieltjes integral; the function V (ρ;µ) decreases and vanishes as ρ → ∞,
it may go to infinity as ρ → +0.

The nonlinearity Ξ with input-state operator (7) and input-output operator
(8) is called the Prandtl–Ishlinskii hysteresis nonlinearity; for more details and
further properties, see [8].

Figure 3a Input x(t) Figure 3b Input–output relation

In Figure 3b we present the input–output relations for inputs x(t) of the
type given in Figure 3a and the initial state ξ0(ρ) = −ρ. The points xj in both
parts of Figure 3 are the same.

Consider the space of all continuous functions ξ(ρ) : [0,∞) → R such that
‖ξ‖Θ < ∞, where

‖ξ‖Θ := sup
ρ>0

|ξ(ρ)|
1 + ρ

.

It is a Banach space with the norm ‖ · ‖Θ. The state space Θ of the Prandtl–
Ishlinskii hysteresis nonlinearity is a closed subset of this Banach space (we con-
tinue the states at zero by ξ(0) = 0).
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Let us stress that generally the weight function µ is nonmonotone. Every-
where below we suppose that the function µ in (8) depends on the parameter
λ ∈ (a, b) (i.e., µ = µ(ρ, λ)), estimate (9) is valid for all λ with the same c, and∫ ∞

0
ρ dV (ρ;µ(·, λ) − µ(·, λ1)) → 0 as λ → λ1, λ1 ∈ (a, b) (10)

uniformly in λ1. Here V (r;µ(·, λ) −µ(·, λ1)) denotes the variation of the function
µ(ρ, λ) − µ(ρ, λ1) on the interval ρ ∈ [r,∞) for each r > 0. Under these assump-
tions, (8) is a continuous operator from its domain x ∈ C[t0, t1], ξ0 ∈ Θ, λ ∈ (a, b)
to the space C[t0, t1] of the outputs η = ηλ(t).

Suppose µ(ρ, λ) �≡ const at infinity and an input x(t) is T -periodic. Then
variable state (7) and output (8) are T -periodic for the continuum of initial
states. This follows from Remark 1. The difference between two periodic out-
puts for the same periodic input is always a constant.

3 Main results

Consider the equation

L

(
d

dt

)
x = M

(
d

dt

)
(f(x, λ) + ηλ(t)), (11)

where ηλ(t) is the output (8) of the Prandtl–Ishlinskii hysteresis nonlinearity with
the weight function µ = µ(ρ, λ) depending on λ. Here the polynomials L(p),
M(p) satisfy conditions (i)–(iii) of Section 1. The function f(x, λ) is supposed
to be continuous with respect to the set of its arguments x ∈ R, λ ∈ (a, b) and
uniformly bounded: sup |f(x, λ)| < ∞. It is assumed that the function µ = µ(ρ, λ)
satisfies assumptions (9) and (10); the variation V (·;µ) of this function depends
on λ, we suppose that (9) holds for all λ with the same c.

A solution x(t) of equation (11) is periodic if both the function x(t) and
variable state (7) of the hysteresis nonlinearity are periodic in t with the same
period. Note that the initial value ξ0 = ξ0(ρ) of the periodic state is not known a
priori.

In the following theorems we use the definition of Section 1.

Theorem 1 Suppose that λ0 ∈ (a, b) is a zero of the function

ψ(λ) =
∫ ∞

0
ρ dµ(ρ, λ) (12)

and that ψ(λ) takes both positive and negative values in any neighborhood of the
point λ0. Then λ0 is a bifurcation point for equation (11) with the frequency w0.

From (10) it follows that ψ(λ) is a continuous function. The frequency w0 is defined
by the relation L(±iw0) = 0.
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Theorem 2 The condition ψ(λ0) = 0 is necessary for λ0 to be a HBP for
equation (11).

Let M(0) �= 0 and let µ(ρ, λ) �≡ const at infinity. Suppose f(x, λ) ≡ 0. It follows
from Remark 1 that any periodic solution x∗(t) of the equation

L

(
d

dt

)
x = M

(
d

dt

)
ηλ(t)

generates the one-parameter family of solutions x∗(t)+θ, θ ∈ [θ1, θ2]. Both bound-
aries θj vanish as ‖x∗‖C → ∞. The situation is similar if f(x, λ) �≡ 0, i.e., we
consider the main equation (11). Generally, every large cycle xr(t) is included in
a one-parametric set of cycles (see Section 5).

If there is more information about the weight function µ(ρ, λ), then we can
say more precisely, for which values of λ the large-amplitude solutions of (11)
exist.

