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A simple generalization of the Hopf Bifurcation Theorem for scalar higher order ordinary differential equations
is suggested. We study the degenerate case where several roots of the characteristic polynomial cross the
imaginary axis at the same point for some value λ0 of the parameter λ. The main result is that if N1 roots cross
the imaginary axis from the left to the right and N2 roots cross it from the right to the left, then generically
|N1 − N2| branches of small cycles exist in some neighborhood of the zero equilibrium. In particular, in the
classical Hopf Bifurcation Theorem the numbers Nj are 0 and 1.

1 Introduction

Consider the equation

L

(
d

dt
, λ

)
x = f(x, x′, . . . , x(`−1), λ) (1)

with the scalar parameter λ ∈ Λ = (λ1, λ2). Here

L(p, λ) = p` + a1(λ)p`−1 + · · ·+ a`(λ);

the coefficients of this polynomial depend continuously on λ; the nonlinearity

f(x0, x1, . . . , x`−1, λ) : R` × Λ → R

is continuous with respect to the set of its arguments.
Definition 1.1 A value λ0 of the parameter is called a Hopf bifurcation point with the frequency w0 > 0 for

equation (1) if for every sufficiently small r > 0 there exists a λ(r) such that equation (1) with λ = λ(r) has a
non-stationary periodic solution x(t; r) with a period T (r) and λ(r) → λ0, T (r) → 2π/w0, ‖x(·; r)‖C`−1 → 0
as r → 0.

The use of an auxiliary parameter different from λ is rather standard for Hopf bifurcation problems (see, e.g.,
[1] and Hopf’s original paper therein).

Let the polynomial L(p, λ) have simple conjugate roots µ(λ) and µ(λ) which depend continuously on λ. We
say that these roots cross the imaginary axis at the points ±w0i for λ = λ0 if L(±w0i, λ0) = 0 and the function
(λ − λ0)<e µ(λ) has the same signature for all λ 6= λ0 sufficiently close to λ0. No transversality conditions of
the type d/dλ

(
<e µ(λ)

)
6= 0 are supposed.

Proposition 1.2 Let the polynomial L(p, λ) have a pair of simple conjugate roots µ(λ) and µ(λ) which cross
the imaginary axis at the points ±w0i (w0 > 0) for λ = λ0 and let L(kw0i, λ0) 6= 0 for all k 6= ±1, k ∈ Z. Let
the nonlinearity be sublinear:

lim
|x0|+···+|x`−1|→0

sup
λ∈Λ

|f(x0, x1, . . . , x`−1, λ)|
|x0|+ · · ·+ |x`−1|

= 0. (2)
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Then λ0 is a Hopf bifurcation point with the frequency w0 for equation (1).

This proposition (it is a reformulation of a more general result for vector ODE) was announced in [2] and
proved in [3] by the special technique of parameter functionalization.

In this paper we suggest some similar statements without the assumption that the roots µ(λ) and µ(λ) are sim-
ple. Instead, we suppose that the roots ±w0i of the polynomial L(p, λ0) have a multiplicity N > 1. Generically,
in this case N pairs of roots of the polynomial L(p, λ) cross the imaginary axis at the points ±w0i for λ = λ0.

By R` we denote the phase space of equation (1). Cycles of this equation are closed curves in R` defined (in
the standard way) by non-stationary periodic solutions x(t).

Below the notion of the rotation of vector fields ([4]) on the boundaries of some domains in Banach spaces
plays an important role. This notion is equivalent to the notion of the degree of mapping.

2 Main result

2.1 Assumptions

Our main assumptions on the principal linear part of equation (1) are as follows.

• For λ = λ0 the polynomial L(p, λ0) has the roots ±w0i (w0 > 0) of multiplicity N > 1.

• For λ = λ0 the polynomial L(p, λ0) has no other roots of the form kw0i, i.e., L(kw0i, λ0) 6= 0 for all
integer k 6= ±1.

