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Abstract

The subject of this paper is the asymptotic behavior of a class of nonautonomous,
infinite-dimensional dynamical systems with an underlying unbounded domain.
We present an approach that is able to overcome both the law of compactness of
the trajectories and the continuity of the spectrum of the linear part of the equa-
tions under consideration, providing nevertheless existence of uniform attractors.
Moreover, our approach allows us to estimate the Hausdorff dimension of attrac-
tors of nonautonomous equations in terms of physical parameters.c© 2000 John
Wiley & Sons, Inc.

1 Processes and Their Attractors
Related to Nonautonomous Equations

We begin with some preliminaries. LetE be a Banach space. InE we consider
the nonautonomous Cauchy problem{

∂tu = A(u,t)
u|t=τ = uτ , uτ ∈ E, τ ∈ R, t ≥ τ ,

(1.1)

whereA(u,t) : E1×R → E0 is a family of nonlinear operators andE1 andE0 are
Banach spaces. We assume that the embeddingsE1 ⊂ E ⊂ E0 are everywhere
dense. In this paper, as a model of (1.1), we consider the reaction-diffusion equa-
tion (RDE) with a quasi-periodic external force of the form{

∂u
∂t = ν∆u− f (u)−λ0u−g0(x,t) , x∈ R

n ,

u|t=τ = uτ ,
(1.2)
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and the two-dimensional Navier-Stokes system in the stripΩ ⊂ R
2, that is,{

∂t ū+ν∆ū+∑2
i=1ui∂i ū+gradp = ḡ0(x,t) , x∈ Ω ,

ū|t=τ = uτ , divū = 0, ū|∂Ω = 0,
(1.3)

where

Ω = {(x1,x2) : −∞ < x1 < +∞, 0≤ x2 ≤ d} ,

ū(t,x1,x2) = (u1(t,x1,x2),u2(t,x1,x2)) ,

ḡ0(t,x1,x2) = (g01(t,x1,x2),g02(t,x1,x2)) ,

ūτ (x) = (u1τ (x),u2τ (x)) .

We always assume that the initial value problem (1.1) has a unique solutionu(t) ∈
E for all t > τ and∀τ ∈ R anduτ ∈ E.

Consider the two-parameter family of maps{U(t,τ)}, U(t,τ) : E → E, such
that

U(t,τ) : uτ → u(t) .

DEFINITION 1.1 A family of maps{U(t,τ)} is called aprocessif

(i) U(τ ,τ) = Id (identity) and
(ii) U(t,s)◦U(s,τ) = U(t,τ) for all t ≥ s≥ τ , τ ∈ R.

In this paper we are mainly interested in processes generated by nonautono-
mous evolution equations such as (1.2) and (1.3). It is clear that a process is a nat-
ural generalization of a semigroupSt : E → E, which corresponds to autonomous
evolution equations; that is,A(u,t) ≡ A0(u). Note that in this case, it is easy to see
that

U(t,τ) = U0(t − τ) .

Our main goal is to study the large-time asymptotics of a process{U(t,τ)} gen-
erated by equation (1.1), that is, the behavior of trajectoriesu(t) = U(t,τ)uτ of
(1.1) whent − τ tends to infinity. As we will see below, the large-time dynamics
of a process can be described in terms of attractors (we give a precise definition of
attractor later). We follow reference [4]. As was shown in [4], an adequate theory
of attractors for nonautonomous equations is obtained by considering a family of
processes{Ug(t,τ)} instead of a single process whereg∈ Σ is a functional param-
eter. For the convenience of the reader, we recall basic definitions from [4]. Indeed,
following [4], consider the family of Cauchy equations

∂tu = Ag(t)(u) ,(1.4)

u|t=τ = uτ , uτ ∈ E ,(1.5)

where for any fixedt ∈ R, Ag(t)(u) is, in general, a nonlinear operator acting from
a Banach spaceE1 to a Banach spaceE0 andE1 ⊂ E ⊂ E0 (everywhere dense).
We assume that a functional parameterg(t) belongs to a certain closed setΣ in



HAUSDORFF DIMENSION FOR ATTRACTORS 649

Cb(R,W), where(Cb(R,W) denotes the space of bounded continuous functions on
R with values in a certain metric spaceW, with T(h)Σ = Σ, where

T(h)g(t) := g(t +h) , h∈ R .(1.6)

We suppose that the problem (1.4)–(1.5) is well-posed for any symbolg(t) ∈ Σ so
that any solutionu(t) ∈ E (we specify in each case what we mean by “solution”)
can be represented as

u(t) = Ug(t,τ)uτ ,(1.7)

g = g(t) ∈ Σ , uτ ∈ E , τ ∈ R , t ≥ τ .

Due to the uniqueness theorem for (1.4)–(1.5), operators defined by (1.7) define a
process and satisfy the following translation identity:

UT(h)g(t,τ) = Ug(t +h,τ +h) , ∀h≥ 0, t ≥ τ , τ ∈ R .(1.8)

Let S(t) : E×Σ → E×Σ be the family of operators defined by

S(t)(u,g) = (Ug(t,0)u,T(t)g) , t ≥ 0, (u,g) ∈ E×Σ .(1.9)

It is not difficult to see that the family of operators{S(t)} defined by (1.9) forms
a semigroup on the extended phase spaceE×Σ. We use this fact throughout this
paper.

Before formulating the main result for a family of processes{Ug(t,τ)} from a
dynamical viewpoint, we recall some definitions (see [4, 5]). LetE be the Banach
space as before, and denote byβ(E) the set of all bounded subsets ofE.

DEFINITION 1.2 A setB0 ⊂ E is called auniformly(with respect toΣ) absorbing
(or attracting) set for the family of processes{Ug(t,τ)} if for any τ ∈ R and any
B⊂ β(E) there existsT = T(τ ,B) ≥ τ such that

⋃
g∈Σ

Ug(t,τ)B⊂ B0 , ∀t ≥ T (absorbing property),

and

lim
t→+∞

sup
g∈Σ

distE(Ug(t,τ)B,P) = 0, ∀τ ∈ R, B⊂ β(E) (attracting property).