In the next theorem we suppose that∣∣∣∣
∫ ∞

0
ρ2 dV (ρ;µ)

∣∣∣∣ < ∞

uniformly in λ, and moreover,∫ ∞

r

ρ2 dV (ρ;µ) → 0 as r → ∞ uniformly in λ. (13)

Define the function

ϕ(λ) =
∫ ∞

0
ρ2 dµ(ρ, λ);

the integral in the right-hand side converges due to (13).

Theorem 3 Suppose λ0 is an isolated zero of the function ψ(λ). Suppose the
function ϕ(λ) is continuous and ϕ(λ0) �= 0. Then all sufficiently large periodic
solutions of equation (11) with λ sufficiently close to λ0 and periods sufficiently
close to 2π/w0 exist for the values of λ satisfying the inequality ψ(λ)ϕ(λ0) > 0.

It is easy to construct a function µ(ρ, λ) such that ψ(λ0) = 0 for some λ0, ψ(λ) > 0
for all λ �= λ0, and at the same time ϕ(λ0) < 0. In this case, Theorem 3 implies
that all the periodic solutions of equation (11) are uniformly bounded for all λ
close to λ0. Therefore the necessary condition ψ(λ0) = 0 is not sufficient for λ0
to be a bifurcation point.

Example 1 Suppose the density of the weight function µ(ρ, λ) is defined by

∂µ(ρ, λ)
∂ρ

= (ρ− λ)e−ρ.
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Figure 4 The density of µ(ρ, λ)

For this function ψ(λ) = 2 − λ, ϕ(λ) = 6 − 2λ. All the assumptions of
Theorems 1 and 3 are fulfilled, λ0 = 2, large cycles exist for λ < λ0.

Example 2 The simplest example of the equation that can be studied by the
theorems of this section is the second order equation

x′′ + x = Uρ1 [t0, ξ
0
1 ]x(t) − λUρ2 [t0, ξ

0
2 ]x(t) (14)

with two stops with different signs. Theorem 1 implies that the point λ0 = ρ1/ρ2
is a HBP for equation (14) with the frequency 1. Here ψ(λ) = ρ1 − λρ2, ϕ(λ) =
ρ2
1 − λρ2

2. Theorem 3 implies that the large cycles exist for λ > λ0 if ρ1 < ρ2 and
for λ < λ0 if ρ1 > ρ2.

4 Proof of Theorem 1

4.1 Change of variables

We look for periodic solutions of equation (11) with periods 2π/w close to 2π/w0.
Let us change the time scaling by the formula wt → t and replace (11) by the
equation

L

(
w
d

dt

)
x = M

(
w
d

dt

)
(f(x, λ) + ηλ(t)), (15)

where

ηλ(t) =
∫ ∞

0
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ), t ≥ 0. (16)

One of the main common features of hysteresis is rate-independence, which means
that the relation x1(t) = x2(τ(t)) between inputs implies relations ξ1(t) = ξ2(τ(t))
and η1(t) = η2(τ(t)) between variable states and outputs of a hysteresis nonlinear-
ity if an initial state is the same, i.e., ξ1(t0) = ξ2(τ(t0)); here τ(t) is any strictly
increasing continuous function. Due to rate-independence of the Prandtl–Ishlinskii
operators, relation (16) implies

ηλ(wt) =
∫ ∞

0
Uρ[0, ξ0(ρ)]x(wt) dµ(ρ, λ)
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for every w > 0, therefore x(wt) is a 2π/w-periodic solution of (11) iff x(t) is a
2π-periodic solution of system (15), (16). This system should be coupled with the
periodicity condition for the state:

Uρ[0, ξ0(ρ)]x(t)
∣∣∣
t=2π

= ξ0(ρ), ρ > 0. (17)

We prove the existence of 2π-periodic solutions

x(t) = r sin t+ h(t), r ≥ 0, (18)

of system (15)–(17), where h(t) is orthogonal to the functions sin t and cos t in L2 =
L2[0, 2π] (everywhere 2π-periodic functions are identified with their restrictions
to the period). More precisely, we show that for every sufficiently large r there are
numbers w and λ close to w0 and λ0, an initial state ξ0 = ξ0(ρ) of the hysteresis
nonlinearity, and a function h = h(t) such that (18) is a solution of (15)–(17).
Since r is arbitrarily large, so is the amplitude of (18).

