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1. Introduction. This paper studies the kernel of a non-autonomous evo-
lution equation:

(1) Oiu = A(u,t), u|t=T = U,

and the corresponding process {U(t,7), t > 7, t € R} acting in a Banach space
E, U(t,7)u, = u(t), where u(t) is a solution of (1) (see Section 2). By definition,
the kernel K consists of all bounded complete trajectories of the equation:

K = {u(-) | u(t), t € R, is a solution of (1), |Ju(t)|r < M, Vt € R}.

Let K(s) = {u(s) | u(-) € K}, K(s) € E, be the kernel section at time s. In
the case of an autonomous evolution equation (when A(u,t) = A(u)), the set
K(s) = A does not depend on s, and it forms the maximal invariant set of the
corresponding semigroup {S(t), ¢t > 0}, S(¢) = U(t,0), S(t)A= A, Vt > 0. It is
well known that the maximal invariant set of a continuous and asymptotically
compact semigroup coincides with the global attractor of this semigroup (see
[21], [18], [1]). The kernel and kernel sections are natural generalizations of the
notion of maximal invariant set for a non-autonomous dynamical system. If
a process {U(t,7), t > 7, 7 € R} acting in a Banach space E is continuous
and possesses a compact uniformly attracting set P € E, then the kernel K of
this process is non-empty and the kernel section K(s) is compact in E for any
s € R (see Section 2, Theorem 2.2). We show that kernel sections satisfy some
properties that are analogous to the invariance and attracting properties of the
attractor of a semigroup. We prove that U(¢,7)K (1) = K(¢),t > 7, 7 € R, and,
for any bounded set B in F,

distg(U(r,7—T)B ,K(1)) = 0 (T = 400),
where 7 is an arbitrary fixed number (Theorem 2.3).
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Let £ = (J,cg K(s) be the union of all the kernel sections of a process
{U(t,7)}. In the case of the non-autonomous equations of mathematical physics,
the closure £ in F may have infinite Hausdorff dimension, as shown by many
examples (Section 6). Nevertheless, the kernel section K (s) has finite Hausdorff
dimension for any s € R (Sections 3 and 4). The upper bound for the Hausdorff
dimension of the kernel sections has a form analogous to that of the corresponding
autonomous evolution equations given in [8].

In Section 5 we present Hausdorff dimension estimates for kernel sections
encountered in the following problems of mathematical physics:

(i) The two-dimensional Navier-Stokes system with time-dependent external
force p(z,t) (¢ € Cp(R,H));

(ii) the non-autonomous reaction-diffusion system with time-dependent nonlin-
ear interaction function f(u,t) and with external force ¢(z,t);

(iii) the damped hyperbolic equation with time-dependent terms.

Parallel results for autonomous problems can be found in [8], (2], [14] (see also
[18] and [1]).

Note that, in the particular case when the symbol oy (t) of a non-autonomous
equation depends almost periodically on time ¢ (see [5]), the uniform attractor
A of the corresponding process coincides with the union of all kernel sections
K5(0) of all the equations with o = o(t), from the hull H(op) of the symbol
00 : A = Ugen(o) Ko(0) (see [3, 4, 5, 6, 7]). In the case of quasiperiodic
dependence on time, estimates for the Hausdorff dimension of uniform attractors
were also obtained in [3, 4, 5, 6, 7).

2. Kernel of a process generated by a non-autonomous evolution
equation. Let {U(t,7), t > 7, 7 € R} = {U(¢,7)} be a process acting in a
Banach space E. Thus, U(t,7) : E — E, U(t,s)U(s,7) = U(t,7), U(r,7) =1
Vt > s> 7,7 € R. A function u(s), s € R, is said to be a complete trajectory
of the process {U(¢,7)} if

(2) U(t,m)u(r) = u(t) vt>7,7€R.

A complete trajectory u(s) of a process {U(t,7)} is said to be bounded if the
set {u(s) | s € R} is bounded in the norm of E, i.e., ||u(s)||g < Cy Vs € R (see
[17], [9, 10], and [11], where the concept of a process was introduced and some
important properties of processes were established).

Definition 2.1. The kernel K of a process {U(¢,7)} consists of all bounded
complete trajectories of the process {U(t,7)}:

K = {u(-) | u(-) satisfies (2) and |ju(s)|| < C, Vs € R}.
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Definition 2.2. The section K(s) C E of a kernel K at time s € R is
defined by:

) K(s) = {u(s) | u(-) € K}-

Remark 2.1. If the process {U(t,7)} is generated by a semigroup {S(t),
t >0}, ie., U(t,7) =U(t—71,0) = S(t—7) Vt > 7, 7 € R, then the kernel K
consists of all the bounded complete trajectories u(s), s € R, of this semigroup:
S(t)u(s) = u(s+t), Vt > 0, s € R. In this case, the sections K(s) do not depend
on s; thus, K(s) = K(0). If the semigroup satisfies some extra conditions, then
K(0) coincides with the global attractor A of the semigroup {S(¢)}. In the case
of a general process {U(t,7)}, the kernel sections K(s) depend on s € R.

We shall investigate processes generated by evolution equations of the form:
(4) Ou = A(u,t), ult___T = U, ur €EE, t>71, 7 €R.