DEFINITION 1.3 A closed setMΣ 6= ∅ is called auniform (with respect toΣ) at-
tractor of the{Ug(t,τ)} if it is uniformly attracting and is contained in any closed
uniformly attracting setM̃ (minimality property).

Following Haraux [6], a family of processes possessing a compact, uniformly
absorbing (uniformly attracting) set are called uniformly compact (or uniformly
asymptotically compact) processes. Now we are in position to formulate the main
result on the existence of attractors for a family of processes. LetΠ1 : E×Σ → E
be the projector defined byΠ1(u,g)) = u.
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THEOREM 1.4 [4]. Let a family of processes{Ug(t,τ)}, g∈ Σ, acting in the Ba-
nach space E be uniformly asymptotically compact and(E × Σ,E) continuous.
Then the semigroup{S(t)} : E×Σ → E×Σ defined by(1.9) possesses the com-
pact attractorM ∗. Moreover,M = Π1M ∗ is the uniform attractor of the family of
processes{Ug}.

For a proof see [4].
We will apply Theorem 1.4 for the family of Cauchy problems (1.2) and (1.3).

We emphasize that in [4], the Cauchy problems (1.2) and (1.3) for bounded domain
were considered. However, nontrivial difficulties arise in the case of an unbounded
domain. Indeed, in contrast to a bounded domain,

• the operators of a process{Ug} or semigroup{S(t)} corresponding to equa-
tions (1.2) and (1.3) are not compact,

• the Laplace operator has a continuous spectrum, so that one can’t apply
Galerkin’s approximations for proving global existence in time solutions, and

• H1(Rn) is not compactly embedded inL2(Rn); therefore the operatorsUg and
{S(t)} do not have absorbing sets that are compact in the original topology.

To simplify our presentation, we restrict ourselves to a family of Cauchy problems{
∂tu = ν∆u− f (u)−λ0u−g(x,t) , x∈ R

n , g∈ H(g0) ,

u|t=τ = uτ
(1.10)

and

{
∂t ū+ν∆ū+∑2

i=1ui∂i ū+gradp = ḡ(x,t) , x∈ Ω ⊂ R
2 , ḡ∈ H(ḡ0) ,

ū|t=τ = ūτ

(1.11)

with ḡ(x,t)∈ H(ḡ0(x,t)), where byH(ḡ0(x,t)) we denote the hull of a given quasi-
periodic function ¯g0(x,t) of t. Note that by definition

H(ḡ0) := {T(h)ḡ0 : h∈ R}Cb(R,W)
,

that is, the closure inCb(R,W) of the set of all translations of the given quasi-
periodic functiong0. On the other hand, a quasi-periodic functiong0(x,t) can be
represented as

ḡ0(x,t) = g̃0(x,α1t, . . . ,αkt)

whereg̃0(x,ω1, . . . ,ω j +2π, . . . ,ωk) = g̃0(x,ω1, . . . ,ωk) and the numbersα1, . . . ,αk

are rationally independent. When ˜g0(ω1, . . . ,ωk) is a continuous function onTk

(k-dimensional torus), one can easily see that the hullH(ḡ0) is a set

H(ḡ0(x,t)) = {g̃0(x,α1t +ω10, . . . ,αkt +ωk0);ω0 = (ω10, . . . ,ωk0) ∈ T
k} .(1.12)
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Thus due to (1.12) it is reasonable to consider the torusT
k as the symbol space

through the map

T
k 3 ω0 → g̃0(x,αt +ω0) := g̃0(x,α1t +ω10, . . . ,αkt +ωk0) ∈Cb(R,W) .(1.13)

We set

T(h)ω0 = [ω0 +αh] := ω0 +αh(modT
k) .(1.14)

ObviouslyT(h)Tk = T
k.

2 Examples

2.1 Examples of Nonautonomous Equations of Mathematical Physics
in Unbounded Domains Having Uniform Attractors

We consider reaction-diffusion equations (RDEs) inR
n of the following form:{

∂u
∂t = ν∆u− f (u)−λ0u−g(x,t) , x∈ R

n ,

u|t=τ = uτ ,
(2.1)

with g ∈ H(g0(x,t)) for some quasi-periodic functions (or, equivalently,g(x,t) =
g̃0(x,ω(t), ω(t) = [αt +ω0], α = (α1, . . . ,αk) ∈ R

k, ω0 ∈ T
k), λ0 > 0. In Section 1

we noted the nontrivial difficulties that may arise in the case of unbounded domain.
As we see below, these difficulties are overcome by the systematic use of weighted
Sobolev spaces. Indeed, letH0,γ(Rn) be the weighted Sobolev space,γ > 0; the
norm in this space is defined by

‖u‖2
0,γ =

∫

Rn

(1+ |εx|2)γ |u(x)|2dx,(2.2)

whereε > 0 is a small enough but fixed number. Analogously, we defineHs,γ(Rn)
by

‖u‖2
s,γ = ∑

|`|≤s

‖∂`u‖2
0,γ .(2.3)

CONDITION 2.1 Let f ∈C1(Rn) satisfy the following:

1. f ′(u) ≥−C,
2. f (u)u≥ 0,
3. | f (u)| ≤C|u|1+α(1+ |u|q), where q,α > 0 and for n> 2,

q+α ≤ p0 = min

{
4
n

,
2

n−2

}
,

and p0 = 4/n if n≤ 2.
In addition, we assume that

4. g0 ∈C1(Tk,H0γ) andg̃′ω j
:= ∂g̃0

∂ω j
∈C(Tk,Lq1(R

n)∩Lq2(R
n)) where q1 = (1−

δ)(n
2 +1) and q2 = (1+ δ) for someδ > 0.