Note that shifts of time in (18) generate the continuum of 2π-periodic solu-
tions xθ(t) = r sin(t+ θ) + h(t+ θ), θ ∈ (0, 2π), of autonomous system (15)–(17)
(the initial state of the hysteresis nonlinearity for the solution xθ(t) is ξθ(ρ) =
Uρ[0, ξ0(ρ)]x(θ)). Fixing the phase θ = 0, we choose a unique solution from the
continuum.

Let us remark that the original problem depends on the parameter λ, its
unknown solutions are functions x(t) = r sinw(t + θ) + h(w(t + θ)) of unknown
period 2π/w, the initial state ξ0(·) of the hysteresis nonlinearity is an additional
unknown. That is, originally we have the problem with the parameter λ and
four unknowns w, r, h(·), ξ0(·); each solution of the problem is included in the
continuum of shifted solutions. Now, the amplitude r of the first harmonic of the
solution is considered as a parameter, the phase θ = 0 is fixed, and the unknowns
are λ, w, h(·), and ξ0(·). This choice of the parameter and the unknowns simplifies
the use of topological methods.

4.2 Equivalent system

Denote Ω = [w1, w2], where w1 < w0 < w2. We suppose that w0 is the only root
of the polynomial L(iw) on the segment Ω, M(iw) �= 0 for w ∈ Ω, and

L(iwn) �= 0, w ∈ Ω, n = 0, 2, 3, . . . (19)

By assumptions (i) and (iii), this is true for any sufficiently small segment Ω.
Define the orthogonal projectors

Pu =
1
π

∫ 2π

0
cos(t− s)u(s) ds, Q = I − P
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onto the plane Π = {α sin t + β cos t} and onto its orthogonal complement Π∗ in
L2. Substituting (18) in equation (15) and using the projectors P , Q, we obtain

r L

(
w
d

dt

)
sin t = M

(
w
d

dt

)
P (f(x(t), λ) + ηλ(t)),

L

(
w
d

dt

)
h(t) = M

(
w
d

dt

)
Q(f(x(t), λ) + ηλ(t)). (20)

Since the polynomials L(p), M(p) are even, for all u ∈ Π

L

(
w
d

dt

)
u = L(iw)u, M

(
w
d

dt

)
u = M(iw)u.

Therefore the first equation of (20) is equivalent to the system

rπL(iw) = M(iw)
∫ 2π

0
(f(x(t), λ) + ηλ(t)) sin t dt,

0 =
∫ 2π

0
(f(x(t), λ) + ηλ(t)) cos t dt

of two scalar equations. We rewrite the second equation of (20) as

h = A(w)Q(f(x(t), λ) + ηλ(t)).

Here A(w) is the linear operator that maps any function u ∈ Π∗ to a unique
2π-periodic solution h = A(w)u ∈ Π∗ of the equation

L

(
w
d

dt

)
h = M

(
w
d

dt

)
u;

this operator is well-defined for each w ∈ Ω due to (19). The operator A(w) is
completely continuous and self-adjoint in Π∗ ⊂ L2, its eigenvalues are

σn =
M(iwn)
L(iwn)

, n = 0, 2, 3, . . . (21)

The first eigenvalue σ0 is simple, the corresponding eigenfunctions are constants;
each other eigenvalue σn has the multiplicity 2, the corresponding eigenfunctions
are sinnt and cosnt. Since σn = O(n−2), each operator A(w) is completely
continuous as an operator from Π∗ ⊂ L2 to

E = {h ∈ C1, h ∈ Π∗, h′ ∈ Π∗} ⊂ C1 = C1[0, 2π].

The norms of these operators are uniformly bounded:

‖A(w)‖Π∗→C1 ≤ c < ∞, w ∈ Ω,
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and moreover, A(·) : Ω × Π∗ → C1 is completely continuous with respect to w, u.
Thus, 2π-periodic problem for (15)–(17) is equivalent to the system




0 =
∫ 2π

0 (f(x(t), λ) + ηλ(t)) cos t dt,

rπL(iw) = M(iw)
∫ 2π

0 (f(x(t), λ) + ηλ(t)) sin t dt,

h = A(w)Q(f(x(t), λ) + ηλ(t)),

ξ0 = Uρ[0, ξ0]x(t)|t=2π

(22)

where ηλ(t) and x(t) are given by (16) and (18).
Denote by Λ the segment [λ1, λ2] such that ψ(λ1)ψ(λ2) < 0, where ψ(λ) is

function (12); such a segment with λ1, λ2 arbitrarily close to λ0 exists by assump-
tions of Theorem 1. To prove the theorem, it suffices to show that (22) has a
solution z = {λ,w, h, ξ0} ∈ Z def= Λ × Ω × E × Θ for every sufficiently large r.
For this purpose, we replace system (22) by the equivalent operator equation
z = Br(z) and construct compact convex sets G ⊂ E and K ⊂ Θ such that the
continuous operator Br maps the product Z0 = Λ × Ω ×G×K into itself. Then
the existence of the solution z = {λ,w, h, ξ0} follows from the Schauder fixed point
principle.

