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Abstract

We are concerned with a subharmonic bifurcation from infinity for scalar higher order ordinary
differential equations. The equations contain principal linear parts depending on a scalar parame-
ter, 2π -periodic forcing terms, and continuous nonlinearities with saturation. We suggest sufficient
conditions for the existence of subharmonics (i.e., periodic solutions of multiple periods 2πn) with
arbitrarily large amplitudes and periods. We prove that this type of the subharmonic bifurcation oc-
curs whenever a pair of simple roots of the characteristic polynomial crosses the imaginary axis at
the points ±αi with an irrational α. Under some further assumptions, we estimate asymptotically
the parameter intervals, where large subharmonics of periods 2πn exist. These assumptions relate
the quality of the Diophantine approximations of α, the rate of convergence of the nonlinearity to its
limits at infinity, and the smoothness of the forcing term.
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1. Introduction

In this paper we study the existence of periodic solutions with large periods and am-
plitudes for scalar nonautonomous equations that contain a 2π -periodic forcing term and
depend on a scalar parameter. If the linearization of the equation at infinity is degenerate
(has periodic solutions) for some parameter value λ = λ0, then for close values of the para-
meter the nonlinear equation may have periodic solutions with arbitrarily large amplitudes
and periods 2πnk , nk are positive integers. More precisely, we show that there is typically
a sequence of parameter intervals Λk accumulating near the bifurcation parameter value
λ0 such that the nonlinear equation has a branch of subharmonic solutions (which is home-
omorphic to a circle) of a period 2πnk on Λk and the amplitudes and the periods 2πnk of
these solutions go to infinity as λ → λ0.

The similar situation is well known for local problems near the origin (or any equilib-
rium point). Here, in the smooth case, the bifurcation of invariant tori from the origin and
classical facts on dynamics on those tori account for the existence of the synchronization
intervals Λk (see, e.g., [1]). For a nonsmooth local situation (where, possibly, there are no
invariant tori), the existence of sporadic intervals Λk , where the system has subharmon-
ics with periods increasing to infinity near the bifurcation parameter value λ0, was first
proved in [2], still under the assumption that nonlinearities admit the Taylor expansion at
the origin. The latter situation is more relevant to the context of the present paper, since
we consider equations nonsmooth at infinity. Following the terminology introduced in [2]
for local problems, we call the bifurcation of subharmonics with unbounded periods and
amplitudes a subfurcation from infinity.

Natural assumptions on sufficient smoothness (or analyticity) in local problems near
the origin lead to equations with polynomial principal nonlinear terms. These assumptions
are essential in various bifurcation problems on periodic solutions, because the results may
be rather different for the smooth case and for equations with nonsmooth nonlinearities
such as, e.g., x|x|. One of the reasons is that in problems with nonsmooth nonlinearities
principal nonlinear terms of bifurcation equations generically define the behavior of solu-
tions, while in problems with polynomial nonlinearities the principal terms are typically
degenerate, which means that smaller order terms play a role. This can make the analysis
of nonsmooth problems simpler than that of the smooth ones, although the latter are better
studied.

A natural counterpart of the smoothness assumptions at the origin in problems at infinity
is that the principal nonlinear terms at infinity have the form x−N , N = 0,1,2, . . . , since
for both types of problems similar phenomena are observed. However, this does not cover
the class of nonlinearities with saturation behavior at infinity, which is important from the
point of view of applications and is traditionally considered in theoretical studies. In this
sense, such nonlinearities with different saturation limits at +∞ and −∞ are nonsmooth
at infinity, because they have the nonconstant principal nonlinear term, and indeed, results
on bifurcation problems at infinity with such nonlinearities do not have direct counterparts
in bifurcation problems at the origin. Particularly, in the present paper we study subfur-
cation from infinity for equations with this type of nonlinearities. Let us emphasize that a
nonlinearity with saturation is nonsmooth at the infinite point, whereas it can be analytic
in any finite domain like, e.g., arctan(·).
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We consider the equation

L

(
d

dt
, λ

)
x = f (x) + b(t) (1)

with the scalar parameter λ. Here

L(p,λ) = p� + a1(λ)p�−1 + · · · + a�(λ) (2)

is a real polynomial of degree � � 2, continuous in λ; the functions b and f are bounded,
f is continuous, b is measurable, and b(t) ≡ b(t + 2π). We assume that the polynomial
L(p,λ) has a pair of simple roots (depending on λ) that for some λ = λ0 cross transversally
the imaginary axis of the complex plane at points ±iα with an irrational α > 0, and that the
polynomial L(p,λ0) has no roots different from ±iα on the imaginary axis. This immedi-
ately implies that for any parameter value λ from some vicinity of λ0 Eq. (1) has at least
one 2π -periodic solution and the set of all such solutions is bounded. Moreover, if Eq. (1)
has periodic solutions of multiple periods 2πn (subharmonics), then the set of all subhar-
monics of any fixed period is also bounded uniformly w.r.t λ. Therefore if a sequence of
subharmonics xk = xk(t) (xk are solutions of (1) for λ = λk) satisfies ‖xk‖C → ∞, then
their periods satisfy 2πnk → ∞ and λk → λ0.

The existence of subharmonics is explained by the classical picture suggested by
Arnold, which can be adapted to our setting of the subfurcation from infinity as follows.
Consider a real polynomial L̃(p,λ1, λ2) that depends on some two scalar parameters λ1, λ2
and the differential equation

L̃

(
d

dt
, λ1, λ2

)
x = f (x) + b(t). (3)

Assuming that L̃ has a pair of simple roots η ± iξ , let us use their real and imaginary parts
η, ξ as new natural parameters in place of the original ones λ1, λ2. Let us consider Eq. (3)
in a small parameter domain near the point η = 0, ξ = α and look for the sets Ωq in this
domain, defined for all rationals q = m/n sufficiently close to α by the condition that for
(η, ξ) ∈ Ωq Eq. (3) has at least one periodic solution with the minimal period 2πn and with
a sufficiently large amplitude. One can show that the sets Ωq have roughly the shape of
the Arnold tongues (this terms is more standard for local synchronization problems) with
the vertex of the tongue Ωq at the point η = 0, ξ = q , see Fig. 1, and that amplitudes of
2πn-periodic subharmonics go to infinity as the point (η, ξ) ∈ Ωq approaches the vertex.
Now, if we allow only one scalar parameter to vary, like the parameter λ in Eq. (1), then the
set of possible (η, ξ) is a curve Γ = {(η, ξ): η = η(λ), ξ = ξ(λ)} passing through the point
(0, α) for λ = λ0. Therefore the equation has subharmonics of a period 2πn whenever this
curve intersects a tongue Ωq with some q = m/n, which is the case if the tongue length
is at least of order |α − q|, since the curve Γ and the tongue borders are locally almost
straight lines. Actually, as it follows from the proofs presented below, the length of Ωq is
estimated from below by n−1−ε (more precisely, for any ε > 0 there exists a n0 such that
for each q = m/n with n > n0 the length of the tongue Ωq is greater than n−1−ε). For
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Fig. 1. Intersections of the Arnold tongues with the curve Γ .