652 V. V. CHEPYZHOV AND M. A. EFENDIEV

THEOREM 2.2 Let Condition2.1be satisfied and uτ ∈H1,γ(Rn),γ > 0. Then prob-
lem (2.1) has a unique solution u(t,x) ∈ L2([τ ,T],H2,γ)∩L∞([τ ,+∞),H1,γ), with
(1+ |εx|2)γ/2∂tu∈ L2([τ ,T],(H0,γ)∗) for any T> 0. Moreover, the following esti-
mates hold:

‖u(t,x)‖2
0,γ ≤ ‖u(τ ,x)‖2

0,γe−λ0ν(t−τ) +C1‖g‖2
C(Tk,H0,γ) ,(2.4)

‖u(t,x)‖2
0,γ +α1

∫ t

τ
‖u‖2

0,γ dθ ≤ ‖u(τ ,x)‖2
0,γ +C2

∫ t

τ
‖g‖2

0,γ dθ+C3(t − τ) ,

(2.5)

(t − τ)‖u(t,x)‖2
0,γ +α2

∫ t

τ
(θ− τ)‖u(θ,x)‖2

2,γ dθ ≤

C4

(∫ t

τ
‖g‖2

0,γdθ,‖u(τ)‖2
0,γ)
)

,
(2.6)

‖u1(t,x)−u2(t,x)‖0,γ ≤C5‖u1(τ ,x)−u2(τ ,x)‖0,γ ,(2.7)

whereα1 > 0, α2 > 0, C2,C3,C4 are functions of(t − τ), and C4 also depends on
(‖g‖0,γ,‖u(τ)‖0,γ), uτ := u(τ ,x).

PROOF: Note that estimates (2.4)–(2.6) can be derived analogously to the au-
tonomous case [2]. For example, to obtain (2.4), we multiply (2.1) byϕu and
integrate with respect tox, which leads to a differential inequality, verifying the
estimate (2.4) and (2.5). To obtain (2.6), we multiply (2.1) by(t − τ)ϕ ·∆u and
integrate with respect tox, which also leads to (2.6) using a differential inequal-
ity (see [2]). As for estimate (2.7), it is obtained in the standard manner, that is,
by subtracting two solutions of (2.1) and usingf ′(u) ≥ −C. Hence the process
Uω0(t,τ)uτ = u(t,x), whereu(t,x) is a solution of (2.1),Uω0(t,τ) : H0,γ → H0,γ,
γ > 0, t ≥ τ , τ ∈ R, andω0 ∈ T

k, is well-defined.

PROPOSITION2.3 The family of processes{Uω0(t,τ)} is uniformly bounded and
uniformly asymptotically compact.

PROOF: Indeed, from estimate (2.4) it follows that

‖Uω0(t,τ)uτ‖0,γ ≤C0(‖uτ‖0,γ) , ∀t ≥ τ , τ ∈ R ,(2.8)

where the constantC0 depends on initial data‖uτ‖. This proves uniform bound-
edness with respect toω0 ∈ T

k. Moreover, the same estimate also implies that the
set

B0 =
{

u∈ H0,γ : ‖u‖2
0,γ ≤ 2C1 · ‖g‖2

C(Tk,H0,γ)

}
(2.9)

is a uniformlyH0,γ-absorbing set for the family{Uω0(t,τ)}.
On the other hand, from estimate (2.6), it follows that ift > τ , uτ ∈ H0,γ, then

Uω0(t,τ)uτ ∈ H1,γ for ∀ω ∈ T
k. Moreover, the same estimates also implies that the

set

B1 =
⋃

ω∈Tk

⋃
t∈R

Uω0(τ +1,τ)B0(2.10)
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is also uniformlyH0,γ-absorbing. Note that the setB1 is bounded inH1,γ. However,
in contrast to the bounded case, we can’t state thatB1 is compact inH0,γ. Using
the same trick as in [2], one can avoid this difficulty by the assumption

| f (u)| ≤C|u|1+α(1+ |u|p2)(2.11)

whereα andq are due to Condition 2.1. We omit the details. This proves Propo-
sition 2.3. Hence one can apply Theorem 1.4 for a family of processes{Uω0(t,τ)}
to yield existence of a uniform attractorARDE ⊂ H0,γ for Uω0.

2.2 Navier-Stokes Systems in the Two-Dimensional Strip with Quasi-
Periodic External Force

Consider a family two-dimensional Navier-Stokes systems (after projecting out
the pressure) with quasi-periodic external force, that is,{

∂t ū+νLū+Π(∑2
i=1ui∂i

xū) = ḡ(x,t) , x∈ Ω ⊂ R
2 , ḡ∈ H(g0) ,

ū|t=τ = ūτ , ū|∂Ω = 0, divū = 0,
(2.12)

where byΠ we denote the orthogonal projectorΠ : (L2(Ω))2 → H. Note that by
H(H1) we denote the closure in(L2(Ω))2((H1(Ω))2) with norm ‖ · ‖, ‖·, ·‖1 of
the setV0 = {v ∈ (C∞

0 (Ω))2 : divv = 0}, ḡ(t,x1,x2) = (g1(t,x1,x2),g2(t,x1,x2)) ∈
H(ḡ0). Let ḡ(t,x) = g̃0(ω(t),x), ω(t) = [αt +ω0], ūτ (x) = (u1τ (x),u2τ (x)).

PROPOSITION2.4 Letūτ ∈H andḡ∈C(Tk,(L2(Ω))2). Then there exists a unique
solutionū(x,t) of problem(2.12)such that

ū∈
⋂

L∞(Tk,H)∩L2(Tk,H1) , ∂tu∈ L2(Tk,H−1) ,

and the following estimates hold:

‖ū‖2 ≤ e−νλ1(t−τ)‖ūτ‖2 +ν−2λ−1
1 sup

ω∈Tk

‖ḡ‖2 ,(2.13)

ν
∫ t

τ
‖ū‖1dθ ≤ ‖ūτ‖2 +(t − τ)ν−1λ−1

1 · ‖ūτ‖ ·

∫

Tk

‖ḡ‖2dθ


 .(2.14)

Hence problem (2.12) generates a family of processes{Uω0(t,τ) : t > τ}, ω0 ∈ T
k.