4.3 Invariant set

Consider the third equation of system (22). It follows from (9) that the outputs
of the hysteresis nonlinearity are uniformly bounded. The function f(x, λ) is also
bounded by assumption. Hence, the uniform estimate

|f(x(t), λ) + ηλ(t)| ≤ c < ∞, t ∈ [0, 2π], λ ∈ (a, b), (23)

is valid for all continuous x(t) and all initial states ξ0 ∈ Θ. This estimate implies
that the image A(Z) of the set Z under the completely continuous map

A : {λ,w, h, ξ0} 
→ A(w)Q(f(r sin t+ h(t), λ) + ηλ(t))

is a compact subset of E. We define G = co A(Z), i.e., G is the closure of the
convex hull of A(Z).

Now consider the last equation of (22). To construct the set K ⊂ Θ we use
normal states of the hysteresis nonlinearity. A state ξ ∈ Θ is called normal if

|ξ(ρ1) − ξ(ρ2)| ≤ |ρ1 − ρ2| (24)

for all ρ1, ρ2 > 0. Let c1 be so large that 2‖h‖C ≤ c1 for all h ∈ G and let
ξ̃(ρ): [r + c1,∞) → R be any function satisfying relations (24) and

|ξ̃(ρ)| ≤ ρ− r − c1, ρ ≥ r + c1. (25)
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By K = K(r, ξ̃) we denote the set of all normal states ξ = ξ(ρ) such that
ξ(ρ) = ξ̃(ρ) for ρ ≥ r + c1; by definition, K is convex and compact. If ξ0 ∈ K,
h ∈ G, and x = r sin t+ h, then

|ξ0(ρ) + x(t) − x(0)| ≤ |ξ0(ρ)| + r + 2‖h‖C

≤ |ξ0(ρ)| + r + c1 ≤ ρ, ρ ≥ r + c1,

and, by the definition of the stop, Uρ[0, ξ0(ρ)]x(t) = ξ0(ρ) + x(t) − x(0) for all
ρ ≥ r + c1, 0 ≤ t ≤ 2π, therefore

Uρ[0, ξ0(ρ)]x(t)
∣∣∣
t=2π

= ξ0(ρ) = ξ̃(ρ), ρ ≥ r + c1.

Since for every initial normal state ξ0 and every continuous input x(t) the variable
state (7) is normal for each t ≥ t0 (see, e.g., [8]), it follows that

Uρ[0, ξ0]x(t)
∣∣∣
t=2π

∈ K for all ξ0 ∈ K, h ∈ G.

The first and the second equations of system (22) we rewrite in a proper form.
Recall that w0 is the only root of the even polynomial L(iw) in Ω and this root is
simple, i.e., L(iw) = (w−w0)L1(w) and the real polynomial L1(w) is nonzero on
the segment Ω. Therefore the second equation is equivalent to

w = w0 +
M(iw)
rπL1(w)

∫ 2π

0
(f(x(t), λ) + ηλ(t)) sin t dt.

Estimates (23) and w1 < w0 < w2 imply that the values of the right-hand side
belong to the segment Ω = [w1, w2] if r is sufficiently large.

The first equation of system (22) is the most complicated. First note that if
h satisfies the third equation of this system, then

1
r

∫ 2π

0

(
f(x(t), λ) + ηλ(t)

)
h′(t) dt = 0. (26)

This equality follows from the formulas

u(t) = α0 +
∞∑

n=1

(αn sinnt+ βn cosnt),

h(t) = σ0α0 +
∞∑

n=2

σn(αn sinnt+ βn cosnt)

for the Fourier expansions of the functions u(t) = f(x(t), λ) + ηλ(t) and h(t) =
A(w)Qu(t). Adding (26) to the first equation of (22), we obtain

1
r

∫ 2π

0
(f(x(t), λ) + ηλ(t))(r cos t+ h′(t)) dt = 0. (27)



Vol. 9, 2002 On a bifurcation governed by hysteresis nonlinearity 107

Since
∫ 2π

0
f(x(t), λ)(r cos t+ h′(t)) dt =

∫ 2π

0
f(x(t), λ)x′(t) dt = 0,

relation (27) is equivalent to

1
r

∫ 2π

0
ηλ(t)x′(t) dt = 0 (28)

and we rewrite it as

λ = λ+
κε

r

∫ 2π

0
ηλ(t)x′(t) dt,

where κ = sign ψ(λ1) �= 0 and ε > 0.