the most tongues Ωq this is not enough to guarantee that Ωq intersects with Γ , because
|α − q| is of order n−1 for the most rationals q , i.e. the tongues Ωq with such q may be
too short to reach Γ . However, for some rationals q , like in particular for the convergents
of α, the difference |α − q| is of order n−2 and therefore for these q the tongues Ωq are
large enough to intersect Γ . As conclusion, there is a sequence of the parameter intervals
Λk , converging to λ0, and a sequence of positive integers nk → ∞ such that for λ ∈ Λk the
equation has a periodic solution of the minimal period 2πnk . The estimation of the lengths
|Λk| of these parameter intervals involves more work, because |Λk| is infinitesimally small
compared to the distance from Λk to λ0. The reason is that the angle between the borders
of the tongue Ωq at its vertex vanishes as q approaches α.

All the above interpretation, although not exactly matching our further consideration
of Eq. (1) on the formal level, gives however a well-enough explanation and the main
underlying idea of what happens.

Below in this paper, we do not consider the Arnold tongues. Using another approach,
we prove that generically Eq. (1) with one parameter λ has a sequence of subharmonics xk

with unbounded amplitudes and periods for a sequence of parameter values λk → λ0 if the
nonlinearity f has different saturation limits at plus and minus infinity (and thus, in that
case, subfurcation from infinity occurs at the parameter value λ0). Then we give explicit
asymptotic formulas for the lengths |Λk| of the synchronization intervals Λk for large k

under some further assumptions. The main of these assumptions are, first, that the Fourier
series of the forcing term b contains infinite number of harmonics (in particular, b cannot
be a trigonometric polynomial) and the Fourier coefficients of b go to zero not too quickly.
Secondly, the irrational number α is assumed to be very well approximable by rationals,
namely, the estimate ∣∣∣∣α − mk

nk

∣∣∣∣ � c

ns
k

, (4)

with a proper s > 2 has to hold for the convergents of α. In this connection, we recall that
every α satisfying this estimate is transcendental and for every s > 2 the set of all such
α is a zero measure everywhere dense set [6] (while |α − mk/nk| � 1/n2

k holds for every
irrational α). The conditions of our theorem on the lengths of the intervals Λk relate the
rate of convergence of the Fourier coefficients of the forcing term b to zero, the exponent s
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characterizing the quality of the approximation of α by its convergents, and the exponent β

introduced below to characterize the rate of convergence of the nonlinearity f to its limits
at infinity.

The results are in the next section, other sections contain proofs.

2. Main results

2.1. Subfurcation from infinity

Let for all λ from some neighborhood of the point λ0 the representation

L(p,λ) = (
p2 + (λ − λ0)σ (λ)p + α2 + (λ − λ0)w(λ)

)
M(p,λ) (5)

be valid with continuous σ = σ(λ) and w = w(λ), where M(p,λ) is a polynomial of the
degree � − 2, also continuous in λ. Set

σ0 = σ(λ0), w0 = w(λ0), R0 = �eM(iα,λ0), J0 = 	mM(iα,λ0). (6)

Assume that the nonlinearity f in Eq. (1) has finite limits

f− = lim
x→−∞f (x), f+ = lim

x→+∞f (x) (7)

and f− 
= f+. In order to simplify the notation, we suppose everywhere

f+ = −f− 
= 0,

which is not a restriction, since we can add opposite constants to the nonlinearity and the
forcing term b.

Let for some β > 1 and K̃, x0 > 0

∣∣f (x) − f+ signx
∣∣ � K̃|x|−β, |x| � x0. (8)

Theorem 2.1. Let the transversality condition σ0 
= 0 be valid and let

ασ0R0 + w0J0 
= 0. (9)

Then there exist a sequence λk → λ0 and a sequence of positive integers nk → ∞ such
that for λ = λk Eq. (1) has a periodic solution xk = xk(t) of the minimal period 2πnk and
‖xk‖C → ∞ as k → ∞, i.e. λ = λ0 is a point of subfurcation from infinity for Eq. (1).

Conditions (8) are important for Theorem 2.2 of the next subsection. We include them
in Theorem 2.1 in order to simplify some parts of the proof and to join them with the
corresponding parts of the proof of Theorem 2.2. In fact, Theorem 2.1 is valid without
these conditions, it is enough to assume that f satisfies (7).
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In Theorem 2.1 the positive integers nk are the denominators of Diophantine approxima-
tions qk = mk/nk of the irrational α. One can use any sequence of rational approximations
such that estimate (4) with some exponent s > 1 is valid and for all qk = mk/nk the relation

sign(α − mk/nk) = sign
(
f+(ασ0R0 + w0J0)σ0

)
(10)

holds, which means that we use one-sided approximations of α. For example, for the se-
quence of all convergents qk of α estimate (4) is valid with s = 2, c = 1 and (10) holds
either for all odd or for all even k. We do not know any facts about approximations with
1 < s < 2.

Denote

εk = α − mk/nk,

then (4) takes the form εk = O(n−s
k ) as k → ∞. Define the constants

K ′ = 2f+(ασ0R0 + w0J0)

πα2σ0(R
2
0 + J 2

0 )
, K ′′ = −2αJ0

ασ0R0 + w0J0
. (11)

It follows from the proof of Theorem 2.1 presented below that the unbounded sequence of
subharmonics xk satisfies the asymptotic relations

‖xk‖C = K ′

εk

+ o
(
ε−1
k

)
, λk − λ0 = K ′′εk + o(εk), k → ∞. (12)

In particular, this implies that λk 
= λ0 and the signature of λk − λ0 is the same for all
sufficiently large k if � � 3 and J0 
= 0.

Theorem 2.1 can be generalized in various directions. Its conclusions hold if in place of
the nonlinearity f with saturation one considers a nonlinearity f +g, where f satisfies (7)
and g has sublinear primitives, i.e.

1

x

x∫
0

g(u)du → 0, |x| → ∞.