Let H1,γ := H1,γ(Ω) be the Hilbert space defined by (2.3) andH(γ) := H ∩H1,γ ,
γ > 0. Analogously to theorem 1.3 and theorem 4.1 in [1], one can show thatH(γ)
is invariant under{Uω0(t,τ)}; furthermore, a family of processes{Uω0(t,τ)} is
uniformly asymptotically compact inH(γ) if ḡ∈ H0,γ andūτ ∈ H1,γ. Hence due
to Theorem 1.4 a family of processes{Uω0(t,τ)} possesses a uniform attractor in
H(γ). It remains to estimate the Hausdorff dimension of the attractors of equations
(1.10) and (2.12).
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3 Hausdorff Dimension Estimates for Uniform Attractors with
Quasi-Periodic Symbols

3.1 Reaction-Diffusion Equations inR
n

We start with RDEs inRn with quasi-periodic external force. Due to the results
in Section 2, a family of processes{Uω0(t,τ)}, ω0 ∈ T

k, corresponding to (1.10)
generates the semigroup{S(t)},

S(t) : H0,γ ×T
k → H0,γ ×T

k

S(t)(u0,ω0) = (Uω0(t,τ)u0, [αt +ω0]), u0 ∈ H0,γ , ω0 ∈ T
k , t ≥ 0,(3.1)

which in turn corresponds to the following autonomous dynamical system:{
∂tu = ν∆u− f (u)−λ0u−g(x,ω) , ∂tω = α ,

u|t=0 = u0 , ω|t=0 = ω0 , u0 ∈ H0,γ , ω0 ∈ T
k ,

(3.2)

or

∂ty = My, y|t=0 = y0 ,(3.3)

wherey = (u,ω) ∈ H0,γ ×T
k and

M(y) = (ν∆u− f (u)−λ0u−g(x,ω),α) .(3.4)

As was shown in Section 2, the family of processes{Uω0(t,τ)}, ω0 ∈ T
k, is uni-

formly asymptotically compact inH0,γ (Proposition 2.3). Therefore, due to Theo-
rem 1.4, the semigroup{S(t)} defined by (3.1) possesses a compact attractorA in
H0,γ ×T

k. Moreover, the projectionARDE, ARDE := Π1A , is a uniform attractor of
the{Uω0(t,τ)} and obviously

dimARDE ≤ dimA(3.5)

where by dimARDE and dimA we denote the Hausdorff dimension inH0,γ(H0,γ ×
T

k) of the attractors ofARDE andA , respectively. Hence to obtain an estimate for
dimARDE, it is sufficient to obtain an upper bound for dimA . We emphasize that
the upper bound for dimA is based on a well-known formula by Constantin, Foias,
and Temam [8]. To this end we give a theorem of the differentiability of operators
S(t) : y0 → y(t) with respect to initial datay0 ∈ A .

THEOREM 3.1 Suppose that Condition2.1 holds. Then the operator S(t) defined
by (3.1) is uniformly differentiable onA (we denote its derivative by S′(t;y0), y0 ∈
A) with respect to the metric H0,0 = L2(Rn).

PROOF: Analogously to the bounded domain case, one can easily see that the
differentialS′(t,y0) at y0 = (u0,µ0), S′(t,y0)z0 = z(t), is the solution of the varia-
tional equation

{
∂tv = ν∆v− f ′u(u(t,x))v−λ0v +g′ω(x,ω(t))η
∂tη = 0, v|t=0 = v0, η|t=0 = η0, u(t,x) = Uω0(t,τ)u0, ω(t) = [αt +ω0]

(3.6)
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with v(t) = v(t,x) ∈ H0,0, η ∈ R
k, z(t) = (v(t,x),η).

We denote byM′(y(t)),

M′(y(t))(v(t),η) :=

ν∆v− f ′u(u(t))v−λ0v +g′ω(x,ω(t))η , y(t) = (u(t),ω) .
(3.7)

Due to the formula by Constantin, Foias, and Teman [8], dimA ≤ d provided
that, for anyy(t) = (u(t,x),µ), u(t,x) =Uω0(t,τ)u0, u0 ∈ A , the following inequal-
ity holds:

limt→∞
1
t

∫ t

0
sup
Ed

d

∑
j=1

(M′(y(t)zj ,zj)dτ < 0(3.8)

whereEd is anyd-dimensional subspace in the Hilbert spaceH0,0×R
k andzj ∈

Ed, j = 1,. . . ,d, is any orthonormal family inH0,0×R
k belonging toH2,0×R

k.
Therefore, in order to obtain an upper bound for dimA , we have to estimate
∑d

j=1(M
′(y(t)zj ,zj)L2(Rn)×Rk, where

zj = (v j ,η j) ∈ H0,0×R
k , (zi ,zj)L2(Rn)×Rk = δi j .

To this end, we start with

(M′(y(t))z,z)L2(Rn)×Rk =

−ν‖5v‖2−λ0‖v‖2−
∫

f ′u(u)v2dx+
∫

(g′ω,η)Rkvdx,
(3.9)

wherez= (v,η) ∈ L2(Rn)×R
k, g′ω = ( ∂g

∂ω1
, . . . , ∂g

∂ωk
).