Lemma 1 Let x(t) and ηλ(t) be inputs and outputs (16) of the Prandtl–Ishlinskii
hysteresis nonlinearity, let x(t) = r sin t+ h(t). Then

lim
r→∞

1
r

∫ 2π

0
ηλ(t)x′(t) dt = 4ψ(λ), (29)

where the convergence is uniform with respect to all h from any ball ‖h‖C1 ≤ c,
all initial states ξ0 ∈ Θ of the hysteresis nonlinearity, and all λ.

Recall that the function ψ(λ) is continuous and ψ(λ1)ψ(λ2) < 0. By Lemma 1,
there are numbers r0 > 0 and δ > 0 such that for any r ≥ r0

κ

r

∫ 2π

0
ηλ(t)x′(t) dt > 0 forλ ∈ [λ1, λ1 + δ],

κ

r

∫ 2π

0
ηλ(t)x′(t) dt < 0 forλ ∈ [λ2 − δ, λ2].

Therefore if ε > 0 is small enough the relation

λ+
κε

r

∫ 2π

0
ηλ(t)x′(t) dt ∈ [λ1, λ2] = Λ

is valid for each r ≥ r0 and all λ ∈ Λ, h ∈ G, ξ0 ∈ Θ. Thus, (22) is equivalent to
the system 



λ = λ+ κε
r

∫ 2π

0 ηλ(t)x′(t) dt,

w = w0 + M(iw)
rπL1(w)

∫ 2π

0 (f(x(t), λ) + ηλ(t)) sin t dt,

h = A(w)Q(f(x(t), λ) + ηλ(t)),

ξ0 = Uρ[0, ξ0]x(2π)
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which has the form z = Br(z) and as we have seen, the operator Br maps the
convex compact set Z0 into itself if r is sufficiently large. This completes the proof
of Theorem 1. The proof of Lemma 1 is given in Section 7.

5 Another proof of Theorem 1

Here we sketch another proof of Theorem 1 and discuss a structure of the set of
large cycles. The main point is that we do not use an equation in the state space
Θ of the hysteresis nonlinearity to define an initial state ξ0 for a periodic solution.
Instead, initial states are defined a priori for all periodic inputs x = x(t) by the
continuous operator x 
→ ξ0 = ξ0(ρ;x, T, α) where α is a scalar parameter.

Let x(t) be a T -periodic input of the Prandtl–Ishlinskii nonlinearity, set

∆ =
1
2
(maxx(t) − minx(t)), δ =

1
2
(maxx(t) + minx(t)).

From Remark 1 it follows that the variable state (7) is T -periodic iff the initial
state ξ0(ρ) satisfies

ξ0(ρ) =
{
Uρ[0, ξ1(ρ)]x(t)|t=T , ρ ≤ ∆,
x(0) − δ + θ(ρ), ρ > ∆. (30)

Here ξ1(ρ) ∈ Θ is arbitrary3, the values ξ0(ρ) for ρ ≤ ∆ do not depend on ξ1(ρ);
the function θ(ρ) is continuous and satisfies

|θ(ρ)| ≤ ρ− ∆, ρ ≥ ∆. (31)

For every such θ(ρ) the function (30) is continuous and ξ0(ρ) ∈ Θ.
If initial states ξ0(ρ) and ξ∗

0(ρ) are defined for the same input x(t) by (30)
with different θ(ρ) and θ∗(ρ), then the variable states ξ(t; ρ) = Uρ[0, ξ0(ρ)]x(t)
and ξ∗(t; ρ) = Uρ[0, ξ∗

0(ρ)]x(t) coincide for ρ ≤ ∆; for ρ > ∆ the difference
ξ(t; ρ) − ξ∗(t; ρ) equals θ(ρ) − θ∗(ρ) and does not depend on t. Therefore∫ ∞

0
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ) =

∫ ∞

0
Uρ[0, ξ∗

0(ρ)]x(t) dµ(ρ, λ), t ≥ 0,

i.e., the outputs coincide iff∫ ∞

∆
θ(ρ) dµ(ρ, λ) =

∫ ∞

∆
θ∗(ρ) dµ(ρ, λ). (32)

For simplicity, suppose that the weight function µ(ρ, λ) is strictly monotone
with respect to ρ for each λ. Then due to (31), for any θ(ρ) there exists a unique4