• For any λ 6= λ0 sufficiently close to λ0 the polynomial L(p, λ) has no roots on the imaginary axis close to
the points ±w0i.

The first assumption implies that the polynomial L(p, λ) has exactly N > 1 roots in some small vicinity of
the point w0i on the complex plane C for each λ ∈ (λ0 − ε, λ0 + ε) with a sufficiently small ε > 0 (we count n
times each root of multiplicity n). Let N `

− of those N roots lie in the open left half-plane <e z < 0 and Nr
− of

them lie in the open right half-plane <e z > 0 of C for λ ∈ (λ0 − ε, λ0). From the third assumption it follows
that the numbers N `

−, Nr
− are the same for all λ ∈ (λ0− ε, λ0) and N `

− +Nr
− = N . Similarly, we denote by N `

+

the number of the roots in the left half-plane <e z < 0 and by Nr
+ their number in the right half-plane <e z > 0

for λ ∈ (λ0, λ0 + ε); here also N `
+ + Nr

+ = N . For λ = λ0 all the N roots equal w0i.
In the simplest case, we have either N `

− = Nr
+ = N or N `

+ = Nr
− = N which means that all the N roots

cross the imaginary axis at the point w0i in the same direction for λ = λ0 (either from the left to the right or
from the right to the left as λ increases, respectively). Otherwise, the situation may be described in different ways
depending on how the roots are identified. We may say that some roots stay in the same half-plane <e z > 0 or
<e z < 0 for all values of λ 6= λ0 or that there are roots which cross the imaginary axis in opposite directions.

2.2 Main theorem

Define the integer number

M = N `
− −N `

+ = Nr
+ −Nr

−.

Theorem 2.1 Let all assumptions of Subsection 2.1 be valid. Let M 6= 0. Let the nonlinearity be sublinear,
i.e., equality (2) hold. Then λ0 is a Hopf bifurcation point with the frequency w0 for equation (1).

Theorem 2.1 is a simple extension of Proposition 1.2 from the case N = 1 to the case N > 1.
The auxiliary parameter r used in Definition 1.1 of a Hopf bifurcation point has a natural sense under the

assumptions of Theorem 2.1. Let T = 2π/w be the period of a cycle of equation (1) for some λ. Then there
exists a unique periodic solution of the form x(t) = r sinwt + h(wt) that defines this cycle; here the Fourier
series of the 2π-periodic function h(·) does not contain the first harmonics. It is the amplitude r > 0 of the first
harmonics of x(t) that we use as the auxiliary parameter in the proof of Theorem 2.1 below.

Generically, under the assumptions of Theorem 2.1 for any sufficiently small r > 0 equation (1) has |M |
different periodic solutions x(t) = r sinwt + h(wt) that exist for different λ and have different periods 2π/w.
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3 Remarks

3.1 Counterexample

If M = 0, then the assertion of Theorem 2.1 may be not valid. For example, the equation

x(IV) + 2(1− λ2)x′′ + (1 + λ2)2x = (x′)3

has no non-trivial periodic solutions. To prove this fact, it suffices to multiply the equation by x′ and integrate
over a period. The left-hand side vanishes, we obtain

∫ T

0

(
x′(t)

)4
dt = 0 and therefore x ≡ const = 0. Here the

polynomial L(p, λ) = p4 + 2(1− λ2)p2 + (1 + λ2)2 has four roots ±λ± i, hence N `
− = Nr

− = N `
+ = Nr

+ = 1
and M = 0. For λ = λ0 = 0 the roots are ±i, each of multiplicity N = 2.