Here A(u,t) is a family of nonlinear operators depending on ¢, t € R, with
domain FE; not depending on ¢ and with range Fo: A(u,t) : E1 x R — Ey, where
E,, Ey, and E are Banach spaces. Usually E; C E C Ey, and E; is dense in
E. The meaning of the expression “u(t) is a solution of the problem (4)” is to
be discussed separately in each particular case. To begin with, assume that the
problem (4) is uniquely solvable for any 7 € R, u, € E, and has the solution
u(t) € E, t > 7. Consider a two-parameter family of mappings {U(¢,7), t > 7,
7 € R} defined by the formula:

(5) Ut m)ur = u(t), (ur = u(7)),

where u(t) is a solution of (4). It is clear that {U(¢,7)} is a process on E. Thus,
according to (2), the kernel K of the process {U(t,7)} (or the kernel of the
equation (4)) consists of all bounded solutions u(t) € E of (4) defined for all
t € R. Evidently the following holds.

Proposition 2.1. Let K be the kernel of the process {U(t,7)}. Then
(6) U(t,7)K(t) = K(t) Vt>1, T €R.
The next theorem contains conditions under which the kernel K of the
process {U(t,7)} is non-empty. As in [11], we introduce the notion of a uniformly

asymptotically compact process. A set P C F is said to be a uniformly attracting
set of a process {U(t,7)} if for any bounded set B C E,

(N sup distg(U(T + 7,7)B, P) — 0 (T — +00).
TER

Here, for any X C E and Y C E we define

distg(X,Y) = sup distg(z,Y) = sup inf |z—yl&.
z€X zeX YEY

Definition 2.3. A process {U(t,7)} possessing a compact uniformly at-
tracting set is said to be uniformly asymptotically compact.
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Theorem 2.2. Let {U(t,7)} be a uniformly asymptotically compact process
acting i a space E, with a compact, uniformly attracting set P € E. FEach
mapping U(t,7) : E — E is assumed continuous. Then the kernel K of the
process {U(t,7)} is non-empty, the kernel sections K(s) are all compact, and

(8) K(s)Cc P Vs € R.
Proof. Consider the set:

9) Ar(r)= U U(r,7 - s)P, T>0.
82T

(The bar indicates closure in E.) Then we clearly have:

(10) Ar, (1) 2 Ar, (1) VTi < Ts.
The uniform attracting property (7) implies that

(11) distg(Ar(r),P) = 0 (T - +0).

Set
Aso(m) = ) Ar(7).

T>0

Since P is a compact set, then by (10) and (11) the set Ao (7) is also compact
and non-empty, and A (7) C P. Let us show that

(12) Ao(T) = K(7) vVr € R,
where K (7) is the section of the kernel K of the process {U(t,7)} at time 7. Pick
any bounded complete trajectory u(s) of the process {U(t,7)}. Then, according
to (7), u(r) € P Vr € R. Indeed, u(r) = U(r,7 — 8)u(r —s). The set B =
{u(r —s), s > 0} is bounded in E. Property (7) implies that distg(u(r),P) <
distg(U(r,7—8)B , P) — 0 (s — +0), i.e., distg(u(r),P) = 0 and u(r) € P
V7 € R. On the other hand, from the inclusion u(r —T') € P it follows that
u(r) =U(r,7—T)u(r —T) € U(r,7—T)P C Ar(r) VT > 0. Therefore, u(r) €
Ar (1) VT > 0. Hence u(7) € Aoo(7). Thus we have established that

(13) K(7) C Ao (7).

To prove the inverse inclusion, we need the following identity:

(14) U(t, 7)Ao (1) = Aoo(t) Vt>r1,7€R.
By the definition of the set Ay (7T),

(15) Ur € Ao (T) <= 3 35, — +00, {2p} C P :U(T,7T — 8p)Tpn — Ur

(n — +00).
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Using the continuity of the mapping U(t,7), we have
U(t,7— 8n)Tn = U@, T)U(T,7 = 8n)Tn = U(t,T)u, (n — +00).

Therefore, by (15), U(t,7)u,; € Aco(t), i.e., U(t,7)Aco(T) € Aoo(t). Let us verify
the inverse inclusion. Let u; be any element of A (t). Then, according to (15),
there exist two sequences s, — +00 and {z,} C P such that U(¢,t — sp)Tn — us,
n — +oo. Note that U(t,t —sp)xn = U(t,7)U(T,7 — (T —t+ 8n))2n. The set
{zn} is bounded, thus {y, = U(7,7 — s},)xn}, 8), = T —t + sy, is attracted to P
when n — +o0. Therefore, for some sequence {§,} C P, we have ||y, — fnllz —
0, n — 4+00. On the other hand, the set P is compact, and, by refining {7, },
we may assume that 3, — u,, n — +oo for some element u, € P. Hence,
yn = U(r,7—8})Tn — ur, n — +oo. Owing to (15), we get u, € Aoxo(7).
Finally, using the continuity of the mapping U(t,7), we deduce:

ug = lim U(t,7)U(1,7 — 83)zn = U(t,7) lim y, = U(t,7)ur,
n—0o0 n-—00

Ur € Aoo(T)-

Hence, u; € U(t,7)Aco(7) and U(t,7) Ao (T) 2 Ao(t), t > 7. So (14) is proved.