The nonlinearity and the forcing term b may also depend on λ.
Similar results can be proved for vector systems

dx

dt
= A(λ)x + f (x) + b(t), x ∈ R

N,

with b(t) ≡ b(t + 2π). Here the main assumption about the linear part is that for some
λ = λ0 a pair of simple complex conjugate eigenvalues of the real matrix A(λ) crosses the
imaginary axis on the complex plain at the points ±iα with an irrational α. As a coun-
terpart of the scalar saturation condition (7), one can suppose that the vector function
f : R

N → R
N has radial limits at infinity. These limits should satisfy proper nondegen-

eracy conditions (which have the form f+ 
= f− in the scalar case above).
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2.2. Asymptotic estimates of synchronization intervals

By a continuity argument, under the assumptions of Theorem 2.1 there exists generically
a sequence of intervals Λk � λk of positive lengths |Λk| such that Eq. (1) has at least
one subharmonic of the minimal period 2πnk for every λ ∈ Λk . The amplitudes of these
subharmonics tend to infinity as k → ∞ uniformly w.r.t. λ, while λk → λ0 and |Λk| → 0.
In this section we derive asymptotic formulas for |Λk| for large k.

Our proofs provide some further information about the synchronization intervals Λk and
subharmonics. We fix a sequence of rational approximations qk = mk/nk to α and look for
2πnk-periodic subharmonics of the special form x(t) = r sin(qkt + ϕ) + h(t), where the
functions h are uniformly bounded for all k, while r → ∞ as k → ∞. It is proved that for
each sufficiently large k and every phase ϕ ∈ S1 Eq. (1) has such subharmonics x = x(t)

for some value of λ. Moreover, the pairs (x,λ) form a continuous (w.r.t. the parameter ϕ)
branch in the sense of Mark Krasnosel’skii [5]. In simple cases (if solutions are isolated), it
means that the set of large-amplitude subharmonics x of the minimal period 2πnk consists
of a number of homeomorphic images of a circle. For each image the values of λ cover
an interval Λk twice. However, the structure of the continuous branch (x,λ) can be more
complicated.

Let the polynomial L(p,λ) be Lipschitz continuous in λ in some vicinity of the point
λ0. Let all the conditions of Theorem 2.1 be valid and let

�eL(αi + ηi, λ0 + ζ ) = Aη + Bζ + O
(
η2 + ζ 2), (13)

	mL(αi + ηi, λ0 + ζ ) = Cη + Dζ + Eη2 + Fηζ + Gζ 2 + O
((|η| + |ζ |)3) (14)

as |η| + |ζ | → 0. From representation (5) it follows that the coefficients of the linear terms
here are related with values (6) by

A = −2αR0, B = w0R0 − ασ0J0, C = −2αJ0, D = ασ0R0 + w0J0.

Therefore condition (9) takes the form D 
= 0 and the second of values (11) equals K ′′ =
C/D.

In order to formulate the next theorem, we introduce some further notations. Set

K0 = −16f 2+
π2

∑
k=3,5,7,...

	mL(ikα,λ0)

k|L(ikα,λ0)|2 (15)

and

K1 = π3(BK ′′ − A)2

2
= 4π3α4σ 2

0 (R2
0 + J 2

0 )2

2 3
. (16)
16f+D 16f+D
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Remark that the transversality condition σ0 
= 0 implies BK ′′ − A 
= 0 and consequently
K1 
= 0. Using the complex Fourier series

b(t) =
∞∑

k=−∞
Xke

ikt (X−k = X̄k ∈ C)

of the function b, define the real 2π -periodic function (see [4])

Φm,n(ϕ) = 4f+
π

∑
k=±1,±3,...

Xkme−iknϕ

L(ikm,λ0)
(17)

for positive integers m,n and set

Σm,n = max
ϕ∈[0,2π]

Φm,n(ϕ) − min
ϕ∈[0,2π]Φm,n(ϕ).

We consider odd numbers n only, which implies that the function Φm,n = Φm,n(ϕ) is anti-
symmetric and therefore Σm,n = 2‖Φm,n‖C .

Denote by K the set of all indexes k such that the kth convergent mk/nk of the number α

satisfies relation (10) and has an odd denominator nk .

Theorem 2.2. Let the set K be infinite. Let

|εk|−β/(1+β)Σmk,nk
→ ∞, n−1

k |εk|−2β/(1+2β)Σmk,nk
→ ∞ (18)

as k → ∞ with εk = α − mk/nk . Then for every sufficiently large k ∈ K there exists an
interval Λk such that for any λ ∈ Λk Eq. (1) has at least one periodic solution of the mini-
mal period 2πnk , the amplitudes of these solutions go to infinity uniformly w.r.t. λ ∈ Λk as
k → ∞, k ∈ K, the intervals Λk converge to the point λ0, and their lengths |Λk| satisfy

|Λk|
ε2
kΣmk,nk

→ |K1|, k → ∞, k ∈ K. (19)

Since Σmk,nk
> c|Xmk

|m−�
k , conditions (18) are valid, for example, if

|Xmk
||εk|−β/(1+β)m−�

k → ∞, |Xmk
||εk|−2β/(1+2β)m−�−1

k → ∞.

In particular, these relations hold if the Fourier coefficients Xmk
of the function b satisfy

|Xmk
| � cm

−γ

k > 0 and estimate (4) for the rational approximations mk/nk of α holds for

s > max

{
(γ + �)(1 + β)

β
,
(γ + � + 1)(1 + 2β)

2β

}
. (20)

Estimate (20) implies s > � + 1 � 3; for large β it means that s > γ + � + 1.
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If |Xn| ∼ n−γ (i.e., c1n
−γ � |Xn| � c2n

−γ > 0 for all n) and εk ∼ n−s
k , then rela-

tions (18) are equivalent to (20) and relation (19) implies |Λk| ∼ n
−2s−γ−�

k . The relation
|Xn| ∼ n−γ means that the function b is γ − 1/2 times differentiable.

From the proofs presented below, it follows that under the assumptions of Theorem 2.2
for all λ ∈ Λk the asymptotic formula (more exact than (12))

λ − λ0 = K ′′εk + Kε2
k + o

(
ε2
k

)
holds with

K = π3(BK ′′ − A)2K0

16f 2+D
− E − FK ′′ + GK ′′2

D
. (21)

3. Proof of Theorem 2.1

3.1. Operator equations

Let us fix a sequence of rational approximations qk = mk/nk to α (the positive integers
mk and nk are coprime) such that for all k estimate (4) with s = 2 holds, i.e.∣∣∣∣α − mk

nk

∣∣∣∣ � c

n2
k

, (22)

and relation (10) is valid. We prove the conclusion of Theorem 2.1 for this sequence, more
precisely, we show that for any sufficiently large k (equivalently, any large nk) Eq. (1)
has a solution x = xk(t) with the minimal period 2πnk for some λ = λk and asymptotic
formulas (12) hold. In what follows, we omit the indexes and write m,n in place of mk,nk ,
always meaning that m and n are sufficiently large and m is uniquely determined by (22)
for a given n.