It follows from (3.9) that for any positiveb > 0 we have

(M′(y(t))z,z)≤−ν‖5v‖2−λ0‖v‖2−
∫

f ′u(u)v2dx

+
∫

|g′ω|
1−δ

2 · |v| · |g′ω|
1+δ

2 · |η|dx

≤−ν‖5v‖2−λ0‖v‖2−
∫

f ′u(u)v2dx+
b
2

∫
|g′ω|1−δ|v|2dx

+
|η|2
2b

∫
|g′ω|1+δ dx

where 0< δ < 1. LetG1 = maxω∈Tk

∫ |g′ω|1+δdx. Thus

(M′(y(t))z,z)

≥−ν‖5v‖2−λ0‖v‖2−
∫

f ′u(u)v2dx+
b
2

∫
|g′ω|1+δ|v|2dx+

G1

2b
|η|2

= (A1v,v)+(A2η,η)
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whereAj , j = 1,2, are quadratic forms defined by

(A1v,v) := −ν‖5v‖2−λ0‖v‖2−
∫

f ′u(u)v2dx+
b
2

∫
|g′ω|1−δ|v|2dx,(3.10)

(A2η,η) :=
G1

2b
|η|2 .(3.11)

We denote by(Āz,z) an expression of the form

(Ā1z,z) := (A1v,v)+(A2η,η) , z= (v,η) .(3.12)

Let us recall that our basic task is to estimate the expression

d

∑
j=1

(M′(y(t))zj ,zj)L2(Rn)×Rk wherezj = (v j ,η j) ∈ L2(Rn)×R
k, (zi ,zj) = δi j .

PROPOSITION3.2 Let{zj} = (v j ,η j), j = 1,. . . ,d, be any orthonormal system in
L2(Rn)×R

k. Then there exists an integer number k1, 0 ≤ k1 ≤ k, and{wi} ∈
L2(Rn), {ξm} ∈ R

k, i = 1,. . . ,d − k1, m = 1,. . . ,k1, which are orthonormal in
L2(Rn) andR

k, respectively, such that

d

∑
j=1

(Āzj ,zj) ≤
d−k1

∑
i=1

(A1vi ,vi)+
k1

∑
m=1

(A2ηm,ηm) .(3.13)

PROOF: Consider the subspaceL⊂R
d+k of the formL = {ξ1v1+ · · ·+ξdvd}×

R
k, whereξ j ∈R

1, j = 1,. . . ,d. In L there is a scalar product induced fromL2(Rn)×
R

k. Consider the restriction of(Āz,z) to L. Note thatzj = (v j ,η j)⊂ L and is ortho-
normal inL.

Then

〈Ā(ξ1v1 + · · ·+ ξdvd,θ),(ξ1v1 + · · ·+ ξdvd,θ)〉

= (A1(ξ1v1 + · · ·+ ξdvd,ξ1v1 + · · ·+ ξdvd)+(A2θ,θ)

=
d

∑
i, j=1

(A1vi ,v j)ξiξ j +(A2θ,θ) = (Bξ,ξ)+(A2θ,θ) .

(3.14)

From (3.14) it follows that the operator̄A is block diagonal,

Ā =
(

B 0
0 A2

)
,

and it can be transformed to a diagonal formÃ,

Ã =




λ1

λd

ν1

νk


(3.15)
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by orthogonal transformation inL2(Rk) andR
k, respectively. Letw1, . . . ,wd and

ν1 . . . ,νk be orthonormal inH andR
k eigenvectors ofB andA2, respectively. Ob-

viously orthonormal eigenvectors of̄A have the formζi = (wi,0) andζm = (0,νm),
i = 1,. . . ,d, m= 1,. . . ,k.

Then due to Courant’s principle (see [8]), we have

d

∑
j=1

(Āzj ,zj) ≤
d

∑
j=1

(Āζ j ,ζ j)(3.16)

where{ζ j} j=1,...,d are eigenvectors of the matrix̄A in L corresponding to the greater
eigenvalues of the block operator̄A. Without loss of generality, we assume that
(due to the block structure of̄A) eigenvectors of̄A are

(w1(t,y0),0), . . . ,(wd−k1(t,y0),0),(0,ν1(t,y0)), . . . ,(0,νk1(t,y0)) ,

where 0≤ k1 ≤ k, k1 ∈ N. Note thatA2 = G1
2b Id, where Id is the(k× k) identity

matrix. This proves Proposition 3.2.

COROLLARY 3.3 There exists orthonormal in H= L2(Rn) vectors w1(t,y0), . . . ,
wd−k1(t,y0), 0≤ k1 ≤ k, such that

d

∑
j=1

(Āzj ,zj) ≤−ν
d−k1

∑
j=1

‖5wj‖2−
d−k1

∑
j=1

λ0‖wj‖2−
d−k1

∑
j=1

∫
f ′u(u)w2

j dx

+
b
2

d−k1

∑
j=1

∫
|g′w|1−δ|wj |2dx+

G1

2b
k1 .

(3.17)

Denote

f ′−(u) = max

(
0,− f ′u(u)− λ0

2

)
.(3.18)

Then obviously

d

∑
j=1

(Āzj ,zj) ≤−λ0

2
(d−k1)+

G1

2b
k1−ν

∫ d−k1

∑
j=1

|5wj |2dx

+
d−k1

∑
j=1

∫
f ′−(u)w2

j dx+
b
2

∫
|g′w|1−δ

d−k1

∑
j=1

|wj |2dx.

(3.19)

Using the Lieb-Thirring inequality (see [7]), that is,

∫ d−k1

∑
j=1

|5wj |2 ≥C0

∫ (d−k1

∑
j=1

|wj |2
)1+ 2

n

dx(3.20)
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where the constantC0 does not depend ond andk1, we obtain

d

∑
j=1

(Āzj ,zj) ≤−λ0

2
(d−k)+

G1

2b
k−νC0

∫ (d−k1

∑
j=1

|wj |2
)1+ 2

n

dx

+
∫

f ′−(u)

(
d−k1

∑
j=1

|wj |2
)

dx+
b
2

∫
|g′ω|1−δ

(
d−k1

∑
j=1

|wj |2
)

dx.

(3.21)

Let ρ(x) := ∑d−k1
j=1 |wj |2. Then (3.21) can be rewritten as

d

∑
j=1

(Āzj ,zj) ≤−λ0

2
(d−k)+

G1

2b
k−νC0

∫
|ρ(x)|1+ 2

n dx

+
∫

f ′−(u)ρ(x)dx+
b
2

∫
|g′ω|1−δρ(x)dx.