3.2 Equations in Rm

Consider the vector equation

z′ = A(λ)z + f(z, λ), z ∈ Rm, (3)

with the continuous right-hand part, where the vector-valued function f is sublinear, i.e., |z|−1 supλ∈Λ |f(z, λ)| →
0 as z → 0. It is proved in [2, 3] that if simple conjugate eigenvalues µ(λ), µ̄(λ) of the matrix A(λ) cross the
imaginary axis at the points±w0i for λ = λ0 and if the numbers kw0i do not belong to the spectrum of the matrix
A(λ0) for all integer k 6= ±1, then λ0 is a Hopf bifurcation point with the frequency w0 for equation (3). The
authors do not know if similar results are valid without the assumption that the eigenvalues µ(λ), µ̄(λ) are simple
(in other words, the question is how to generalize this statement for equation (3), like Theorem 2.1 generalizes
Proposition 1.2).

3.3 Continuous branches of cycles

We say that a set of cycles of equation (1) is a local continuous branch of cycles (a CBC) for λ ∈ Λ if on the
boundary of any open bounded set G (0 ∈ G ⊂ R`) of a sufficiently small diameter there is at least one point
that belongs to a cycle Γ ⊂ G of equation (1) for some λ ∈ Λ.

One can show that the assumptions of Proposition 1.2 and Theorem 2.1 guarantee the existence of a local
CBC. Generically, under the assumptions of Proposition 1.2 there is one local CBC and under the assumptions of
Theorem 2.1 there exist at least |M | local CBCs which do not intersect (note that the join of CBCs is a CBC).

In smooth cases cycles of a CBC form a 2 dimensional surface in R`.

3.4 Equations with delays

Simple analogs of Theorem 2.1 are valid for systems with delays; they may be obtained by straightforward
modification of the proof presented in the next section. For example, consider the equation

L

(
d

dt
, λ

)
x = f(x, x(t− θ), λ). (4)

Let the nonlinearity f(x, y, λ) be sublinear. Suppose that all the assumptions of Subsection 2.1 are valid and
M 6= 0. Then λ0 is a Hopf bifurcation point with the frequency w0 for equation (4).

Similar results are valid for equations with several delays, distributed delays, delays depending on the parame-
ter λ, equations with delays in the linear part and with the nonlinearities that depend on the derivatives x′, x′′, . . .
and x′(t− θ), x′′(t− θ), . . ., etc.

3.5 Non-sublinear nonlinearities

Instead of sublinear nonlinearities, it is possible to consider the functions f satisfying the sector estimates

|f(x0, x1, . . . , x`−1, λ)| ≤ q
√

µ0x2
0 + · · ·+ µ`−1x2

`−1, |xj | ≤ r0, µj ≥ 0

with a sufficiently small q > 0. Theorems on Hopf bifurcations for equations with such nonlinearities and an
algorithm to estimate the admissible coefficient q are presented in [5].
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3.6 Bifurcations at infinity

A value λ0 of the parameter is called a Hopf bifurcation point at infinity with the frequency w0 for equation (1)
if for every sufficiently large r > 0 there exists a λ(r) such that equation (1) with λ = λ(r) has a non-stationary
periodic solution x(t; r) with a period T (r) and λ(r) → λ0, T (r) → 2π/w0, ‖x(·; r)‖C`−1 → ∞ as r → ∞.
For the case of simple roots (simple eigenvalues for systems (3)) crossing the imaginary axis, this type of Hopf
bifurcations was considered in [6].

Theorem 3.1 Let all assumptions of Subsection 2.1 be valid. Let M 6= 0. Let the nonlinearity be sublinear at
infinity, i.e.,

lim
|x0|+···+|x`−1|→∞

sup
λ∈Λ

|f(x0, x1, . . . , x`−1, λ)|
|x0|+ · · ·+ |x`−1|

= 0.

Then λ0 is a Hopf bifurcation point at infinity with the frequency w0 for equation (1).
Under the assumptions of Theorem 3.1 the cycles of equation (1) form a CBC at infinity, which means that on

the boundary of any open bounded set G that contains a sufficiently large ball {x = (x0, . . . , x`−1) ∈ R` : |x| ≤
ρ} in the phase space R` there is at least one point that belongs to a cycle Γ ⊂ G of equation (1) for some λ ∈ Λ.