Rescaling the time t := nt in (1), we arrive at the equation

L

(
n−1 d

dt
, λ

)
x = f (x) + b(nt). (23)

Every 2π -periodic solution x = x(t) of (23) defines the 2nπ -periodic subharmonic x(t/n)

of Eq. (1). Let Em ⊂ L2 = L2[0,2π] be the orthogonal subspace to the plane E
⊥
m = {x(t) =

ξ sinmt + η cosmt : ξ, η ∈ R} in L2 and let Qm be the orthogonal projector onto Em (here
and henceforth, functions x ∈ L2 are identified with their 2π -periodic extensions). We look
for a 2π -periodic solution of (23) in the form

x(t) = r sin(mt + ϕ) + h(t), h = h(t) ∈ Em, r > 0, (24)

where we mark out the principal harmonics of the order m and the Fourier series of the
function h contains the other harmonics of x. Moreover, we consider the phase ϕ as a
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parameter, and λ as an unknown (instead of ϕ). Thus, our purpose is to prove that for each
ϕ there exist numbers r, λ and a function h ∈ Em such that (24) is a 2π -periodic solution
of Eq. (23). From now on, a ϕ is fixed up to the end of the proof of Theorem 2.1.

Let us consider the orthogonal projections of Eq. (23) onto the plane E
⊥
m and onto the

subspace Em of codimension 2 in L2. Projecting onto E
⊥
m, we obtain the system of the two

scalar equations

rπ�eL(im/n,λ) =
2π∫

0

f
(
r sin(mt + ϕ) + h(t)

)
sin(mt + ϕ)dt, (25)

rπ	mL(im/n,λ) =
2π∫

0

f
(
r sin(mt + ϕ) + h(t)

)
cos(mt + ϕ)dt, (26)

where the function b(nt) is not present, because it is orthogonal to E
⊥
m. The projection

of (23) onto Em has the form

L

(
n−1 d

dt
, λ

)
h = b(nt) + Qmf

(
r sin(mt + ϕ) + h(t)

)
. (27)

In this equation we invert the linear differential operator in the left-hand side with the
2π -periodic boundary conditions. The inverse integral operator Hn = Hn(λ) that maps
a function u = u(t) to a unique 2π -periodic solution x = Hnu of the linear equation
L(n−1 d

dt
, λ)x = u(t) is defined on the whole space L1 since L(iq,λ) 
= 0 for any ra-

tional q . Moreover, Hn maps continuously L1 to C�−1 and any Lp to W�,p , it is a
completely continuous operator from each Lp with p > 1 to C�−1, and it is normal in L2,
i.e. H ∗

n Hn = HnH
∗
n (all the functional spaces consist of functions defined on the segment

[0,2π]). This allows to rewrite Eq. (27) as

h = fh, (fh)(t) := Hn

(
b(nt) + Qmf

(
r sin(mt + ϕ) + h(t)

))
, (28)

where the nonlinear operator f : Em → Em depends on n and the scalar parameters r ,
λ, ϕ. Consequently, the 2π -periodic problem for Eq. (23) is equivalent to the system of
Eqs. (25), (26), and (28).

Set Hm,n = HnQm. For our purposes, it is important that Em is an invariant subspace
of the operator Hn and that the norm of the restriction of Hn to the subspace Em ⊂ L2 is
much less than the norm of Hn on the whole space L2. More precisely,

‖Hm,n‖L2→L2 � cn (29)

with c independent of n, while ‖Hn‖L2→L2 ∼ |1/ε| with

ε = α − m/n = O
(
n−2).
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Estimate (29) follows from the relation

L(ik/n,λ)Bk = Ak (30)

between the Fourier coefficients of functions

u(t) =
∑
k∈Z

Ake
ikt , h(t) = (Hm,nu)(t) =

∑
k∈Z, k 
=±m

Bke
ikt ,

where A−k = Āk,B−k = B̄k ∈ C and L(ik/n,λ) are the eigenvalues of Hn, and from the
estimate ∣∣M(iw,λ)

∣∣ � μ > 0. (31)

Estimate (31) is valid, because the polynomial M does not vanish on the imaginary axis
and its highest term is p�−2 due to (2).

3.2. Auxiliary lemmas

Our next step is to find an invariant ball for the operator f defined in (28). First, we
formulate an estimate for the norms of the functions

Δf = Δf (r,ϕ,h)(t) := f
(
r sin(mt + ϕ) + h(t)

) − f+ sign
(
sin(mt + ϕ)

)
.

Lemma 3.1. For any ρ > 0 there exists a r0 = r0(ρ) > 0 such that

‖Δf ‖Lp � c∗r−β/(1+pβ) (32)

for each r � r0, each h ∈ C from the ball ‖h‖C � ρ, and each ϕ ∈ R, with some c∗ > 0
independent of ρ and p � 1.

Define the continuous 2π -periodic functions

u1(t) =
∞∑

k=−∞

Xke
ikt

L(ik, λ0)
, u2(t) = 4f+

π

∑
k=3,5,7,...

� eikt

ikL(ikα,λ0)
, (33)

where Xk are the Fourier coefficients of the function b (all the denominators in these series
are nonzero, because ±iα are the only roots of the polynomial L(p,λ0) on the imaginary
axis, by assumption). Set

ρ1 = ‖u1‖C, ρ2 = ‖u2‖C. (34)

Lemma 3.2. Let ρ > ρ1 + ρ2 and c̄, ¯̄c > 0. Then for every sufficiently large n and every
r � c̄n2, |λ−λ0| � ¯̄cn−2, and ϕ ∈ R the operator f maps the ball {h ∈ Em ∩C: ‖h‖C � ρ}
into the interior of this ball.
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In the next subsection, we complete the proof of Theorem 2.1. The proofs of the above
auxiliary lemmas are placed further at the end of this section. Lemma 3.1 is used to prove
Lemma 3.2.

3.3. Equivalent system

Define the nonlinear functionals FS = FS(r,ϕ,h), FC = FC(r,ϕ,h) by

FS = 1

π

2π∫
0

f
(
r sin(mt + ϕ) + h(t)

)
sin(mt + ϕ)dt,

FC = 1

π

2π∫
0

f
(
r sin(mt + ϕ) + h(t)

)
cos(mt + ϕ)dt. (35)

Instead of (25), (26), consider the equivalent equations

r = FS

�eL(im/n,λ)
, FS	mL(im/n,λ) = FC�eL(im/n,λ).

Furthermore, using representation (5), rewrite these equations as

r = FS

(α2 − m2/n2)R + (λ − λ0)(wR − σJm/n)
, (36)

λ − λ0 = (α2 − m2/n2)(RFC − JFS)

(σRm/n + wJ)FS + (σJm/n − wR)FC

, (37)

where

R = R(λ) = �eM(im/n,λ), J = J (λ) = 	mM(im/n,λ),

and then substitute (λ − λ0) in (36) to obtain

r = FS(σRm/n + wJ) + FC(σJm/n − wR)

(α2 − m2/n2)(R2 + J 2)σm/n
. (38)

Now, let us show that system (28), (37), (38), equivalent to (25)–(27), has a solution
(r, λ,h) for any sufficiently large n due to the Schauder principle. The construction below
implies that FC → 0, FS → const 
= 0 (see (40)), and σRm/n+wJ → σ0R0α+w0J0 
= 0
(see (9)) as n → ∞, and consequently the denominator in (37) is nonzero.

