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1. Introduction

Consider a planar continuous vector field Φx. Let it be non-zero on the simple
(without selfintersections) close curve Γ. Then the rotation γ = γ(Φ, Γ) (see [1, 2])
is well-defined of this field along this curve. The plane can be considered as the set
of complex numbers with the operation of multiplying. If Φ(z) = ϕ1(z)ϕ2(z), then
the rotations γ(ϕ1, Γ) and γ(ϕ2, Γ) are also well-defined and

γ(Φ, Γ) = γ(ϕ1, Γ) + γ(ϕ2, Γ). (1)

This formula follows from the properties of the multiplication of the complex num-
bers:

Arg(z1z2) = Arg(z1) + Arg(z2)

and from the definition of the planar rotation as the winding number. Formula (1)
is valid if Γ is the boundary of any domain (not necessary for simple curves).

In this paper we formulate a simple theorem that generalizes formula (1) for
some other even dimensional spaces that have an algebraic structure, partially such
generalizations are valid for the quaternions. From this theorem the “fundamental
theorem of algebra” for the quaternions [3] and for Cayley numbers [4] follow.

The notion of rotation of vector fields is equivalent to the notion of degree of a
mapping, we use the rotation due to family traditions.

2. The main result

Consider the space Rn where n = 2k is an even positive integer.
Let B denotes a bilinear mapping Rn × Rn 7→ Rn. By the definition of the

bilinearity there exist the matrices M(x) and M∗(x), x ∈ Rn satisfying the following
conditions:

B(x, y) = M(x)y = M∗(y)x, x, y ∈ Rn. (2)

We will say that the mapping B is non-degenerate, if B(x, y) = 0 implies x =
y = 0. This is equivalent to the property that the matrices M(x) and M∗(x) are
non-degenerate for all non-zero x ∈ Rn. In particular for a non-degenerated bilinear
mapping B all determinants det M(x) and det M∗(x) for x ∈ Rn, x 6= 0 have the
same signature. Thus we can define the number

σ(B) = sign det M(x), σ∗(B) = sign det M∗(x).

The pair (σ(B), σ∗(B)) will be called the signature of the (non-degenerated) bilinear
mapping B.
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Non-degenerated bilinear mappings exist ([5]) only for the dimensions 2, 4, 8, with
examples given by the multiplications of complex numbers, quaternions, and the
Cayley octaves. Note, that there exist bilinear mappings which are not equivalent
to the aforementioned standard products. Let us consider, for example, the case
n = 2. Then for x = (u, v), y = (u, v) the mappings

B1(x, y) = (au− bv, av + bu), B2(x, y) = (au + bv,−av + bu),

B3(x, y) = (−au + bv, av + bu), B4(x, y) = (−au + bv, av + bu)

have the signatures (+1, +1), (−1, +1), (−1,−1), (+1,−1). Note also that

σ(B) = σ∗(B) = +1 (3)

if there exist an element w ∈ Rn such that B(w, x) ≡ B(x, w) ≡ x (that is if there
exist the unit with respect to the form B).

Let us consider in Rn a domain D with the boundary ∂D and consider two
non-degenerate continuous vector fields Φ(x) and Ψ(x) on ∂D.

Theorem 1. If Φ, Ψ 6= 0 on ∂D, then the equality

γ
(
B(Φ(x), Ψ(x)), ∂D

)
= σ(B)∗γ

(
Φ(x), ∂D

)
+ σ(B)γ

(
Ψ(x), ∂D

)
(4)

is valid.

We do not consider odd dimensional spaces: non-degenerate multiplications do
not exist there. But in 1 dimensional space the usual multiplication is nondegenerate
and formula (4) is not valid. An unquisitive reader will easily find out the source of
such apparent contradiction.

Let us stress here that formula (4) is not only the formula for rotation of products
but also a formula for rotation of fractions.

3. Proof

To prove the theorem let us continue both vector-fields Φ and Ψ into the interior
of D in such a way that the following conditions hold:

1. Both fields have only finite numbers of zeros and all these zeroes are simple:
the corresponding Jacobi matrices are non-degenerate.

2. The zeroes x1, . . . , xm of the field Φ are different with the zeroes y1, . . . , yk of
the field Ψ:

xi 6= yj, i = 1, . . . ,m; j = 1, . . . , k.
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This is possible according to Sard Lemma (see, e.g., [6], Ch. 1, Theorem 1.2).
Now formula (4) follows from the relations

γ
(
B

(
Φ(x), Ψ(x)

)
, ∂D

)
=

m∑
i=1

Ind B
(
Φ(x), Ψ(x)

)∣∣∣
x=xi

+
k∑

j=1

Ind B
(
Φ(x), Ψ(x)

)∣∣∣
x=yj

=
m∑

i=1

σ∗(B) Ind Φ(x)
∣∣∣
x=xi

+
k∑

j=1

σ(B) Ind Ψ(x)
∣∣∣
x=yj

= σ∗(B)γ(Φ, ∂D) + σ(B)γ(Ψ, ∂D).