3.7 Equations of control theory

Without essential changes, Theorem 2.1 may be extended to equations

L

(
d

dt
, λ

)
x = M

(
d

dt
, λ

)
f(x, x′, . . . , x(k), λ). (5)

Here the real polynomials

L(p, λ) = p` + a1(λ)p`−1 + · · ·+ a`(λ), M(p, λ) = b0(λ)pm + · · ·+ bm(λ)

with b0(λ) 6= 0 depend continuously on λ and are coprime for each λ; their degrees ` and m satisfy ` > m + k.
The definition of solutions of equation (5) may be found in most books on control theory (see, e.g., [7] and [8]).
Any equation (5) is equivalent to a system of the form

z′ = A(λ)z + c(λ)f(x, x′, . . . , x(k), λ), x = 〈b, z〉

with z, b, c = c(λ) ∈ R`, where 〈·, ·〉 denotes a scalar product in R`. The assumptions of Theorem 2.1 imply that
λ0 is a Hopf bifurcation point with the frequency w0 for equation (5).

3.8 Final remark

The remarks above may be applied in various combinations. Consider only one example. Let for all xj and λ the
estimate

|f(x0, x1, . . . , x`−1, λ)| ≤ c + q
√

µ0x2
0 + · · ·+ µ`−1x2

`−1, µj ≥ 0 (6)

hold. Let all assumptions of Subsection 2.1 be valid and M 6= 0. Then there exists a q > 0 (determined by the
polynomial L(p, λ) and the numbers ρ and µj) such that estimate (6) implies that λ0 is a Hopf bifurcation point
at infinity with the frequency w0 for equation (1). An algorithm to estimate q from below may be found in [5].

4 Proof of Theorem 2.1

4.1 Preliminaries

Let us change the time in (1) and consider the equation

L

(
w

d

dt
, λ

)
x = f(x,wx′, . . . , w`−1x(`−1), λ). (7)
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Every 2π-periodic solution x(t) of (7) defines the (2π/w)-periodic solution x(wt) of (1). We look for 2π-periodic
solutions of equation (7) in the form

x(t) = r sin t + h(t), (8)

where the Fourier expansion of the function h = h(t) does not contain the harmonics sin t and cos t. We are
going to prove that for any sufficiently small r > 0 there exist numbers λ = λ(r) and w = w(r) > 0 and a
2π-periodic function h = h(t) = h(t; r) such that formula (8) defines a classical solution of equation (7) and
the relations λ(r) → λ0, w(r) → w0, ‖h(·; r)‖C`−1 → 0 are valid as r → 0. This implies the conclusion of
Theorem 2.1 and moreover, it means that in our setting an auxiliary parameter r > 0 used in Definition 1.1 is the
amplitude of the first harmonics of periodic solutions. A special role of those harmonics is natural, since periodic
solutions of the linearized equation (1) with f ≡ 0 are x(t) = r sin(w0t + φ).

Thus, for each small value of the parameter r > 0 our unknowns are the numbers λ = λ(r), w = w(r) and the
component h = h(t) = h(t; r) of the 2π-periodic solution (8) of equation (7). Remark that every non-stationary
2π-periodic solution x(t) of this autonomous equation is included in the continuum x(t + φ) of such solutions
(which define the same cycle in the phase space R` of equation (7) for all φ ∈ R), but at most one of the solutions
x(t + φ) has the form (8) with r > 0.