3Below we use ξ1(ρ) = 0.
4Existence and uniqueness of α follow from monotonicity of µ(ρ, λ) with respect to ρ. Since

we are interested in large-amplitude solutions only, it suffices to assume that µ(ρ, λ) is monotone
for ρ ≥ ρ0.
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α ∈ [−1, 1] such that (32) is valid for θ∗(ρ) = α(ρ − ∆). If x(t) is a T -periodic
solution of equation (11) and ξ0(ρ) is the corresponding initial state of the hystere-
sis nonlinearity, then this x(t) is also a periodic solution of (11) with the initial
state

ξ0(ρ;x, T, α) =
{
Uρ[0, 0]x(t)|t=T , ρ ≤ ∆,
x(0) − δ + α(ρ− ∆), ρ > ∆ (33)

for some unique α ∈ [−1, 1]. Now we see that the system


0 =
∫ 2π

0 (f(x(t), λ) + ηλ(t)) cos t dt,
rπL(iw) = M(iw)

∫ 2π

0 (f(x(t), λ) + ηλ(t)) sin t dt,
h = A(w)Q(f(x(t), λ) + ηλ(t))

(34)

with

ηλ(t) =
∫ ∞

0
Uρ[0, ξ0(ρ;x, 2π, α)]x(t) dµ(ρ, λ)

is equivalent to equation (11) for any r and any α ∈ [−1, 1]. System (34) is
obtained from (22), it can be studied in the same way. Under the assumptions of
Theorem 1, system (34) has a solution λ, w, x(t) = r sin t+h(t) for any sufficiently
large r and any α ∈ [−1, 1]. Generically, the solutions are different for different α.

If µ(ρ, λ) is not monotone for large ρ the situation is more complicated.
Generically, the main conclusion (that there exists a one-parametric set of large
cycles for every r) is preserved.

Let us stress that in the previous section we have proved that periodic solu-
tions of (11) exist for every sufficiently large r and every function ξ̃(ρ) satisfying
(24), (25). In fact, the solutions with different ξ̃(ρ) coincide if the initial states
satisfy (32) for ρ ≥ ∆.

The situation is different if the weight function µ satisfies µ ≡ const for
ρ ≥ ρ0 (this is the case if the hysteresis nonlinearity can be considered as the set
of stops Uρ[·] with ρ ranging over a finite interval [0, ρ0]). Then large cycles of
equation (11) depend on one parameter r and the initial state of the hysteresis
nonlinearity is determined uniquely. Namely, for each periodic solution x(t) =
r sin t+ h(t) with sufficiently large r this state is ξ0(ρ) = ρ, ρ ∈ [0, ρ0].

6 Proof of Theorems 2 and 3

The proof is very simple. As we have seen in Section 4, every sufficiently large
periodic solution of equation (11) has the form x(w(t+ θ)), where x(t) = r sin t+
h(t) is a 2π-periodic solution (18) of system (15)–(17), the component h ∈ E
satisfies the uniform estimate ‖h‖C1 ≤ c, and relation (28) holds. Therefore the
conclusion of Theorem 2 follows from Lemma 1. The conclusion of Theorem 3
follows from the more accurate lemma.
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Lemma 2 Let x(t) and ηλ(t) be an input and an output (16) of the Prandtl–
Ishlinskii hysteresis nonlinearity, let x(t) = r sin t+ h(t) be a 2π-periodic solution
of system (15)–(17). Suppose (13) holds. Then

∣∣∣∣1r
∫ 2π

0
ηλ(t)x′(t) dt− 4ψ(λ) + 4

ϕ(λ)
r

∣∣∣∣ ≤ C
|ψ(λ)|
r

+ o(r−1), r → ∞. (35)

Due to (28), the integral in (35) is zero for 2π-periodic solutions of system
(15)–(17), therefore

4
∣∣∣∣ψ(λ) − ϕ(λ)

r

∣∣∣∣ ≤ C
|ψ(λ)|
r

+ o(r−1).

Since ϕ(λ0) �= 0, this implies ψ(λ)ϕ(λ0) > 0 for sufficiently large r and λ close
to λ0.

7 Proof of Lemmas 1 and 2

Let ρ ≤ r/3, ‖h(t)‖C1 ≤ c. Consider stop (4) with the input x(t) = r sin t + h(t)
and the output ξ(t), 0 ≤ t ≤ 2π. Set

t0 =0, t1 =
π

2
−arcsin

c

r
, t2 =

π

2
+ arcsin

c

r
,

t3 =π+t1, t4 = π+t2, t5 =2π.