Using (14), let us show that A (7) C K(7), V7 € R. Indeed, let u, be
any element of A, (7). We shall construct a bounded complete trajectory u(s),
s € R, of the process {U(t,7)} such that u|s=r = u,. We put u(s) = U(s,7)ur,
where s > 7. Given (14), u(s) € Axo(s) C P for any s > 7 . Let us extend u(s)
to s < 7. The identity (14) implies that there exists u;—1 € A (7 — 1) such that
U(r,7 — Dur—; = u,. If we now put u(s) = U(s,7 — 1)u,_1 for s € [r —1,7], we
shall get u(s) € Auo(s) C P for s > 7 — 1. Applying this procedure several times,
one can construct u(s) € A (s) C P for s > 7—n, n € N. Letting n — 400,
we get a bounded complete trajectory u(s) of the process {U(¢,7)}, s € R, such
that u(s) € Ax(s) C P Vs € R and u(r) = u, . Therefore, u, = u(r) € K(1)
and Ao (1) C K (7). Taking into account (13), we obtain the identity (12). The
proof is complete. O

Corollary 2.1. If a process {U(t,T)} satisfies the conditions of Theorem
2.2, then the kernel section K(7) is given by

(16) K(r)= N U U(r,r—9)P.
T>0s>T
Theorem 2.3. Let the conditions of Theorem 2.2 be satisfied. Then for
any bounded set B C E and for any fixed T € R
17) distg(U(r,7—T)B, K(1)) = 0 (T — +00).
Proof. Assume to the contrary that for some bounded set B and for some

T € R, (17) is not true. Therefore, there exist two sequences {T,,}, T, — +00
and {z,} C B, such that

(18) distg(U(1,7 —=Tp)2sn , K(17)) > 6 >0 Vn € R.
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Identity (16) implies that, for some T = T(§),

(19) distg( | U(r,7—s)P, K(1)) < §/4.
s>T1

If n is large enough, then
U(r,7 = Tp)zn = U(T,7 = THU(7 =T, 7 = Tp)2n-

The mapping U(r,7 —T*) is continuous, so that it is uniformly continuous on a
compact set. Therefore, for any € > 0, there exist §; > 0 such that distg(y, P) <
6, implies that distg(U(r,7 —T1)y , U(x,7 —T*)P) < e. Put ¢ = §/4 and find
the corresponding &; = 61(6). The set {z,} is bounded. It follows from (7) that
distg(U(r = T*,7 — Tp,)zn , P) < 6, for large n. Hence,

(20) distg(U(r,7 = THU (7 = T, 7 = Tp) 2, U(r,7 = T*)P) < §/4.
From (19) and (20) it follows that
distg (U(T,T —Tn)zn , K(T))
= distg (U(r,7r = THU(r = T',7 = Tn)zn , K(7))
< distg (U(r,7 = TYYU(r =T, 7 = Tp)xn , U(r,7 = T*)P)
+ distg (U(r,7 —T*)P , K(1))

<§/4+6/4=6/2.

This contradicts (18), which completes the proof. O

Remark 2.2. Property (6) of the kernel sections K(7) is similar to the
invariant property of the attractor of a semigroup. Property (17) is analogous
to the attracting property of a semigroup’s attractor. O

Remark 2.3. Let the process {U(t,7)} satisfy the backward uniqueness
property, i.e., U(t,7)u, = U(t,7)u. implies that u, = w,. Then, under the
conditions of Theorem 2.2, the sections K (7) are homeomorphic (in E) to each
other. The corresponding homeomorphism is given by U(t,7), U(t,7)K(T) =

K(t), K(t) = (U(t,7)) " K(r), t > T.

3. On the finite dimensionality of sets connected by volume con-
traction mappings. In this section we study the Hausdorff dimension of sets
X; (i € Z) connected by a sequence {S;};ez of volume contraction mappings.
Theorem 3.1 generalizes the fundamental result of [13] and [8] concerning the
estimate of the Hausdorff dimension of a compact set X that has an invariant
volume contraction mapping S, §: X — X, S(X) = X.
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Let H be a Hilbert space and Y € H a compact subset. Given d € R
and ¢ > 0, we denote by u(Y,d,e) the infimum Y r¢, where the infimum is
taken over all the possible coverings of Y by balls B, (z;) of radii 7; < € and
with centers z; € Y. Let u(Y,d) denote the d-dimensional Hausdorff measure
p(Y,d) = lime_o4 u(Y,d,¢), and let dim (Y') denote the Hausdorff dimension of
Y in the space F : dim (Y) = inf {d : u(Y,d) = 0} (see [18] and [1] for a detailed
description).

Let X € H be a compact set. Consider a sequence of sets { X, }iez, X; C X,
and a sequence of mappings {S; };ez such that S; : X; — X;41,4% € Z. We assume
that each S; is surjective, i.e.,

(21) Si(Xi) = X,'+1 Vi€ Z.