(3.22)

Due to the Hölder inequality, we have
∫

f ′−(u)ρ(x)dx≤
(∫

| f ′−(u)|1+ n
2 dx

) 2
n+2

·
(∫

|ρ(x)|1+ 2
n

) n
n+2

.(3.23)

In the same manner, we have
∫

|g′ω|1−δρ(x)dx≤
(∫

|g′ω|(1−δ)(1+ n
2)
) 2

2+n

·
(∫

|ρ(x)|1+ 2
n

) n
n+2

.

Let

V = V(t) =
(∫

| f ′−(u)| n
2+1dx

) 2
n+2

+
b
2

(∫
|g′ω|(1−δ)·( n

2+1) dx

) 2
n+2

,

q = q(t) =
(∫

|ρ(x)|1+ 2
n dx

) n
n+2

,

It is clear that the right-hand side of (3.22) is not greater thanr(t) where

r(t) := −λ0

2
(d−k)+

G1

2b
k+V(t)q(t)−νC0(q(t))1+ 2

n .(3.24)

The functionr(t) for fixed t has a maximum with respect toq whenq = q0, where

q0 = C3(n)ν− n
2 ·V n

2 .

Therefore (3.22), (3.23), and (3.24) yield

d

∑
j=1

(Āzj ,zj) ≤−λ0

2
(d−k)+

G1

2b
k+C4 ·ν− n

2V1+ 2
n .(3.25)

Thus to provide (3.8) it is sufficient that

lim
t→+∞

1
t

∫ t

0
C4ν

− n
2V1+ 2

n (τ)dτ − λ0

2
(d−k)+

G1

2b
k < 0.(3.26)
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To guarantee (3.26) we follow [2] but in a slightly different way. Note that
(3.26) implies that dimA ≤ d or, equivalently,

dimA ≤ k+
G1

b
λ−1

0 k+2C4λ
−1
0 ν− n

2 lim
t→∞

1
t

∫ t

0
V1+ n

2 (τ)dτ +ε(3.27)

for anyε. It remains to estimate the integral in (3.22). Let us recall that

V(t) = V1(t)+V2(t)

where

V1(t) :=
(∫

| f ′−(u)| n
2+1dx

) 2
n+2

and V2(t) :=
b
2

∫
|g′ω|(1−δ)( n

2+1) dx.

Note thatV2(t)≤C5b, whereC5 is some constant.V1(t) can be estimated in the
following way. We consider two cases: (1)f ′(0) 6= 0 and (2)f ′(0) = 0. We show
that in each case| f ′−(u)| = 0 for |u| ≤ δ, whereδ is sufficiently small.

Case1. f ′(0) 6= 0.
Obviously, for sufficiently smallδ > 0, we havef (u) = f ′(0)u+o(u) for |u| ≤ δ

or f (u) ·u= f ′(0)u2+o(u2) for |u| ≤ δ. Sincef (u) ·u≥ 0, we obtain thatf ′(0) > 0
for |u| ≤ δ and, due to continuity,f ′(u) ≥ 0 if |u| ≤ δ. Hencef ′−(u) = 0.

Case2. f ′(0) = 0.
It follows from Condition 2.1 that

| f ′(u)| ≤ |u|αC1(u) .(3.28)

Hence

| f ′(u)| ≤ δαC1 for |u| ≤ δ .

Choosingδ so small that

C1δ
α0 ≤ λ0

2
,

we obtain that| f ′−(u)| = 0 for≤ |u| ≤ δ.

Let us recall that our main goal is to estimate

V1(t) =
(∫

| f ′−(u)| n
2+1dx

) 2
n+2

whereu(t,x) = Uw0(t,0)u0. Sincey(t) = (u(t,y0),ω(t)) belongs to the attractor
A ⊂ H0,γ ×R

k ⊂ H0,0×R
k, we have

‖u(t), ·)‖2 =
∫

u2(t, ·)dx≤CA for all t ≥ 0(3.29)

andy(t) ∈ A . Therefore due to (3.29) the measure of allR
n for which |u(t,x)| ≥ δ

satisfies

meas{x∈ R
n : |u(t,x)| ≥ δ} ≤CA · δ−2 .(3.30)
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Thus taking into account (3.29), (3.30), andf ′(u) ≥−C, we conclude that

V1(t) ≤CAδ−2C
n
2+1 .

On the other hand,V2(t) ≤C7 ·b. Thus we obtain

dimA ≤ k+
G1

b
λ−1

0 k+2C4λ
−1
0 ν− n

2 (CAδ−2C
n
2+1 +C7b)

n
2+1 .(3.31)

We recall that the parameterb in (3.31) is an arbitrary positive number. Analo-
gously to [4], one can find an optimal value forb (depending onk) that yields

dimA ≤ k+C8k
n

n+2 +C9ν
− n

2(3.32)

whereC8 andC9 depend onδ, λ0, CA , ‖g‖C(Tk,H0,0), andn but not onk. As a result
of the estimate (3.32), we obtain that the uniform attractorARDE admits

dimARDE ≤ k+C8k
n

n+2 +C9ν
− n

2 .(3.33)

Remark3.4. One can construct an example of a reaction-diffusion equation having
a uniform attractorA∗

RDE such that

dimA∗
RDE ≥ k.(3.34)

In other words, the main termk in the estimates (3.33) is exact.

Remark3.5. In the autonomous case, that is,k = 0, estimate (3.33) becomes the
well-known upper boundC · ν−n/2 for the Hausdorff dimension of the attractor of
the autonomous reaction-diffusion equation (see [2]).