4.2 Auxiliary constructions

We use the spaces C, Ck, L2 and W k,2 of functions x = x(t) : [0, 2π] → R with the usual norms and scalar
products. Denote by E ⊂ L2 the linear span of the functions sin t and cos t and by E⊥ ⊂ L2 the orthogonal
complement of the plane E. Then

Px(t) =
1
π

∫ 2π

0

cos(t− s) x(s) ds

and Q = I − P are orthogonal projectors onto the subspaces E and E⊥ of L2.
The assumptions of Subsection 2.1 imply that for any sufficiently small vicinity D of the point (w0, λ0) on

the plane (w, λ) the point (w0, λ0) is a unique zero of the complex-valued function L(wi, λ) in the closure D of
D and L(kwi, λ) 6= 0 for all integer k 6= ±1 and all (w, λ) ∈ D. Everywhere below we denote by D a vicinity
with these properties, also satisfying D ⊂ {(w, λ) : w > 0, λ ∈ Λ}.

Consider the differential operator L = L(w d/dt, λ) with the 2π-periodic boundary conditions. ¿From the
definition of D it follows that the kernel of this differential operator is the plane E for λ = λ0, w = w0 and is
zero for any other point (w, λ) ∈ D. For each (w, λ) ∈ D denote by H = H(w, λ) the linear operator that maps
any function y ∈ E⊥ ⊂ L2 to a unique solution x = Hy ∈ E⊥ ⋂

W `,2 of the equation Lx = y. The existence
of the solution x = x(t) follows from the relations y ∈ E⊥ and L(kwi, λ) 6= 0 for all k 6= ±1, (w, λ) ∈ D, the
uniqueness follows from x ∈ E⊥.

Operators H(w, λ) : E⊥ → E⊥ ⋂
W `,2 are continuous; their norms and the norms of the operators

H(n) = H(n)(w, λ) =
dn

dtn
H

acting in the subspace E⊥ of L2 are defined by

‖H‖L2→L2 = max
k=0,2,3,...

|L(kwi, λ)|−1, ‖H(n)‖L2→L2 = max
k=0,2,3,...

kn|L(kwi, λ)|−1

for all n = 1, . . . , `. Therefore the uniform estimate

‖H(w, λ)‖L2→C`−1 ≤ ν < ∞ for all (w, λ) ∈ D (9)

holds. Moreover, the map (w, λ, y) 7→ H(w, λ)y of the productD×E⊥ to C`−1 is completely continuous. Also,
each operator H(w, λ) maps continuously E⊥ ⋂

C to C`.
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4.3 Homotopy

We look for solutions of equation (7) of the form x(t) = r sin t+H(w, λ)y(t) with y = y(t) ∈ E⊥ and (w, λ) ∈
D. By definition of the operator H = H(w, λ), the function Hy ∈ W `,2 satisfies the 2π-periodic boundary
conditions, hence the same is true for the function x ∈ W `,2, i.e., x(0) = x(2π), . . . , x(`−1)(0) = x(`−1)(2π).

For each r > 0 set

Zy = Zr(w, λ)y = f
(
r sin t + Hy,w(r sin t + Hy)′, . . . , w`−1(r sin t + Hy)(`−1), λ

)
.

Since the map (w, λ, y) 7→ H(w, λ)y of the productD×E⊥ to C`−1 is completely continuous and the function f
is continuous, it follows that the map (w, λ, y) 7→ Zr(w, λ)y fromD×E⊥ to C is completely continuous for each
r. Consider in the space R×R×E⊥ the completely continuous deformation Θ = Θ(w, λ, y, ξ) =

(
Θw,Θλ,Θy

)
with the components

Θw(w, λ, y, ξ) = r<eL(wi, λ)− ξ

π

∫ 2π

0

Zy(t) sin t dt ∈ R,

Θλ(w, λ, y, ξ) = r=m L(wi, λ)− ξ

π

∫ 2π

0

Zy(t) cos t dt ∈ R,

Θy(w, λ, y, ξ) = y(t)− ξQZy(t) ∈ E⊥ ⊂ L2,

(10)

where (w, λ, y) ∈ D × E⊥ and ξ ∈ [0, 1] is the deformation parameter.