The sequence {S; }icz is said to be uniformly quasidifferentiable on { X; };ez if, for
any S; and any u € X;, there exists a bounded linear operator L;(u) € L(H,H)
(the quasidifferential) such that

[15i(v) = Si(w) — Li(u)(v —u)||&

(22) sup  sup -0
i€Z  u, veX; lv—ullg
0<||lv—u|lg<e

(¢ — 0+). Let L be a bounded linear operator, L € L(H,H). The contraction
coefficient of d-dimensional volumes under the action of L is defined by

(23) wa(L)=  sup  ||L&ALE A AL,
€1,-5€a; 1€ ]I<1

where ||(1AG A Al = (det{((i,Cj)f;l”:.‘_‘g})l/ ? denotes the volume of the
parallelepiped spanned by the vectors ¢1,(2,...,{qg € H. One says that an oper-
ator L contracts d-dimensional volumes if wg(L) < 1. Let us now formulate the
Main Theorem.

Theorem 3.1. Suppose X is compact in H, the sequence of mappings
{Si}iez, Si : Xi — Xit1, Xi C X, satisfies (21) and is uniformly quasidif-
ferentiable on {X;}icz, with quasidifferentials L;(v) € L(H,H), i € Z, u € X;.
We also assume that

(24) sup sup || Li(u)|lcqm,zy) = m < oo,
1€Z u€eX;
(25) @g =sup sup wg(Li(u)) =k < 1.
1€Z ueX;

Then the Hausdorff dimension of X; is finite and the following holds:
(26) dim(X;) <d VieZ.
The proof of Theorem 3.1 follows the main ideas of [13], [8], and [18]. In

order to estimate the approximate d-dimensional measure u(LB1(0),d,e) of the
image by L of the unit ball B;(0), we rely on the following lemma:
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Lemma 3.2. Let k and m be positive numbers such that k < m®. Assume
L € L(H,H) is a linear operator such that wq(L) < k and ||L||z(,zry < m. Then

W(LB1(0) , d, Vak''?) < Bak
and
(27) w(LB1(0)+ By(0) , d, (1 +nR)Vdk'?) < Ba(1+7R)%,
n
where B3 = 2%1(d)¥2, R = m%~'/k, and n is any positive number.
Lemma 3.2 follows directly from [18]. mi

Proof of Theorem 3.1. It is enough to show (26) for ; = 0. Note that
we may assume that the number k in (25) is arbitrarily small. Indeed, for any
integer p, the sequence of mappings {57 }icz is well defined on the sequence of
sets {X;p}. Here

S? = Sip+p-1-Siptp—2 - ==+ + Sip+1-Sip : Xip = X(s11)p-

Obviously the sequence {S?};cz satisfies (21): S7(Xip) = X(i41)p, Vi€ Z. Tt is
easy to check that (22) is valid with {L;(u)} replaced by {L; ,(u)}, where

L; p(u) = Liptp—1(up-1)  Lipyp—2(up—2) - -+ * Lipt1(u1) - Lip(u),

and uy = Sip(u), ug = Sip41(u1),..., Up—1 = Sip4p—1(up—2). Due to the mul-
tiplicative property of the contraction coefficient of d-dimensional volumes for
products of linear operators, (24) and (25) imply

wa(Lip(w)) < kP, ||Lip(u)llccarmy = mP

for any u € X;p, ¢ € Z. Thus, the value wq corresponding to p can be made
arbitrarily small by taking p sufficiently large.

Note that m and k from (24) and (25) satisfy the inequality k < m?. Now,
without any loss of generality we may assume that, in addition to (25), the
following are valid:

2vVdk/? < 1/2 and B4-2% -k < 1/2.
We put n = R~! = (m4~1! /k)_l. Lemma, 3.2 and inequality (27) imply that

(28)  w(LB1(0)+ By(0),d,1/2) < p(LB1(0) + By (0) , d , 2Vdk/%)
<Ba-24k<1/2
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if wg(L) < k and ||L||z(z,;ry < m. L is linear since, from (28), for any r > 0,
(29) (LB, (0) +rBy(0),d,r/2) < r¢/2.

Given (22), one can find €9 = £¢(n) > 0 such that for any € < g¢ the supremum
in (22) is less than or equal to 7 , i.e.,

(30) [1S:(v) = Si(w) — Li(u)(v —w)||lag < nllv—ullx
forany i € Z, u, v € Xj, ||[v—ullg <e.

Let us consider an arbitrary covering of the set X; by a finite number of
balls B;,(u;) where u; € X;, r; <¢,j=1,...,N:

%, € (B ) 0.
By (21) we have
(31) Xiss € U Si(Br, ()N X0).
o

Taking into account (30), we obtain
S; (Br, (u;) N X;) C Si(uj) + Li(u;j) B, (0) + 1 By(0).

Hence, by (31),
N

(32) w(Xis1,d,e/2) <D u(Li(u;) By, (0) +1;B,(0),d,¢/2)
j=1

N
<> (Li(u) By, (0) + 15 B,(0),d,75/2)
j=1

N
<1/2) rf.
j=1

Here we have used inequality (29) with L;(u;) instead of L. According to (24)
and (25) the operators L;(u;) satisfy the conditions of Lemma 3.2. By taking in
(32) the infimum for all the coverings of X; by balls By, (u;) with radii r; <,
we find

(33) N(Xi+1ad15/2) < 1/2 ' I"'(Xi,dva)a Vi€ Z.
Iterating (33) £ times gives
(34) W Xive,dre/(29) < (1/2)% p(Xi,d,e), VLeN.