Denote Bρ = {h ∈ Em ∩ C: ‖h‖C � ρ}; this is the ball of the codimension 2 subspace
Em ∩C of the space C, defined in Lemma 3.2. For any fixed δ satisfying 0 < δ < |K ′| with
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K ′ defined by (11) (K ′ 
= 0 due to (9)) consider the Cartesian product Ωn of the ball Bρ

and the segments

|r − K ′/ε| � δ/|ε|, |λ − λ0 − K ′′ε| � δ|ε|. (39)

Estimates (39) and relation (10) imply r � c̄n2, |λ − λ0| � ¯̄cn−2, since ε = α − m/n =
O(n−2). Therefore r → +∞, λ → λ0 and R → R0, J → J0, σ → σ0, w → w0 as n → ∞.
Moreover, from Lemma 3.1 it follows that sup(r,λ,h)∈Ωn

‖Δf ‖Lp → 0 and hence

FS → f+
π

2π∫
0

∣∣sin(mt + ϕ)
∣∣dt = 4f+

π
,

FC → f+
π

2π∫
0

cos(mt + ϕ) sign
(

sin(mt + ϕ)
)
dt = 0 (40)

as n → ∞, where the convergence is uniform w.r.t (r, λ,h) ∈ Ωn. Therefore the right-hand
side of (38) equals (K ′ + o(1))/ε, and the right-hand side of (37) equals (K ′′ + o(1))ε.
For sufficiently large n these values belong to the interior of intervals (39). At the same
time, Lemma 3.2 implies that the right-hand side fh of (28) belongs to the ball Bρ for all
(r, λ,h) ∈ Ωn with large enough n. Thus, system (28), (37), (38) has a solution (r, λ,h)

in Ωn by the Schauder principle. By construction, this solution defines a 2π -periodic so-
lution (24) of Eq. (23) and consequently a 2πn-periodic solution x of (1). Finally, since
δ > 0 can be chosen arbitrarily small, estimates (39) imply relations (12). Theorem 2.1 is
proved.

3.4. Proof of Lemma 3.1

Denote tj = (jπ − ϕ)/m for j = 0,1, . . . ,2m − 1 and define the sets

A =
2m−1⋃
j=0

[tj − δ, tj + δ], B = [t0 − δ,2π + t0 − δ] \ A (41)

with δ = m−1r−pβ/(1+pβ). We assume that r is large, therefore the intervals [tj − δ, tj + δ]
do not intersect and the Lebesgue measures of A and B are

mesA = 4mδ = 4r−pβ/(1+pβ), mesB = 2π − 4r−pβ/(1+pβ). (42)

If t ∈ B , then |sin(mt + ϕ)| � |sin(mδ)| � 2mδ/π . Since rmδ = r1/(1+pβ), these esti-
mates imply for any h from a fixed ball ‖h‖C � ρ and any large enough r

r
∣∣sin(mt + ϕ)

∣∣ − ∣∣h(t)
∣∣ � π−1r1/(1+pβ).
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Consequently, the functions x(t) = r sin(mt + ϕ) + h(t) and sin(mt + ϕ) have the same
signatures at each point of the set B , hence Δf (t) = f (x(t)) − f+ signx(t) on this set
and (8) implies

∣∣Δf (t)
∣∣ � K̃

∣∣x(t)
∣∣−β � K̃

(
r
∣∣ sin(mt + ϕ)

∣∣ − |h|)−β � K̃πβr−β/(1+pβ) (43)

for t ∈ B . Therefore

2π+t0−δ∫
t0−δ

∣∣Δf (t)
∣∣p dt �

(
sup |f | + |f+|)p mesA + K̃pπpβr−pβ/(1+pβ) mesB.

Combining this with (42), we obtain (32), which completes the proof. �
3.5. Proof of Lemma 3.2

Let us write the function fh in the form

fh(t) = Hm,nb(nt) + f+Hm,n

(
sign sin(mt + ϕ)

) + Hm,nΔf (t) (44)

and estimate the norm of each term in the right-hand side separately. From the equalities

b(nt) =
∞∑

k=−∞
Xke

iknt , sign sin(mt + ϕ) = 4

π

∑
k=1,3,5,...

sin(k(mt + ϕ))

k
,

and (30), it follows that the first and the second terms in (44) equal

Hm,nb(nt) =
∞∑

k=−∞

Xke
iknt

L(ik, λ)
,

Hm,n

(
sign sin(mt + ϕ)

) = 4

π

∑
k=3,5,7,...

� eik(mt+ϕ)

ikL(ikm/n,λ)
. (45)

Since |α − m/n| � cn−2, |λ − λ0| � ¯̄cn−2, these equalities imply by the continuity argu-
ments

∥∥Hm,nb(nt) − u1(nt)
∥∥

C
→ 0,

∥∥f+Hm,n

(
sign sin(mt + ϕ)

) − u2(mt + ϕ)
∥∥

C
→ 0

as n → ∞, where u1, u2 are functions (33). Taking into account the relations ‖u1(nt)‖C

= ρ1, ‖u2(mt + ϕ)‖C = ρ2, and ρ > ρ1 + ρ2, we conclude that for all sufficiently large n

∥∥Hm,nb(nt)
∥∥ + ∥∥f+Hm,n

(
sign sin(mt + ϕ)

)∥∥ < ρ.

C C
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Consequently, to complete the proof, it suffices to show that the last term in (44) satisfies
‖Hm,nΔf ‖C → 0 as n → ∞ uniformly w.r.t. all h ∈ Em ∩ C from the ball ‖h‖C � ρ and
all r � c̄n2, |λ − λ0| � ¯̄cn−2, ϕ ∈ R. For this purpose, we use Lemma 3.1.

Let us fix an arbitrary p from the interval 1 < p < 2 − 1/β , define the conjugate q of p

by p−1 + q−1 = 1, and consider the real Fourier series

Δf (t) =
∞∑

k=0

Dk sin(kt + φk), Dk � 0,

of the function Δf . According to Hausdorff–Young theorem (see, e.g., [7, p. 190]), the
inclusion Δf ∈ Lp implies that the sequence D = {Dk} belongs to the space �q and

‖D‖�q =
( ∞∑

k=0

D
q
k

)1/q

� ‖Δf ‖Lp . (46)

From relations (30), it follows that the real Fourier series of the function Hm,nΔf has the
form

Hm,nΔf (t) =
∑

k�0, k 
=m

Dk sin(kt + ψk)

|L(ik/n,λ)| ,

consequently

‖Hm,nΔf ‖C �
∑

k�0, k 
=m

Dk

∣∣L(ik/n,λ)
∣∣−1

and by the Gölder inequality ‖Hm,nΔf ‖C � ‖D‖�q S
1/p with

S =
∑

k�0, k 
=m

∣∣L(ik/n,λ)
∣∣−p

.