Since x′(t) = r cos t + h′(t) and ‖h′(t)‖C ≤ c, the function x(t) strictly increases
on each of the segments [t0, t1] and [t4, t5] and strictly decreases on the segment
[t2, t3]. The relations

x(ti) = h(ti), i = 0, 5;
x(ti) = h(ti) +

√
r2 − c2, i = 1, 2;

x(ti) = h(ti) − √
r2 − c2, i = 3, 4,

and ‖h(t)‖C ≤ c, ‖ξ(t)‖C ≤ ρ ≤ r/3 imply that for every sufficiently large r the
equation x(t) = x(t0) − ξ(t0) + ρ has a unique solution t = τ1 on the segment
[t0, t1]; the equation x(t) = x(t2) − ξ(t2) − ρ has a unique solution t = τ3 on the
segment [t2, t3]; the equation x(t) = x(t4) − ξ(t4) + ρ has a unique solution t = τ5
on the segment [t4, t5]. From (5) it follows that

ξ(t) ≡ ρ for t ∈ [τ1, t1] ∪ [τ5, t5],
ξ(t) ≡ −ρ for t ∈ [τ3, t3], (36)

and
ξ(t) = x(t) − x(ti) + ξ(ti) for t ∈ [ti, τi+1], i = 0, 2, 4. (37)
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Figure 5 The output of the stop Uρ for x(t) = r sin t + h(t)

The output ξ(t) is shown in Figure 5.
Set

I(θ1, θ2) =
1
ρ

∫ θ2

θ1

x′(t)ξ(t) dt, 0 ≤ θ1 ≤ θ2 ≤ 2π.

Relations (36) imply

I(τ1, t1) = x(t1) − x(τ1), I(τ3, t3) = x(τ3) − x(t3), I(τ5, t5) = x(t5) − x(τ5).

By definition of the points τi,

x(τ1) = ρ+ x(t0) − ξ(t0), x(τ3) = −ρ+ x(t2) − ξ(t2),
x(τ5) = ρ+ x(t4) − ξ(t4).

Therefore

I(τ1, t1) = x(t1) − x(t0) + ξ(t0) − ρ,

I(τ3, t3) = x(t2) − x(t3) − ξ(t2) − ρ,

I(τ5, t5) = x(t5) − x(t4) + ξ(t4) − ρ. (38)

From (36) and (37), we see that |ξ(τi)| = ρ and x′(t) = ξ′(t) on the segments
[ti, τi+1], hence

I(ti, τi+1) =
1
2ρ

(ξ2(τi+1) − ξ2(ti)) =
1
2ρ

(ρ2 − ξ2(ti)), i = 0, 2, 4,

and due to ‖ξ(t)‖C ≤ ρ,

|I(ti, τi+1)| ≤ |ρ− ξ(ti)|, i = 0, 2; |I(t4, τ5)| ≤ | − ρ− ξ(t4)|. (39)

For t ∈ [t1, t2] ∪ [t3, t4] the relations |x′(t)| = |r cos t + h′(t)| ≤ r| cos t| + c ≤ 2c
hold, therefore

|x(ti) − x(ti+1)| ≤ 2c(ti+1 − ti) = 4c arcsin
c

r
, i = 1, 3. (40)
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The estimate

|ξ(θ1) − ξ(θ2)| ≤
∫ θ2

θ1

|x′(t)| dt, θ1 ≤ θ2,

follows from the definition of the stop for every smooth input, hence

|ξ(t1) − ξ(t2)| = |ρ− ξ(t2)| ≤ 4c arcsin
c

r
,

|ξ(t3) − ξ(t4)| = |ρ+ ξ(t4)| ≤ 4c arcsin
c

r
. (41)

Using (40), (41), we can rewrite equalities (38) as

I(τ1, t1) = x1 − x0 + ξ0 − ρ,

I(τ3, t3) = x1 − x3 − 2ρ+ 2∆1,

I(τ5, t5) = x5 − x3 − 2ρ+ 2∆2,

where xi = x(ti), ξ0 = ξ(t0), and |∆i| ≤ 4c arcsin(c/r). Therefore

|I(τ1, t1) + I(τ3, t3) + I(τ5, t5) − 2(x1 − x3 − 2ρ)|
≤ |x5 − x0| + |ξ0 − ρ| + 16c arcsin

c

r
.

Relations (39) and (41) imply

|I(t0, τ1)| ≤ |ρ− ξ0|, |I(t2, τ3)| ≤ 4c arcsin
c

r
, |I(t4, τ5)| ≤ 4c arcsin

c

r
.