By the assumptions of Theorem 3.1, X; C X, thus, u(X;,d,e) < u(X,d,e), and
we have

w(Xive,d,e/(25) < (1/2)% w(X,d,e), VieN,i€Z.
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Choose ¢ = —£. Thus,
(35) m(Xo,d,e/(2%) < (1/2)" - w(X, d,e), VLEN.

Finally, note that the set X is compact; therefore, u(X,d,e) < oo Ve > 0.
Letting £ — +o00 in (35), we obtain u(Xo,d) =0, i.e., dim(Xy) < d. The proof
is complete. O

4. Dimension estimates for kernel sections of evolution equations.
In this section we apply Theorem 3.1 to estimate the Hausdorff dimension of the
kernel sections K(s) of a process {U(t,7)} generated by problem (4), where
E = H is a Hilbert space. Suppose that the process {U(t,7)} is uniformly
quasidifferentiable on {K(7)},er, i.e., there exists a family of bounded linear
operators (quasidifferentials) {U'(t,7;u) : u € K(7), t > 7, 7 € R}, U'(t,7;u) :
H — H, such that

36) Ut ) -U(t,m)u-U'(t,mu)(v —u)llg < vt —7llv—ullg)-llv—ula,

where u, v € K(1), v(s,£) — 0 (£ — 0+4) for all s > 0. The function v(s,£) does
not depend on u, v € K(7) and 7 € R. We shall assume that the quasidifferential
{U'(t,7;u)} is generated by the variation equation corresponding to (4):
37) 0w = Ay (u(t),t)v, v|t=r = v, v, EE, t > 1,7 €ER,
i.e., U'(t,7;ur)v, = v(t), where v(t) is the solution of problem (37), and u(t) =
U(t,7)u, is the solution of problem (4) with initial condition u, € K (7).

Let d € N and L : H, — H. The d-dimensional trace of the operator L (see
(8]) is defined by the formula Try L = supg Tr LQ), where the supremum is taken
over all the orthogonal projectors @) in H on the space QH of dimension d belong-
ing to the domain Hj of the operator L. We recall that Tr LQ = Z?=1(L<pj,<pj),
where 1,...,¢@q is an orthonormal system in QH. Let us introduce

1 T+T
Gq = liminf sup sup (T/ Try (Au(u(s),s))ds) ,
T—+o00 TER u,€K(1) T

where u(t) = U(¢,7)u,.

Theorem 4.1. Let the process {U(t,7), t > 7, 7 € R} generated by the
problem (4) be uniformly quasidifferentiable on {K(7)};er. Assume the set
U,er K(7) is precompact in H. Assume also

(38) sup “U,(t,T;UT)”C(H,H) < C(t_T), t>r,
UTGK(T)

and

(39) da <0,
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where U'(t,7;u.)vr, ur € K(1), v, € E, satisfy the variation equation (37).
Then

dim(K(7)) <d vr € R.

Proof. Fix 7 € R, u, € K(r) and find the contraction coefficient

wa(U'(t,7;u.)). According to (23) we chose an arbitrary set of vectors &1,...,&4 €

H and find ||v1(t) Ava(t) A+ Avg(t)|], where v;(t) = U'(t,7;u,)E; is the solution

of problem (37) with the initial condition v;|¢=, = ;. Thanks to the identity
proved in [8] and [18] we get

t
(40) [[or (&) A~ Ava(t)]| = [I62 A A&l -exp ( / n(Auw(s),s)-Qd(s))ds),

where u(s) = U(s,7)u, and Qq(s) = Qa(s,7,ur;&1,82,...,&4) is the projector
onto the space spanned by vy(s),v2(s),...,v4(s).
By the definition of the d-trace we have

(41) wa(U'(t,75u,)) = sup lva(t) A=+ Awa(t)||
€1,00€a5 €IS

< oxp [ ra(Autu(s) ) ds).

Let us introduce the contraction coefficient of d-dimensional volumes under the
action of the mapping U(¢,7):

Qd(t,7)= sup wd(Ul(th§uT))'

ur€K(T)
By (41)
(42) @a(t,7) < exp(qa(t,T)(t — 7)),
where

atr) = s ([Tt as).
ur€EK (1) t—

Now consider the sequence of sets {X;}iez, X; = K(7+14T), and the se-
quence of mappings {S;}icz, S; = U((i + )T + 7,iT + 1), where T > 0. Propo-
sition 2.1 implies that S;(X;) = X;41 Vi € Z. It is clear by (36) that the
sequence of mappings {S;}iez is uniformly quasidifferentiable on {X;};cz. By
(38) we also have that

sup sup [|Li(u)|lcm,m) < sup sup |U'(T +7,7;u)l|cem,m)
i€Z ueX; TER uweK(T)

< C(T),
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where L;(u) = U'((i+1)T + 7,4¢T + 7;u) is the quasidifferential of S; at u € X;.
Finally, according to condition (39), there exists a positive number § > 0 such
that, for some T' > 0,

T4+T
q(T+7,7) = sup L (/ Trd(Au(u(s),s))ds) <—-6<0
u, €K(1) T T

for all 7 € R. Thus, by (42),

@g = sup sup wa(Li(u))
1€Z u€X;

<sup sup we(U'(T+T,75u,))
T€ER u,€K(T)

= supwgy(r+T,7) < supexp(qa(t +T,7)T)
T7€ER T€ER
< exp(—6T) < 1.