Therefore (46) implies

‖Hm,nΔf ‖C � ‖Δf ‖LpS1/p. (47)

An estimate of the first multiplier in the right-hand side of (47) follows from Lemma 3.1.
To estimate S, consider the factorization (5) of the polynomial L. Relation (31) implies

∣∣L(ik/n,λ)
∣∣ � c1

∣∣−n−2k2 + α2 + (λ − λ0)w(λ)
∣∣

� c1n
−2

∣∣m2 − k2
∣∣ − c1

∣∣α2 − n−2m2 + (λ − λ0)w(λ)
∣∣

and from |α − m/n| � cn−2, |λ − λ0| � ¯̄cn−2 it follows that∣∣L(ik/n,λ)
∣∣ � c1n

−2
∣∣m2 − k2

∣∣ − c2n
−2
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with some c2 > 0. For any sufficiently large m and all k 
= m this implies

∣∣L(ik/n,λ)
∣∣−p �

c
−p

1 n2p

(|m2 − k2| − c2/c1)p
.

Summing this for k � 0, k 
= m and taking into account that for large m

m−1∑
k=0

1

(m2 − k2 − c2/c1)p
=

m∑
k=1

1

(m2 − (m − k)2 − c2/c1)p
�

m∑
k=1

(
2

mk

)p

and

∞∑
k=m+1

1

(k2 − m2 − c2/c1)p
=

∞∑
k=1

1

((k + m)2 − m2 − c2/c1)p
�

∞∑
k=1

(
1

mk

)p

,

we obtain

S � c3n
2pm−p � 2c3n

p.

Finally, for all h ∈ Em ∩ C satisfying ‖h‖C � ρ, all ϕ ∈ R, and all sufficiently large n

estimates (32) and r � c̄n2 imply ‖Δf ‖Lp � c4n
−2β/(1+pβ) and thus (47) gives

‖Hm,nΔf ‖C � ‖Δf ‖LpS1/p � c5n
1−2β/(1+pβ),

where the exponent of n is negative due to our choice of p. This implies ‖Hm,nΔf ‖C → 0
as n → ∞ and consequently completes the proof. �

4. Proof of Theorem 2.2

4.1. Scheme of the proof

From the proof of Theorem 2.1 it follows that for every sufficiently large k ∈ K and
every ϕ equation (23) with n = nk has a 2π -periodic solution x(t) = r sin(mt + ϕ) + h(t)

with m = mk for some λ = λk(ϕ) and that relations (12) hold uniformly in ϕ. The existence
of each solution was proved by the Schauder principle applied to a completely continuous
operator that acts in the space of triples (r, λ,h) and maps the Cartesian product Ωn = Ωnk

of the ball Bρ = {h ∈ Emk
∩ C: ‖h‖C � ρ} (of a fixed radius ρ) and the segments (39)

depending on k into itself for any ϕ. Let us denote the set of all the fixed points (r, λ,h) of
this operator lying in Ωnk

for a given ϕ by Gk(ϕ) and the projection (r, λ,h) �→ λ of the
set Gk(ϕ) onto the λ-axis by Πk(ϕ); consequently, Πk(ϕ) is a nonempty bounded closed
set.

In the next subsections, we show that for each ϕ and all λ ∈ Πk(ϕ)

λ − λ0 = εK ′′ + ε2K + ε2K1Φm,n(ϕ) + ε2O
(|ε|β/(1+β) + n|ε|2β/(1+2β)

)
(48)
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with ε = εk and let the parameter ϕ vary over the segment [0,2π] for a fixed k (remark that
ϕ was fixed in the above proof of Theorem 2.1). If the function Φm,n = Φm,n(ϕ) reaches
its minimum and maximum at the points ϕ = ϕ1 and ϕ = ϕ2, respectively, then for every
λ1 ∈ Πk(ϕ1) and λ2 ∈ Πk(ϕ2) formula (48) implies

λ2 − λ1 = ε2|K1|Σm,n + ε2O
(|ε|β/(1+β) + n|ε|2β/(1+2β)

)

and taking into account condition (18), we arrive at

λ2 − λ1 = ε2|K1|Σm,n

(
1 + o(1)

)
, λ1 ∈ Πk(ϕ1), λ2 ∈ Πk(ϕ2).

In particular, this implies asymptotics (19) for the length |Λk| of the segment Λk =
[λk

min, λ
k
max], where λk

min = maxΠk(ϕ1), λk
max = minΠk(ϕ2). Moreover, from a standard

topological argument it follows that for every λ ∈ (λk
min, λ

k
max) one finds a ϕ such that

λ ∈ Πk(ϕ) and therefore the values of λ such that Eq. (23) has at least one solution (24)
with (r, λ,h) ∈ Ωnk

fill in the whole segment Λk , which implies all the conclusions of
Theorem 2.2. This topological argument proceeds as follows.

Let Ω be a bounded convex closed solid set in a Banach space E. Let for each value
of a scalar parameter ϕ from a segment J = [ϕmin, ϕmax] a completely continuous oper-
ator F(·, ϕ) :Ω → E be defined on the set Ω and let F(x,ϕ) depend continuously on ϕ

uniformly w.r.t. x ∈ Ω . Suppose that the operator F(·, ϕ) does not have zeros on the bound-
ary ∂Ω of the set Ω for all ϕ ∈ J and consequently the rotation γ = γ (I − F(·, ϕ), ∂Ω)

of the vector field x − F(x,ϕ) ∈ E on the boundary ∂Ω of Ω is defined and has the
same value for all ϕ. Let this rotation be nonzero (for example, in our case γ = 1, be-
cause the operator F(·;ϕ) maps the set Ω into its interior Ω \ ∂Ω). Then the set G(ϕ) of
fixed points of F(·;ϕ) is nonempty for each ϕ ∈ J and moreover (see, e.g., [3]), the set
Γ = {(ϕ, x) ∈ J × Ω: ϕ ∈ J , x ∈ G(ϕ)} is a continuous branch w.r.t. ϕ, which means that
Γ has a nonempty intersection with the boundary ∂U of any open domain U of the space
J × E such that U contains the cross-section ϕ = ϕmin, x ∈ G(ϕmin) of Γ and U does not
intersect the cross-section ϕ = ϕmax, x ∈ G(ϕmax) of Γ .