The equalities

m∑
i=1

Ind Φ(x)
∣∣
x=xi

= γ(Φ, ∂D) and
k∑

j=1

Ind Ψ(x)
∣∣
x=yj

= γ(Ψ, ∂D)

are obvious. The formulae

Ind B
(
Φ(x), Ψ(x)

)∣∣∣
x=xi

= Ind B
(
Φ(x), Ψ(xi)

)∣∣∣
x=xi

= Ind M∗(Ψ(xi)
)
Φ(x)

∣∣
x=xi

= sign det M∗(Ψ(xi)
)

Ind Φ(x)
∣∣
x=xi

= σ∗(B) Ind Φ(x)
∣∣
x=xi

for any i and the formulae

Ind B
(
Φ(x), Ψ(x)

)∣∣∣
x=yj

= Ind B
(
Φ(yj), Ψ(x)

)∣∣∣
x=yj

= Ind M
(
Φ(yi)

)
Ψ(x)

∣∣
x=yi

= sign det M
(
Φ(yj)

)
Ind Ψ(x)

∣∣
x=yj

= σ(B) Ind Ψ(x)
∣∣
x=yj

for any j follow from the continuity and from the formula

Ind AF (x)
∣∣
x=x∗

= sign det A Ind F (x)
∣∣
x=x∗

that is valid for any non-degenerated matrix A and for any operator F ; the last
formula follows directly from the Rotation Product Formula ([6], Ch. 1, Theorem
7.2).

4. Discussion

We consider an equation with the leading ‘quadratic’term:

B(x, x) + f(x) = 0.
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Here |f(x)|/(|x|2) → 0 as |x| → ∞. By the theorem this has at least one root,
if the signature of B is either (+1, +1) or (−1,−1). The rotations of the field
B(x, x) + f(x) on the spheres of large radii r equal either 2 or −2.

Let us generalize this principle. Let W be the set of all finite word of letters l and
r. Then we can correspond to each such word w ∈ W a mapping Pw(x) : Rn → Rn

by the following rules

• The quadratic mapping B(x, x) is corresponded to the empty word.

• If Pw is defined, then to the concatenation lw the mapping B(x, Pw(x)) is
corresponded.

• If Pw is defined, then to the concatenation rw the mapping B(Pw(x), x) is
corresponded.

Remark. If the bilinear mapping B creates the associative multiplication x}y =
B(x, y), then

Pw(x) = xm+2 =

m+2︷ ︸︸ ︷
x } . . . } x

for any word w of the length m; the equation has more ‘usual’ form xm+2+f(x) = 0.
If this multiplication is not associative, then the notion xn loses any sense, there
exist various such terms: x } (x } x) may be different from (x } x) } x. Here to
describe various possible principal terms we need to use Pw.

Theorem 2. Suppose either m is odd or the signature of B is either (+1, +1)
or (−1,−1). For each word w of the length m the equation

Pw(x) + f(x) = 0

with the leading monomial term has at leas one root if

|f(x)|/(|x|m+2) → 0 as |x| → ∞.

Consider the set of complex numbers, or quaternions, or Cayley numbers, and
let the bilinear mapping B be given by the corresponding product structure. This
mapping is non-degenerated because there is no divisors of zero in the set of complex
numbers, or quaternions, or Cayley numbers; also in this case

σ(B) = σ∗(B) = 1

by (3).
Thus Theorem 2 implies immediately that each polynomial with the single mono-

mial term of the highest degree in the corresponding structures has roots. Theorem
2 may be applied for some non-standard multiplications, for instance, given by the
form B3 above.

Authors thank Prof. Michael Tsfasman for useful discussion.



— 6 —

References

1. Krasnosel’skii M.A., Perov A.I., Povolockii A.I., Zabreiko P.P. Plane vector
fields. Academic Press, New York, 1966.

2. Bobylev N.A., Burman M.Yu., Korovin S.K. Approximation procedures in non-
linear oscillation theory. W. de Gruyter: Berlin, New York, 1994.

3. Eilenberg S., Niven I. The “fundamental theorem of algebra” for quaternions.
Bull. Amer. Math. Soc. 50, 246–248, 1944.

4. Jou Y.-L. The “fundamental theorem of algebra” for Cayley numbers. Acad.
Sinica Science Record 3, 29–33, 1950.

5. Bott R., Milnor J. On the parallelizability of the spheres. Bull. Amer. Math. Soc.
64, 87–89, 1958.
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