By the assumptions above, the set X = |J, g K(7) is compact in H and X; C X
Vi € Z. All the conditions of Theorem 3.1 are verified, which implies that the
Hausdorff dimension dim Xy = dim K(7) < d for any 7 € R. Theorem 4.1 is
thus completely proved. O

5. The estimates of dimension of kernel sections for equations of
mathematical physics.

1. NAVIER-STOKES SYSTEM WITH TIME DEPENDENT EXTERNAL FORCE. Ex-
cluding the pressure p, the Navier-Stokes system can be rewritten in the form:

(43) 0w+ Lu+ B(u,u) = ¢(z,t), z = (x1,z2) € Q € R?,
2
(44) L = —vIIA, B(u,u) = HZuié)iu, ¢ = g, ula, =0,
i=1

where u = (ul,u?), ¢ = (p1,¢?) (see [15], [16], [19], [20]). By H (H;) we denote,
as usual, the closure of the set Vo = {v : v € (C§(R))?, (V,v) = 0} in the
norm || || (]| ]l1) of the space (L2(€2))? ((H1(€))?). I stands for the orthogonal
projector on H in (Ly(2))%2. We assume that ¢(-,t) € Cp(R,H). The initial
conditions are posed at t = 7:

(45) u|t=T = U, ur € H.

Just like in the autonomous case (when ¢ = ¢(z)), one can prove that the
problem (43)—(45) has a unique solution u(t):

(46) wu(t) € C([r,+0),H)NLy((1,7+T) , Hy), Owu € Lo((1,7+T), H-1)
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VYT > 0. Here H_; = (H;)* is the dual space. The solution satisfies a priori
estimates similar to those in the autonomous case. Thus the process {U(¢,7),
t>7}:U(t,7)u, = u(t), acting on H and corresponding to (43), (45) is defined
by operators U(t,7) : H — H. The operators U(t,7) : H — H are continuous
in H for any t > 7, 7 € R. The process {U(t,7)} is uniformly compact (see [3]),
i.e., there exists a set P that is compact and uniformly absorbing (with respect
to 7). Therefore, we can apply Theorems 2.2 and 2.3 to the process {U(t,7)}.
Let K be the kernel of the process {U(t,7)} and K(to) be the section of K at
time t = tg.

Theorem 5.1. For any ty € R,

(47) dim K (to) < [%(M_l(lsolz)l/ﬂ ,

where
1 r+T )
M_1(|pl?) = lim inf sup = [ lo(s)[2 1 ds,
T—o0 TERT T

a constant C' does not depend on v and to. Here [a] means the smallest integer
greater than a; [p(s)|-1 = llo(-,8)[[-1-

Proof. Using standard methods (see [1, 2] and [18]), one can show that
the process {U(t,7)} is uniformly quasidifferentiable on {K(7)},er, and the
corresponding variation equation has the form

0w = —Lv — B(u(t),v) — B(v,u(t)) = Ay (u(t),t)v, v = v,.

t=1

The estimates leading to (47) are analogous to those given in [18] for the au-
tonomous case. First of all one has to establish the following inequality:

veod? 1
+ —lu(®)|3,

(48) Tr (Au(u(t),t)Qq) < ——2|—Q|_ e

where the dimension of the image of the projector Qg equals to d. Then, using
the a priori estimate

¢ 2 ], 1 2
(49) [ uto)itds < B+ = [ jo(o)2, as,
T v T

one gets

1 T+T
qi(t+T,7) = sup -1-,/ Trq(Ay(u(s),s))ds
u, €EK(1) T

l/C()d2 2 1 1 /T+T )
- REYZ P AN L e 8)|2 1 ds.
- 2|9 21/2TCO UTEI?(T) llur| 22 Ty . lp(8)1Zy
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Note that sup,, ¢x(r)llur||* < Ci. Therefore,

gs = liminf supqq(r+T,7)
T—+oo TER

veod? 1 1 [T 2
<————+4+——|liminf sup = s)|Z.ds
2|Q| 2V3CO (T—»+oo TGRT |‘p( )l 1

I/Cod
o+ e Moll)
Thus (47) follows immediately from Theorem 4.1. |

2. REACTION-DIFFUSION SYSTEM DEPENDING ON TIME. The following system
is considered:

(50) Ou = valAu— f(u,t) +o(z,t), ulag =0 (or 6u/81/|(99 =0),

where x € 2 € R", a = {a 1_11’ "N is an N x N-matrix with a positive
symmetric part a+ax > 2, B2 > 0, f = (Fheen V) @ = (9heens0N),
u = (ul,...,uN). We assume that ¢(-,t) € Co(R,H), H = (L2(02))". Also let
[, fli € C (RN xR, RY), and let the following conditions hold for all ¢ € R, u,
v €RN:

(51) Yelulf —Co < fru<n|ulf +C1, 7 >0,p22,
(52) fuv-v 2 =Csv-v, |ful < CalulP~?+1).