Lemma 4.1 For any r > 0 and ξ ∈ [0, 1] each zero (w, λ, y) of the deformation Θ defines a classical
2π-periodic solution x(t) = r sin t + H(w, λ)y(t) of the equation

L

(
w

d

dt
, λ

)
x = ξf(x,wx′, . . . , w`−1x(`−1), λ). (11)

To prove Lemma 4.1, it suffices to substitute the formula x(t) = r sin t + Hy(t) in (11) and to apply the
projectors P and Q to the resulting equation. Then using the definition of the operator H = H(w, λ) one
obtains Θ = 0 (the reader will easily obtain the omitted details). To conclude, it remains to note that due
to Zy ∈ C the equation Θy = 0 implies y ∈ C and therefore Hy ∈ C` and x ∈ C`, which means that
x(t) = r sin t + H(w, λ)y(t) is a classical 2π-periodic solution of equation (7) iff Θ(w, λ, y, ξ) = 0.

Lemma 4.2 There exist εy > 0 and r0 > 0 such that for any r < r0 each zero (w, λ, y) of the deformation Θ
with ‖y‖L2 ≤ εy satifies

‖y‖L2 ≤ r, ‖Hy‖C`−1 ≤ r. (12)

The conclusion of Lemma 4.2 follows from the assumption (2). Indeed, relations (2) and (9) imply ‖Zy‖C =
o(r + ‖y‖L2) ar r → 0, ‖y‖L2 → 0 and therefore the equality Θy = 0 yields ‖y‖L2 = o(r) whenever r and
‖y‖L2 are sufficiently small. Combining this with (9), one obtains (12), which proves the lemma.

Consider any sufficiently small εw, ελ > 0 such that the rectangle Q = {(w, λ) : |w − w0| ≤ εw, |λ− λ0| ≤
ελ} belongs to the set D. Set

α = min
(w,λ)∈∂Q

|L(wi, λ)| > 0,

where ∂Q is the boundary of Q. ¿From (2) and (12) it follows that for any q > 0 there exists a rq > 0 such that
for any r < rq each zero (w, λ, y) of the deformation Θ with ‖y‖L2 ≤ εy satisfies the estimate

‖Zy‖L2 ≤ qr. (13)

Let us fix some positive q < α
√

π. Let r < min{r0, rq, εy/2}. We look for zeros of the deformation Θ in the set

Ω = {(w, λ, y) ∈ R× R× E⊥ : (w, λ) ∈ Q, ‖y‖L2 ≤ 2r
}
. (14)
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The boundary ∂Ω of Ω is the join ∂Ω = Ωy ∪ ΩQ of the sets

Ωy = {(w, λ, y) : (w, λ) ∈ Q, ‖y‖L2 = 2r}, ΩQ = {(w, λ, y) : (w, λ) ∈ ∂Q, ‖y‖L2 ≤ 2r}.

Lemma 4.2 implies that the deformation Θ is non-zero on the set Ωy . Furthermore, if Θw = Θy = 0, then

r2|L(wi, λ)|2 =
ξ2

π2

[(∫ 2π

0

Zy(t) sin t dt

)2

+
( ∫ 2π

0

Zy(t) cos t dt

)2 ]
≤ 1

π
‖Zy‖2L2

and (13) implies |L(wi, λ)| ≤ q/
√

π < α. By definition of α, this means that Θ2
w +Θ2

y 6= 0 on the set ΩQ. Thus,
we have the following lemma.

Lemma 4.3 There are no zeros of the deformation (10) on the boundary of the set (14).
From Lemma 4.3 it follows that the rotation γ∗ = γ(Θ, ∂Ω) of the vector field Θ = Θ(·, ·, ·, ξ) on the

boundary ∂Ω of the set Ω is well-defined for any ξ ∈ [0, 1] and that γ∗ is the same for all the ξ. For ξ = 0 the
components of Θ have the form

Θw = r<eL(wi, λ), Θλ = r=m L(wi, λ), Θy = y.