In particular, this implies that if P : E → R is a linear continuous functional and
maxP(G(ϕ1)) < minP(G(ϕ2)) for some ϕ1, ϕ2 ∈ J , then each number from the segment
[maxP(G(ϕ1)),minP(G(ϕ2))] belongs to the set P(G(ϕ)) for at least one ϕ ∈ J . In our
case, P(r,λ,h) = λ and P(Gk(ϕ)) = Πk(ϕ). Thus, to complete the proof, it suffices to
obtain formula (48).

4.2. Estimates

In the further proof, we determine the principal terms of integrals (35).
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4.2.1. The main terms of the integral FC

Consider a 2π -periodic solution (24) of Eq. (23). Since x′(t) = rm cos(mt +ϕ)+h′(t),
then

FC = 1

πrm

2π∫
0

f
(
x(t)

)(
x′(t) − h′(t)

)
dt;

the integral of f (x)x′ over the period is zero for any periodic x, therefore

FC = − 1

πrm

2π∫
0

h′(t)f
(
x(t)

)
dt.

Substituting here in place of h the right-hand side fh of (28), we arrive at

FC = − 1

πrm

2π∫
0

f
(
x(t)

) d

dt
Hm,nb(nt) dt − 1

πrm

2π∫
0

f
(
x(t)

) d

dt
Hm,nf

(
x(t)

)
dt. (49)

Define the functions

Ψm,n(ϕ,λ) = − f+
πm

2π∫
0

sign
(
sin(mt + ϕ)

) d

dt
Hm,nb(nt) dt,

Km,n(λ) = − f 2+
πm

2π∫
0

sign
(
sin(mt + ϕ)

) d

dt
Hm,nsign

(
sin(mt + ϕ)

)
dt.

Let us show that

rFC = Ψm,n(ϕ,λ) + Km,n(λ) + ρ, (50)

where ρ is asymptotically small compared to the first and the second terms of the right-
hand side, and that these terms satisfy

Ψm,n(ϕ,λ) = Φm,n(ϕ) + O(ε), Km,n(λ) = K0 + O(ε) (51)

as n → ∞, where K0 and Φm,n are defined by formulas (15), (17).
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4.2.2. Proof of relations (51)
For any locally integrable 2π -periodic function u, we have

2π∫
0

sign
(
sin(mt + ϕ)

) d

dt
Hm,nu(t) dt

=
2m∑
j=1

jπ/m−ϕ/m∫
(j−1)π/m−ϕ/m

sign
(
sin(mt + ϕ)

) d

dt
Hm,nu(t) dt

=
2m∑
j=1

(−1)j−1(Hm,nu(t)|t=jπ/m−ϕ/m − Hm,nu(t)|t=(j−1)π/m−ϕ/m

)

= 2
2m−1∑
j=0

(−1)j−1Hm,nu(t)|t=jπ/m−ϕ/m.

Therefore

Ψm,n(ϕ,λ) = −2f+
πm

2m−1∑
j=0

(−1)j−1Hm,nb(nt)|t=jπ/m−ϕ/m,

Km,n(λ) = −2f 2+
πm

2m−1∑
j=0

(−1)j−1Hm,n sign
(
sin(mt + ϕ)

)|t=jπ/m−ϕ/m

and (45) implies

Ψm,n(ϕ,λ) = 2f+
πm

2m−1∑
j=0

(−1)j
∞∑

k=−∞

Xke
iknt

L(ik, λ)

∣∣∣∣
jπ/m−ϕ/m

= 2f+
πm

∞∑
k=−∞

Xk

L(ik,λ)

2m−1∑
j=0

(−1)j eikn(jπ/m−ϕ/m)

= 2f+
πm

∞∑
k=−∞

Xke
−iknϕ/m

L(ik,λ)

2m−1∑
j=0

(−1)j eiknjπ/m

= 2f+
πm

∞∑
k=−∞

Xke
−iknϕ/m

L(ik,λ)
·
{

0 for eiknπ/m 
= −1,

2m for eiknπ/m = −1

= 2f+
πm

∞∑
k=−∞

Xke
−iknϕ/m

L(ik,λ)
·
⎧⎨
⎩

0 if k is not a multiple of m,

0 if kn/m is even,
2m if both k/m and n are odd;
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and

Km,n(λ) = 8f 2+
π2m

2m−1∑
j=0

(−1)j
∑

k=3,5,7,...

� eikjπ

ikL(ikm/n,λ)

= −16f 2+
π2

∑
k=3,5,7,...

	mL(ikm/n,λ)

k|L(ikm/n,λ)|2 .

Equivalently,

Ψm,n(ϕ,λ) = 4f+
π

∑
k=±1,±3,...

Xkme−iknϕ

L(ikm,λ)
,

Km,n(λ) = −16f 2+
π2

∑
k=3,5,7,...

	mL(ik(α − ε), λ)

k|L(ik(α − ε), λ)|2 ,

where we use the fact that n is odd (for any even n, one gets Ψn,m ≡ 0). Now, from the
Lipschitz continuity of L w.r.t λ it follows

Ψm,n(ϕ,λ) = Φm,n(ϕ) + O(λ − λ0), Km,n(λ) = K0 + O
(|ε| + |λ − λ0|

)
.

Due to (12), λ − λ0 = O(ε), hence (51) holds.

4.2.3. Estimation of smaller terms of the integral FC

Here we estimate the term ρ in (50). To be concise, let us introduce the notation
v∗(t, ϕ) = f+sign(sin(mt + ϕ)), then by definition

Δf (t) = f
(
x(t)

) − v∗(t, ϕ),

Ψm,n(ϕ,λ) = − 1

πm

2π∫
0

v∗(t, ϕ)
d

dt
Hm,nb(nt) dt,

Km,n(λ) = − 1

πm

2π∫
0

v∗(t, ϕ)
d

dt
Hm,nv∗(t, ϕ) dt.

Relations (49) and (50) imply

ρ = − 1

πm

2π∫
0

Δf (t)
d

dt
Hm,nb(nt) dt + 1

πm

2π∫
0

v∗(t, ϕ)
d

dt
Hm,nv∗(t, ϕ) dt

− 1

πm

2π∫
f

(
x(t)

) d

dt
Hm,nf

(
x(t)

)
dt.
0
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Therefore

πm|ρ| � ‖Δf ‖L1

∥∥∥∥ d

dt
Hm,nb(nt)

∥∥∥∥
C

+ ‖Δf ‖L1

∥∥∥∥ d

dt
Hm,nv∗(t, ϕ)

∥∥∥∥
C

+ ‖Δf ‖L1

∥∥∥∥
(

d

dt
Hm,n

)∗
v∗(t, ϕ)

∥∥∥∥
C

+ ‖Δf ‖2
L2

∥∥∥∥ d

dt
Hm,n

∥∥∥∥
L2→L2

, (52)

where (d/dtHm,n)
∗ denotes the conjugate operator for d/dtHm,n.