We also assume that

(53) |f (ut2,8) = F(u,t) = fulu,t)2] < Cs(L+ |ufP +[2]P)|2]"7,

where p; < 4/(n—2), and « is positive and sufficiently small. We supply the
system (50) with the initial conditions

(54) ult:‘r =Ur, Ur € H= (Lz(Q))N

Problem (50)—(54) has (for all u, € H) a unique solution u(t) € Cp([7,+00),H) N
Lo((r,7+T) , (H}(2))N) VT € R. (See [1, 2]). Thus, a process {U(t,7)} acting
on (L2(2))N corresponds to problem (50)—(54). It was shown in [3] that the
process {U(¢,7)} possesses a uniformly absorbing set By, By € H, and the
mappings U(t,7) : H — H are continuous for any ¢, 7, t > 7, 7 € R. Thus,
Theorems 2.2 and 2.3 are applicable to the process {U(t,7)}. The kernel K
of {U(t,7)} is non-empty, its sections K (t) are compact in H, and K(t) C By
vVt € R.
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Theorem 5.2. Under the assumptions on f and ¢ above, the Hausdorff
dimension of a section K(ty) satisfies:

(55) dim K () < [VS/J Vo € R.

Proof. The uniform quasidifferentiability result for the process {U(t,7)} fol-
lows from the assumptions on the functions f and ¢. The verification of this
property is quite analogous to the corresponding proof for the autonomous case
given in [2, 1]. Note that condition (53) is essential. In order to obtain (55), it
is sufficient to estimate the trace of the operator A, (u(t),t) = valA — f'(u,t):

d d
(56)  Tr(Au(u(),)Qa) < 3 (vales,e;) — S (£L(u),t)ps05)
j=1

=1

d d
<-vBY) llwsllf +Cs Y s>

(We have used condition (52).) By means of the Courant variational principle
(see [18]), we have

d d
Sl 2> N,
j=1 j=1

where A1, A2,...,Aj,... are the eigenvalues of the operator —A with boundary

condition (50), in non-decreasing order. It is well known that A; > Cej?/™,
Ce > 0; therefore,

d
(57) > ligsll} > Cra™+?/, Cr > 0.
Jj=1

Substituting (57) into (56), we obtain
(58) Tr (A (u(t),t)Qq) < —vCadt?/™ 4 Csd.
Finally, we infer from (58) that

Ga < —vCsd¥™ 4+ Csd.

Thus, §q < 0 if d > [C/v™/?], where C = (C3/Cg)™/?. Theorem 4.1 implies that
dim K (to) < [C/v™/?], Vo € R. m|
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3. NON-AUTONOMOUS HYPERBOLIC EQUATION WITH DISSIPATION. Let us con-
sider the equation

(59) 2u+v0u = Au— f(u,t) + p(z,t), ulag =0, =€ e RS

where v > 0. For the sake of brevity we restrict ourselves to the case n = 3. It
is assumed that f(u,t) € C2(R x R), ¢(-,t) € Cp(R,L2(Q)), and the following
conditions hold for all (¢,u) € R x R:

u
(60) F>-mu?-Cp, F=F(ut)= / f(v,t)dv,
0
(61) fu—cF +mu? > —Cp,, where m > 0 is sufficiently small, ¢ > 0,
(62) Iful SCQA+ulf), |fil CA+f™), 0<p<2,
(63) F| <B2F+C, B> 0 is sufficiently small,
(64) |fa(ust) = fo(ur, )] < C[ul~° + [ua P + Dju—wg|’, 0<6< 1.

(We recall that, in the general case @ € R™, the restriction on pis 0 < p <
2/(n—2) when n > 3 and 0 < p when n = 2.) The initial conditions posed at
t =171 are

(65) u|t=T = U, 8tu|t=1_ =p,.

We denote y(t) = (u(t),0pu(t)) = (u(t),p(t)), yr = (ur,p;) = y(7). E =
H}(Q) x Ly(R) is the space of functions y with the norm ||y||% = |lu||? + ||p||?.
Analogously, we introduce the space E; with the norm ||y(|%, = [l«ll3+ ||p||%.

It is convenient now to introduce the new variables: w = (u,v)’ = Roy =
(u,us +au) T, us = Oyu, a = min(y/4,A1/(27)), where ); is the first eigenvalue
of the operator —Au, u| aq = 0. Using these variables the equation (59) is
equivalent to the following system:

(66) Oiw = Aqw = Low — G('Ll),t), w |t=r = Wy,

where w, € E,

L= (A+;<aw]— ) —(via)l)’

G(w,t) = (0,f(u,t) —p(z,t))T. It follows from the conditions on f(u,t) and
¢(z,t) that problem (60) generates a process {U(t,7)} by U(t,7)w, = w(t),
U(t,7) : E —» E. The process {U(t,7)} is continuous and uniformly asymptot-
ically compact, i.e., there exists a set P € E that is compact and uniformly
attracting (w.r.t. 7). (See [12], [18], [3]). By Theorem 2.2 and 2.3 the process
{U(t,7)} possesses a non-empty kernel K such that K(t) C P Vt € R. More-
over, any bounded complete trajectory w(s), s € R, of the process is uniformly
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bounded in E;: ||w(t)||g, < M VYt € R, where the constant M does not depend
on u(t). Therefore, by the Sobolev embedding theorem,

(67) lu@®llc, < M1 VteR, (u(-),0u(:)) =w(:)€ K,

where u(t) is any complete solution of the equation (59) and M; does not depend
on u(t).