Here the scalar components Θw and Θλ depend on w and λ only. Due to the fact that the last component is y,
this implies (according to the standard rotation product formula, see e.g. [4]) that the rotation γ∗ is equal to the
topological index of the planar vector field Φ(w, λ) =

(
<eL(wi, λ), =m L(wi, λ)

)
at the point (w0, λ0).

Lemma 4.4 The topological index of the planar vector field Φ = Φ(w, λ) at the point (w0, λ0) equals M 6= 0.
This lemma is proved in the next subsection.
From Lemma 4.4 it follows that γ∗ = γ(Θ, ∂Ω) 6= 0. According to the general principle of the degree theory,

this relation implies that the deformation Θ ha,s at least one zero in the set Ω for each ξ. By Lemma 4.1, for
ξ = 1 such a zero (wr, λr, yr) ∈ Ω defines the classical 2π-periodic solution x(t) = r sin t + H(wr, λr)yr(t)
of equation (7) with λ = λr, which implies that x(wrt) is a non-stationary (2π/wr)-periodic solution of equa-
tion (1).

The last step of the proof is to show that the zeros (wr, λr, yr) satisfy wr → w0, λr → λ0, ‖Hyr‖C`−1 → 0
as r → 0. This follows from the second of estimates (12) of Lemma 4.2 and from the inclusion (wr, λr) ∈ Q
(since εw and ελ are arbitrarly small).

4.4 Proof of Lemma 4.4

Let Pj = Pj(w, λ) : R2 → C be continuos functions such that P0 = P1P2. Consider the real planar vector fields

Ξj = Ξj(w, λ) =
(
<ePj(w, λ), =m Pj(w, λ)

)
associated with the functions Pj . We use a simple formula

γ(Ξ0,Γ) = γ(Ξ1,Γ) + γ(Ξ2,Γ) (15)

to calculate the rotation (called also the winding number) of the vector field Ξ0 along a simple closed curve Γ.
This formula follows from the definition of the winding numbers γ(Ξj ,Γ) and from the relation Arg(z1z2) =
Arg(z1) + Arg(z1), z1, z2 ∈ C. It is supposed that P0(w, λ) 6= 0 for all (w, λ) ∈ Γ, which gurantees that the
vector fields Ξj are non-zero on Γ and therefore the winding numbers γ(Ξj ,Γ) are well-defined. Formula (15) is
valid if Γ is the boundary of any bounded open set (not necessarily a simple closed curve).

By assumption, w0i is a root of multiplicity N of the polynomial L(p, λ0). Hence, if ε > 0 and δ = δ(ε) > 0
are sufficiently small, then for every λ from the interval |λ−λ0| ≤ δ the polynomial L(p, λ) has exactly N roots
µ1(λ), . . . , µN (λ) satisfying |µj(λ)− w0i| ≤ ε. Here µj1(λ) = · · · = µjn

(λ) for multiple roots of multiplicity
n, particularly µj(λ0) = w0i for all j = 1, . . . , N . We define the N functions µj = µj(λ) in such a way that they
are continuous on the interval |λ − λ0| ≤ δ (the choise of the continuous branches µj = µj(λ) is non-unique,
that is we fix one of those choices) and factorize the polynomial L(p, λ) as

L(p, λ) = L∗(p, λ)
N∏

j=1

(p− µj(λ)).
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By construction, L∗(wi, λ) 6= 0 in the rectangle Q = {(w, λ) : |w − w0| ≤ ε, |λ − λ0| ≤ δ}, therefore
the real vector field Ξ∗ = Ξ∗(w, λ) =

(
<e(−i)NL∗(w, λ), =m(−i)NL∗(w, λ)

)
assotiated with the complex-

valued function (−i)NL∗(wi, λ) has no zeros in Q, which implies γ(Ξ∗,Γ) = 0 for every closed curve Γ ⊂ Q.
Consequently, relations (15) and