3.2 Two-Dimensional Navier-Stokes Equations with Quasi-Periodic Ex-
ternal Force

We consider the family of Navier-Stokes systems (2.12) in the domain

Ω = {(x1,x2) : −∞ < x1 < +∞, 0≤ x2 ≤ d}
whereg(x,t) = g̃(x,ω(t)), ω(t) = [αt +ω0], ω0 ∈ T

k, α = (α1, . . . ,αk) ∈ R
k, and

ω = (ω1, . . . ,ωk). As was shown in Section 2, this family is equivalent to the au-
tonomous system{

∂t ū = −νLū−Π∑2
i=1ui

∂ū
∂xi

+ g̃0(x,ω), ∂tω = α ,

ū|t=0 = ū0, ω|t=0 = ω0, ū0 ∈ H(γ), ω0 ∈ T
k ,

(3.35)

or, equivalently,

∂t ȳ = M(ȳ) , ȳ = (ū,ω) ,

where

M(ȳ) =

(
−νLū−Π

2

∑
i=1

ui
∂ū
∂xi

+ g̃0(x,ω),α

)
.(3.36)

Due to Section 2, equation (3.35) generates a semigroup{S(t)},

S(t)y0 = y(t) , y0 = (u0 , ω0) , y(t) = (u(t),ω(t)) ,
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which has an attractorANS ⊂ H(γ)×R
k.

Moreover, the operators are quasi-differentiable on the attractorA ⊂ H(γ)×
T

k (the case of unbounded domain makes no difference). Its quasi differential
S′(t,y0)(v̄0,η) = (v̄(t),η) is a solution of the variation equation{

∂t v̄ = −νLv̄−B(ū(t), v̄)−B(v̄, ū(t)+g′ω(x,ω(t))η
∂tη ≡ 0, η = (η1, . . . ,ηk), v̄ = v̄(x,t) = v̄(t) ,

(3.37)

whereB(ū, v̄) = Π∑2
i=1 ui∂i ū, ū(t,x) = ū(t,y0), y0 ∈ A . Note that equation (3.37)

can be rewritten in the form

∂t z̄= M′(y(t))z̄, z̄|t=0 = z̄0 , z̄0 = (v̄,η) .(3.38)

Hereȳ(t) = (ū(t),ω(t)), y0 ∈ A , ω(t) = [αt +ω0], ū(t) = Uω0(t,0)ū0, is a solution
of (3.35).

M′(ȳ(t))z̄= (−νLv̄−B(ū(t), v̄)−B(v̄, ū(t))+g′ω(x,ω(t))η,0) .(3.39)

Let us recall that our basic task is to estimate the Hausdorff dimension of at-
tractorANS ⊂ H(γ)×R

k. We estimate the Hausdorff dimension of attractorANS

with respect to the normH ×R
k(H(0) = H). We follow the scheme developed for

reaction-diffusion equations inRn. To apply the Constantin-Foias-Temam formula,
we have to estimate

d

∑
j=1

(M′(y(t))z̄j , z̄j)(L2(Ω))
2(3.40)

whereEd is d-dimensional space in(H2(Ω))2 (the standard Sobolev space of or-
der 2) and{z̄j} ⊂ Ed, j = 1,. . . ,d, are the orthonormal family in(L2(Ω))2×R

k

belonging to(H2(Ω))2×R
k. It is easy to check that

(M′(y(t))z̄j , z̄j) = −ν(Lv̄, v̄)− (B(ū(t,y0), v̄), v̄)

− (B(v̄, ū(t,y0)), v̄)+
∫

Ω

(ḡ′ω,η)Rkv̄dx

≤−ν(Lv̄, v̄)− (B(ū(t,y0), v̄), v̄)− (B(v̄, ū(t,y0)), v̄)

+
b
2

∫
Ω
|ḡ′ω|1−δ|v̄|2dx+ |η|2 1

2b

∫

Ω

|ḡ′ω|1+δ dx

= (A1v̄, v̄)+(A2η,η)

(3.41)

where
(A1v̄, v̄) := −ν(Lv̄, v̄)− (B(ū(t,y0), v̄), v̄)− (B(v̄, ū), v̄)

− b
2

∫
|ḡ′ω|1−δ|v|2dx

(3.42)

(A2η,η) =
G1

2b
(η,η) , G1 = sup

ω∈Tk

∫

Ω

|g′ω|1+δ dx.(3.43)
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Before we estimate∑d
j=1(M

′(y(t))z̄j , z̄j), note that

λ1 =: inf{−∆v,v), v ∈C∞
0 (Ω), ‖v‖ = 1} > 0.(3.44)

We use this fact throughout this paper. Let us estimate (3.41) using Proposition 3.2.
Indeed,

d

∑
j=1

(M′(y(t)z̄j ,zj) ≤
d−k1

∑
j=1

(A1wj ,wj)+
k1

∑
m=1

(A2ξm,ξm)

= −ν
d−k1

∑
j=1

(Lw̄j ,w̄j)+
d−k1

∑
j=1

(B̄(ū(t,y0),w̄j),w̄j)

+
d−k1

∑
j=1

(B̄(w̄j , ū(t,y0)),w̄j)+
b
2

d−k1

∑
j=1

∫
|g′ω|1−δ|w̄j |2dx+

G1

2b
k1

≤−νλ1

2
(d−k1)+

G1

2b
k− ν

2

d−k1

∑
j=1

∫
|5 w̄j |2dx

+
d−k1

∑
j=1

∫
2|5 ū| |w̄j |2dx+

b
2

d−k1

∑
j=1

∫
|g′ω|1−δ|w̄j |2dx

≤−νλ1

2
(d−k)+

G1

2b
k− ν

2

∫ d−k1

∑
j=1

|5 w̄j |2dx

+
d−k1

∑
j=1

∫
2|5 ū| |w̄j |2dx+

b
2

∫
|g′ω|1−δ

(
d−k1

∑
j=1

|w̄j |2
)

dx,

wherew̄j andξm are due to Proposition 3.2 andy0∈ANS. Denoteρ(x):=∑d−k1
j=1 |w̄j|2.