Relations ‖ξ(t)‖C ≤ ρ and max{|x′(t)| : t ∈ [t1, t2], t ∈ [t3, t4]} ≤ 2c imply

|I(t1, t2) + I(t3, t4)| ≤ 2c(t2 − t1 + t4 − t3) = 8c arcsin
c

r
.

Combining all these estimates, we obtain

|I(t0, t5) − 2(x1 − x3 − 2ρ)| ≤ |x5 − x0| + 2|ξ0 − ρ| + 32c arcsin
c

r
.

Multiplying by ρ and integrating over the segment 0 ≤ ρ ≤ r/3, we get

∣∣∣∣
∫ r/3

0
dµ(ρ, λ)

∫ 2π

0
x′(t)Uρ[0, ξ0(ρ)]x(t) dt

−2(x1 − x3)
∫ r/3

0
ρ dµ(ρ, λ) + 4

∫ r/3

0
ρ2 dµ(ρ, λ)

∣∣∣∣
≤

∣∣∣∣
∫ r/3

0
ρ

(
|x5 − x0| + 2|ξ0(ρ) − ρ| + 32c arcsin

c

r

)
dV (ρ;µ)

∣∣∣∣. (42)
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Since |x(t0)| ≤ c, |x(t5)| ≤ c, |ξ0(ρ)| ≤ ρ and since the Fubini theorem is applicable
to the iterated integral in (42), this estimate implies

∣∣∣∣
∫ 2π

0
x′(t) dt

∫ r/3

0
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ) − 2(x1 − x3)

∫ r/3

0
ρ dµ(ρ, λ)

∣∣∣∣
≤

∣∣∣∣
∫ r/3

0
ρ (2c+ 8ρ+ 16πc) dV (ρ;µ)

∣∣∣∣.
From (9) the relations

1
r

∫ r/3

0
ρ dV (ρ;µ) → 0,

1
r

∫ r/3

0
ρ2 dV (ρ;µ) → 0 as r → ∞

follow, hence

1
r

∣∣∣∣
∫ 2π

0
x′(t) dt

∫ r/3

0
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ)

−2(x1 − x3)
∫ r/3

0
ρ dµ(ρ, λ)

∣∣∣∣ → 0,

where the convergence is uniform with respect to ξ0 = ξ0(ρ). Using the relations

|x1 − x3 − 2r| = |2
√
r2 − c2 − 2r + h(t1) − h(t3)|

≤ 2(r −
√
r2 − c2) + 2c ≤ 2(c2/r + c), (43)

we can rewrite this as
∣∣∣∣1r

∫ 2π

0
x′(t) dt

∫ r/3

0
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ) − 4

∫ r/3

0
ρ dµ(ρ, λ)

∣∣∣∣ → 0. (44)

But the estimates |x′(t)| ≤ r + c, |Uρ[0, ξ0(ρ)]x(t)| ≤ ρ imply

∣∣∣∣∣
1
r

∫ 2π

0
x′(t) dt

∫ ∞

r/3
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ)

∣∣∣∣∣
≤ 2π

(
1 +

c

r

) ∣∣∣∣∣
∫ ∞

r/3
ρ dV (ρ;µ)

∣∣∣∣∣ , (45)

therefore relation (29) follows from (9) and (44). The uniformity of convergence
with respect to λ in (29) follows from that in (10). This proves Lemma 1.

Suppose all the assumptions of Lemma 2 are satisfied. Then x0 = x5, ξ0 =
ξ(t5) and due to (36), ξ0(ρ) = ρ for ρ ≤ r/3. Substituting these equalities in (42)
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and using (43), we obtain∣∣∣∣∣
1
r

∫ 2π

0
x′(t) dt

∫ r/3

0
Uρ[0, ξ0(ρ)]x(t) dµ(ρ, λ)

−4
∫ r/3

0
ρ dµ(ρ, λ) +

4
r

∫ r/3

0
ρ2 dµ(ρ, λ)

∣∣∣∣∣
≤ 4

(
c2

r2
+
c

r

) ∣∣∣∣∣
∫ r/3

0
ρ dµ(ρ, λ)

∣∣∣∣∣ +
32c
r

arcsin
c

r

∣∣∣∣∣
∫ r/3

0
ρ dV (ρ;µ)

∣∣∣∣∣ . (46)

Relation (13) implies∫ ∞

r/3
ρ2 dV (ρ;µ) → 0, r

∫ ∞

r/3
ρ dV (ρ;µ) → 0 as r → ∞

with the convergence uniform with respect to λ, therefore (35) follows from (45),
(46), and Lemma 2 is proved.
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