L(wi, λ) = (−i)NL∗(wi, λ)
N∏

j=1

(−w − iµj(λ))

imply for every closed curve Γ ⊂ Q such that L(wi, λ) 6= 0 on Γ

γ(Φ,Γ) =
N∑

j=1

γ(Ξj ,Γ), (16)

where Φ(w, λ) =
(
<eL(wi, λ),=m L(wi, λ)

)
and Ξj(w, λ) = (=m µ(λ) − w,−<e µj(λ)); these real vector

fields are associted with the complex-valued functions L(wi, λ) and −w − iµj(λ).
From the assumptions of Subsection 2.1 it follows that for every sufficiently small ε1 > 0 the relation

<e µj(λ) 6= 0 is valid whenever λ 6= λ0, |λ − λ0| ≤ ε1 for all j = 1, . . . , N and that (w0, λ0) is a unique
zero of the vector field Φ in the square |w − w0| ≤ ε1, |λ − λ0| ≤ ε1. We fix such a ε1 ≤ ε and then define a
δ1 = δ1(ε1) > 0 satisfying δ1 ≤ δ, δ1 ≤ ε1 such that | =m µj(λ) − w0| < ε1 whenever |λ − λ0| ≤ δ1 for all
j = 1, . . . , N (this holds for each sufficiently small δ1, since =m µj(λ0) = w0 for all j).

Denote by Γ the boundary of the rectangle Q∗ = {(w, λ) : |w − w0| ≤ ε1, |λ − λ0| ≤ δ1} ⊂ Q and set
σj
− = sign<e µj(λ0− δ1), σj

+ = sign<e µj(λ0 + δ1). Since λ0 is a unique zero of the function <e µj(λ) in the
segment |λ − λ0| ≤ δ1, it follows that each of the signutures σj

−, σj
+ is either 1 or −1 and that for λ 6= λ0 from

this segment the relations

sign<e µj(λ) = σj
− if λ0 − δ1 ≤ λ < λ0, sign<e µj(λ) = σj

+ if λ0 < λ ≤ λ0 + δ1

hold. The relation | =m µj(λ)− w0| < ε1 with |λ− λ0| ≤ δ1 implies

(=m µj(λ)− w)(w − w0) < 0 for |w − w0| = ε1, |λ− λ0| ≤ δ1.

From this estimate and the relation σj
−σj

+ 6= 0 it follows that the rotation γj = γ(Ξj ,Γ) of the vector field
Ξj(w, λ) = (=m µ(λ)− w,−<e µj(λ)) on Γ is defined by the formula

γ(Ξj ,Γ) =
σj

+ − σj
−

2
, (17)

i.e. γj = 0 if σj
− = σj

+, γj = 1 if σj
− = −σj

+ = −1, and γj = −1 if σj
− = −σj

+ = 1. Fig. 1 shows the
vector fields Ξj on the boundary Γ of the rectangle Q∗ with different rotations γj = γ(Ξj ,Γ) depending on the
signatures σ− = σj

− and σ+ = σj
+.

Fig. 1 Vector field Ξj and its rotation γj .

Equalities (16), (17) imply

γ(Φ,Γ) =
1
2

N∑
j=1

σj
+ −

1
2

N∑
j=1

σj
− =

Nr
+ −N `

+

2
−

Nr
− −N `

−
2

,

where Nr
+ is the number of the roots µj(λ) satisfying <e µj(λ) > 0 and N `

+ is the number of the roots µj(λ)
satisfying <e µj(λ) < 0 for λ0 < λ ≤ λ0 + δ1; the numbers Nr

− and N `
− are defined in the same way for

λ0 − δ1 ≤ λ < λ0. The equalities Nr
+ + N `

+ = Nr
− + N `

− = N imply γ(Φ,Γ) = Nr
+ − N `

+ = M . Since the
vector field Φ has a unique zero (w0, λ0) in the rectangle Q∗, it follows that the topological index of this field at
the point (w0, λ0) equals γ(Φ,Γ) = M . This completes the proof of Lemma 4.4 and Theorem 2.1.
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