Hence, due to the Lieb-Thirring inequality, we have

d

∑
j=1

(M′(ȳ(t))z̄j , z̄j)(3.45)

≤−νλ1

2
(d−k)+

G1

2b
k− ν

2

∫ d−k1

∑
j=1

|5 w̄j |2dx

+
b
2

∫
|g′ω|1−δρ(x)dx+

∫
2|5 ū| ·ρ(x)dx

≤−νλ1

2
(d−k)+

G1

2b
k−νC0

∫
Ω

ρ2(x)dx+
∫

Ω

2|5u|ρ(x)dx

+
b
2

(
ε
∫

ρ2(x)dx+
1
4ε

∫
|g′ω|2−2δdx

)
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≤−νλ1

2
(d−k)+

G1

2b
k

+
∫ (

2|5u|ρ(x)dx−νC0ρ
2(x)+

νC0

2
ρ2
)

dx

+
b2

8C0ν

∫
|g′ω|2(1−δ) dx.

In (3.45) we choseε > 0 such thatbε = C0ν. Note that the expression

2|5u|ρ− νC0

2
ρ2(3.46)

has its maximum at 2|5u|2/C0ν. Therefore we obtain from (3.45)
d

∑
j=1

(M′(ȳ(t))z̄j , z̄j) ≤−νλ1

2
(d−k)+

G1

2b
k+

b2 ·G2

8C0ν
+

2
C0ν

∫
|5u|2dx.(3.47)

Due to estimate (2.14) we have

ν
∫ t

0
‖5u‖2dt ≤ ‖ū0‖2 + tν−1λ−1

1 G2
1 +2ν−1λ−1

1 ‖ū0‖ ·G1 .

Hence (3.47) yields
d

∑
j=1

(M′(ȳ(t))z̄j , z̄j) ≤−νλ1

2
(d−k)+

G1

2b
k+

b2G2

8C0ν
+

2‖ū0‖2

C0ν2

+
2t

C0ν3λ−1
1 G2

1 +
λ−1

1 ‖ū0‖
ν3 G1 .

(3.48)

From (3.48) it follows that

dimA ≤ k+
G1ν

−1

2bλ1
k+

b2G2

4C0λ1
ν−2 +

2G2
1

C0λ2
1

ν−4 .(3.49)

Recall thatb is an arbitrary positive parameter in (3.49). It is not difficult to see
that the optimal value forb in (3.49) is equal to

b(k) =
(

G1ν

G2
·C0

) 1
3

·k1
3 .

Thus we have

dimA ≤ k+β ·k2
3 +

2G2
1

C0 ·λ2
1

ν−4 .(3.50)

Remark3.6. This result is to be contrasted with the well-known estimates for the
Hausdorff dimension of the attractor for theN−S system in a bounded domain
Ω ⊂ R

2:

(a) dimA ≤Cν−2 (autonomous case, [3]) and
(b) dimA ≤ k+C1k1/3 +C2ν

−2 (nonautonomous case).

In the case ofΩ = {(x1,x2) : −∞ < x1 < +∞, 0≤ x2 ≤ d}, we have
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(a1) dimA ≤Cν−4 and
(b1) dimA ≤ k+C3k2/3 +C4ν

−4.

The presence ofν−4 (instead ofν−2) is based on spectral arguments. Indeed, in
the case of a bounded domainΩ ⊂ R

2, the spectrum of−∆ is discrete and enables
us to prove (b) (see [3]). However, in the caseΩ = {(x1,x2) : −∞ < x1 < +∞, 0≤
x2 ≤ d}, one can easily see that the spectrum of−∆ is

σ(−∆) =
[(

π

d

)2

,∞
]
.(3.51)

A proof of (3.51) is based on the following simple argument. Let us consider
the equation

−∆u+λ2u = g, g∈ L2(Ω) ,(3.52)

or, equivalently, {
−∆u+λ2u = h, h = −g∈ L2(Ω) ,

u(x1,0) = u(x1,d) = 0.
(3.53)

We seek a solution of (3.52) in the form

u(x1,x2) =
∞

∑
n=1

fn(x1)en(x2)(3.54)

whereen(x2) is a solution of the following eigenvalue problem:{
e′′n(x2)+µ2

nen(x2) = 0, 0≤ x2 ≤ d ,

en(0) = en(d) = 0,
(3.55)

with µn = πn/d. It follows from (3.53), (3.54), and (3.55) thatfn(x1) satisfies the
following equation:

f ′′n (x1)+
(

λ2−
(

πn
d

)2)
fn(x1) = hn(x1)(3.56)

where−∞ < x1 < +∞ andhn(x1) is due toh(x1,x2) = ∑∞
n=1hn(x1)en(x2). Obvi-

ouslyhn(x1) ∈ L2(−∞,+∞), and ifω := λ2− (π/d)2 does not belong to the spec-
trum of the operator−∆2 where∆2 := ∂2

∂x2
2
, then fn(x1) ∈ L2(−∞,+∞). Thus from

(3.56) it follows that, forn= 1, the[(π/d)2,∞] belongs to the continuous spectrum
of −∆. It is not difficult to prove that there is no other spectrum point.

Remark3.7. Note thatλ1 as defined by (3.44) is equal to(π/d)2. Indeed,(π/d)2

is the first eigenvalue of−∆2 with the Dirichlet boundary condition onΩ2 = [0,d].
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Consider

(−∆2u,u) = −
∫ ∞

−∞
dx1

∫ d

0

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
u(x1,x2)dx2

=
∫ ∞

−∞
dx1

∫ d

0
−∂2u

∂x2
1

u(x1,x2)dx2

+
∫ ∞

−∞
dx1

∫ d

0
−∂2u

∂x2
2

u(x1,x2)dx2

≥
(∫ ∞

−∞

∫ d

0
u2(x1,x2)dx1dx2

)
·
(

π

d

)2

+
∫ ∞

−∞
dx1

∫ d

0
−∂2u

∂x2
1

u(x1,x2)dx2

≥
(

π

d

)2∫

Ω

u2(x1,x2)dx1dx2 .

(3.57)

Thereforeλ1 = (π/d)2. This proves the last remark.
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