Estimates for dim K (¢p) can be established similar to the autonomous case
given in [14] (see also [18]).

Theorem 5.3. For the Hausdorff dimension of a kernel section K(to) of

the process {U(t,7)} generated by problems (59), (65), the following estimation
holds:

(68) dim K (to) < [%1 , Vio € R,
04

where C = C(M;), C does not depend on tg.

Proof. Condition (64) implies that the operators {U(¢,7)} are uniformly
quasidifferentiable on {K(7)},cr and that the quasidifferentials U’ (¢,7;w, )z, =
2(t) satisfy the variation equation of problem (66):

(69) 0iz = Loz — Gy(w,t)z = AL, (w(t),t)z, w|t=r =w;, 2z=(r49),

G, (w,t)z = (0, fi (u,t)r) (see [18]). Let us estimate the trace

(70) Tr A, (w(t),1)Qa(t) = Z(A w(W(®),8)5, ) E-

Jj=1

Here {; = (r;,q9;) is an orthonormal system in Q4(t)E and Qq(t) is the projector
on the space spanned by z1(t),...,z4(t), where z;(t) is the solution of (69) with
initial condition z;(7) € E (j = 1,...,d). Let us estimate the right-hand side of
(70)

(71)  (AGu(w(t),8)¢5,¢i)E = (LalyG) — (Fuu,t)rs,05)
< (/NG %+ C(M)lIr;lllgsl
—(a/4) (IIr; 113 + llgs11%) + (Cr (M) fa)lIr; 1.

We have chosen the parameter a in such a way that the operator L, is negative:
(Lol &) < —(a/2)]1¢;]|%- Observe that it is essential that

Sup{”f;(u(t)at)”Cb : (u(')’atu(')) = w() €K, te R} < Cl(Ml)
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(see (67)). The system (; is orthonormal in F; therefore, from (71), it follows
that

d
(72) Tr Ay, ((2),8)Qu(t) < —(a/4)d+ (Co(My)/a) Y lirs)?

j=1
d
< —(a/4)d+(01(1\/-’1)/602:’\1_1
j=1
< —(a/4)d+ (Ca(My) /a)d /3,

where A;, (j = 1,...,d) are the first d eigenvalues of the operator —Au, u|sq = 0,
in nondecreasing order, A; > coj?/3. Note that we have used the inequality

d d
S ollrili2 < S oA
=1 =1

which is proved in [18]. The right-hand side of (72) is negative if d > [C/a?],
where C = (4C5)%/2. Finally, from Theorem 4.1 we infer (68). O

6. Some conclusive remarks.
1. Consider the set K consisting of all values of all complete trajectories
u(t) € K, where K is the kernel of some processes, i.e.,

K= U K(r).
TER

The closure K in E can have infinite Hausdorff dimension
(73) dim K = 400

for all the problems described in Section 4. For example, let us show (73) for
the Navier-Stokes system. We put

o0
(74 u(z,t) = 3 las(@)cos(hyt) +by(z)sin(Ay)],

i=1
where u = (u',u?) and a;(z) = (aj(z),a}(x)), bj(z) = (bj(z),b3(z)) are smooth
linear independent vector functions such that a; | o0 =0, (V,a;) =0, b; | o0 =0

(V,b;) = 0. We assume that the series (74) and its derivatives with respect to z
and t converge rapidly. We also assume that the frequencies A; (j = 1,2,...) are
rationally independent. Set

(75) o(z,t) = dyu(z,t) + Lu(z,t) + Bu(z,t),u(z,t)).
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Evidently, ¢(-,t) € Cy(R,H). Problem (43)—(45) with such an external force
©(x,t) possesses a non-empty kernel with compact sections K(7). Obviously,
u(-,-) € K. It is easy to show that the projection u, (z,t) of the function
u(z,t) onto the 2N-dimensional space, spanned by the vectors {(a;(z),b;(z)),
j = 1,...,N}, provides a dense subset of the N-dimensional torus TV C H.
Therefore, the set Imu = {u(-,t) :t € R} has a Hausdorff dimension larger
than N for any N € N, i.e., dim Tmu = co. Evidently Imu C K, and therefore
dim K = +o0.

2. It was shown in [11] and in [3, 4, 5, 6, 7] that a uniformly asymptotically
compact process {U(¢,7)} acting in a space E possesses the compact uniform
attractor \A. The uniform attractor is the smallest closed set in E, which is
uniformly attracting (with respect to 7 € R) when T = t—7 — +oo . Note
that the kernel K or, to be precise, the corresponding set K = |J,cg K(7)
belongs to A, but, in general, does not coincide with 4. Uniform attractors for
non-autonomous evolution equations with almost periodic symbols were studied
in [3, 4, 5, 6, 7], where some questions concerning the Hausdorff dimension of
attractors were considered.

3. In this paper we presented some upper bounds for the Hausdorff di-
mension of the kernel sections of non-autonomous equations. Analogous results
are also true for the fractal dimension. We refer the reader to [18], where the
corresponding techniques for autonomous equations are presented.
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