From the formulas

d

dt
Hm,nb(nt) =

∞∑
k=−∞

inkXke
iknt

L(ik, λ)
,

d

dt
Hm,nv∗(t, ϕ) = 2f+

π

∑
k=±3,±5,±7,...

meik(mt+ϕ)

L(ikm/n,λ)
,

(
d

dt
Hm,n

)∗
v∗(t, ϕ) = 2f+

π

∑
k=±3,±5,±7,...

−meik(mt+ϕ)

L(−ikm/n,λ)
,

it follows ∥∥∥∥ d

dt
Hm,nb(nt)

∥∥∥∥
C

,

∥∥∥∥ d

dt
Hm,nv∗

∥∥∥∥
C

,

∥∥∥∥
(

d

dt
Hm,n

)∗
v∗

∥∥
C

� cn. (53)

Furthermore,∥∥∥∥ d

dt
Hm,n

∥∥∥∥
L2→L2

� max
k 
=m

k

|L(ik/n,λ)| � max
k 
=m

k

μ| − k2/n2 + α2 + (λ − λ0)w(λ)| ,

where μ > 0 is a lower bound for |M(iω,λ)| with ω ∈ R. For any sufficiently large n, the
relations λ − λ0 = O(ε) = O(n−2) imply that if k > 2αn, then

k

| − k2/n2 + α2 + (λ − λ0)w(λ)| � k

k2/n2 − k2/(2n2)
= 2n2

k
� n

α
;

if k � 2αn, k 
= m, then

k

| − k2/n2 + α2 + (λ − λ0)w(λ)| � 2nk

α|k − m| � 2nk

α
� 4n2.

Consequently,

∥∥∥∥ d
Hm,n

∥∥∥∥ � 4n2

,

dt L2→L2 μ
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which together with (52) and (53) implies |ρ| � c1‖Δf ‖L1 + c2n‖Δf ‖2
L2 . By Lemma 3.1,

‖Δf ‖L1 � c∗r−β/(1+β), ‖Δf ‖L2 � c∗r−β/(1+2β), where r ∼ 1/|ε| due to (12) (recall that
the norm ‖h‖C is uniformly bounded for all n), therefore

|ρ| � c
(|ε|β/(1+β) + n|ε|2β/(1+2β)

)
.

From (50) and (51) it follows that rFC = Φm,n(ϕ) + K0 + ρ + O(ε). Because |ε|β/(1+β)

> |ε|, we, finally, obtain

rFC = Φm,n(ϕ) + K0 + O
(|ε|β/(1+β) + n|ε|2β/(1+2β)

)
. (54)

4.2.4. Smaller terms of the integral FS

To complete the proof, we need a more exact estimate of the difference FS − 4f+/π

than that in (40). Let us write FS in the form

FS = 1

π

2π∫
0

v∗(t, ϕ) sin(mt + ϕ)dt + I3 = 4f+
π

+ I3

with

I3 = 1

π

2π∫
0

Δf (t) sin(mt + ϕ)dt.

To estimate the integral I3 we use the argument similar to that of the proof of Lemma 3.1.
The difference is that here we are able to benefit from the smallness of the integrand on the
set A, because

∣∣sin(mt + ϕ)
∣∣ � mδ, t ∈ A.

Put δ = m−1r−β/(2+β) and consider sets (41) with this δ. Repeating the proof of Lem-
ma 3.1 with the new δ, we obtain for all t ∈ B the estimate

∣∣Δf (t)
∣∣ � K̃πβr−2β/(2+β),

analogous to (43). Consequently,

π |I3| � mδ‖Δf ‖L∞ mesA + K̃πβr−2β/(2+β) mesB.

Here mesA = 4mδ, mesB � 2π , and ‖Δf ‖L∞ � sup |f | + |f+|, hence |I3| � c(m2δ2 +
r−2β/(2+β)) = 2cr−2β/(2+β) and r ∼ 1/|ε| implies

FS = 4f+
π

+ O
(|ε|2β/(2+β)

)
. (55)
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4.3. End of the proof

Let us multiply (26) by r and let us square equality (25) to obtain

r2π	mL(im/n,λ) = rFC, r2π2(�eL(im/n,λ)
)2 = F 2

S .

Dividing the first of these relations by the second one, we arrive at

	mL(im/n,λ)

π(�eL(im/n,λ))2
= rFC

F 2
S

.

Formulas (54) and (55) imply that the right-hand side here equals

rFC

F 2
S

= Φm,n(ϕ) + K0 + O(|ε|β/(1+β) + n|ε|2β/(1+2β))

16f 2+/π2 + O(|ε|2β/(2+β))

and consequently

	mL(im/n,λ)

(�eL(im/n,λ))2
= π3(Φm,n(ϕ) + K0)

16f 2+
+ O

(|ε|β/(1+β) + n|ε|2β/(1+2β)
)
, (56)

where we take into account that 2β/(2 + β) > β/(1 + β) and Φm,n = o(1).
Let us replace λ with the new variable ξ defined by the relation λ − λ0 = K ′′ε + ξε2,

which allows to rewrite the left-hand side of (56) as

	mL(im/n,λ)

(�eL(im/n,λ))2
= 	mL(iα − iε, λ0 + K ′′ε + ξε2)

(�eL(iα − iε, λ0 + K ′′ε + ξε2))2
.

Here K ′′ is the second of numbers (11) and (12) implies ξε = o(1). From assumptions (13)
and (14) it follows

�eL
(
iα − iε, λ0 + K ′′ε + ξε2) = (BK ′′ − A)ε + ξO

(
ε2) + O

(
ε2),

	mL
(
iα − iε, λ0 + K ′′ε + ξε2) = (DK ′′ − C)ε + (

ξD + E − FK ′′ + GK ′ ′2)ε2

+ ξO
(
ε3) + O

(
ε3)

and, since K ′′ = C/D,

	mL(im/n,λ)

(�eL(im/n,λ))2
=

(
D

(BK ′′ − A)2
+ O(ξε) + O(ε)

)
ξ + E − FK ′′ + GK ′′2

(BK ′′ − A)2
+ O(ε).



A.M. Krasnosel’skii, D.I. Rachinskii / J. Differential Equations 226 (2006) 30–53 53
Combining this with (56), we obtain

ξ = π3(BK ′′ − A)2(Φm,n(ϕ) + K0)

16f 2+D
− E − FK ′′ + GK ′′2

D

+ O
(|ε|β/(1+β) + n|ε|2β/(1+2β)

)
and equivalently,

ξ = K + K1Φm,n(ϕ) + O
(|ε|β/(1+β) + n|ε|2β/(1+2β)

)
with K1 and K defined by (16) and (21). Therefore (48) holds and the proof is complete.�
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