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Abstract

The subject of this paper is the asymptotic behavior of a class of nonautonomous,
infinite-dimensional dynamical systems with an underlying unbounded domain.
We present an approach that is able to overcome both the law of compactness of
the trajectories and the continuity of the spectrum of the linear part of the equa-
tions under consideration, providing nevertheless existence of uniform attractors.
Moreover, our approach allows us to estimate the Hausdorff dimension of attrac-
tors of nonautonomous equations in terms of physical param@t&800 John

Wiley & Sons, Inc.

1 Processes and Their Attractors
Related to Nonautonomous Equations

We begin with some preliminaries. LEtbe a Banach space. Eawe consider
the nonautonomous Cauchy problem

w1 {atu:A(u,t)

Ui=r =U,, Ur €E, TER, t>T,

whereA(u,t) : E; x R — Eg is a family of nonlinear operators artt] andE, are
Banach spaces. We assume that the embeddings E C Eg are everywhere
dense. In this paper, as a model of (1.1), we consider the reaction-diffusion equa-
tion (RDE) with a quasi-periodic external force of the form

(1.2)

% = yAu— f(u) —Xou—go(xt), X€RM,
u|t:7' = uT!
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and the two-dimensional Navier-Stokes system in the SIripR?, that is,

(1.3) O+ vAU+ T2 udiu+gradp = go(x,t), X€Q,
' Ul—r = U,, divi=0, U[aq =0

where
= {(X1, %) 1 —00 < X1 < 00, 0< X < d},
u(t, X1,X2) (up(t,X1,%2), Ua(t, X1, %2)) ,
Oo(t,X1,%2) = (Qo1(t, X1,X2),Qo2(t, X1,%2))
Uy (X) = (U7 (X), Uzr (X)) -

We always assume that the initial value problem (1.1) has a unique saliftion
E forallt > 7 andvr € R andu, € E.

Consider the two-parameter family of mafid(t,7)}, U(t,7) : E — E, such
that

U(t,7):u- —u(t).
DEFINITION 1.1 A family of maps{U (t,7)} is called gorocessf

(i) U(r,7) =Id (identity) and
(i) U(t,s)oU(s,7)=U(t,7)forallt >s>7, 7 €R.

In this paper we are mainly interested in processes generated by nonautono-
mous evolution equations such as (1.2) and (1.3). Itis clear that a process is a nat-
ural generalization of a semigro®: E — E, which corresponds to autonomous
evolution equations; that igy(u,t) = Ag(u). Note that in this case, it is easy to see
that

U(t,7) =Ug(t—71).

Our main goal is to study the large-time asymptotics of a pro¢ess, 7)} gen-
erated by equation (1.1), that is, the behavior of trajectaries= U (t,7)u, of

(1.1) whent — 7 tends to infinity. As we will see below, the large-time dynamics

of a process can be described in terms of attractors (we give a precise definition of
attractor later). We follow reference [4]. As was shown in [4], an adequate theory
of attractors for nonautonomous equations is obtained by considering a family of
processe$Uq(t,7)} instead of a single process wheye X is a functional param-

eter. For the convenience of the reader, we recall basic definitions from [4]. Indeed,
following [4], consider the family of Cauchy equations

(1.4) 0tu = Ag(p)(U),
(1.5) Ut=r =U;, U; €E,
where for any fixed € R, Ayq)(u) is, in general, a nonlinear operator acting from

a Banach spack; to a Banach spach andE; C E C Ey (everywhere dense).
We assume that a functional paramegér) belongs to a certain closed setn
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Co(R,W), where(Cp(R,W) denotes the space of bounded continuous functions on
R with values in a certain metric spaéé with T (h)Z = Z, where

(1.6) T(h)g(t) :=g(t+h), heR.

We suppose that the problem (1.4)—(1.5) is well-posed for any sygibok = so
that any solutioru(t) € E (we specify in each case what we mean by “solution”)
can be represented as

(1.7) u(t) = Ug(t, 7)ur,
g=gt)eZ,u,€E, TeR, t>T.

Due to the uniqueness theorem for (1.4)—(1.5), operators defined by (1.7) define a
process and satisfy the following translation identity:

(1.8) Urmyg(t,7) =Ug(t+h,7+h), vh>0,t>7, 7€R.
LetS(t) : E x £ — E x Z be the family of operators defined by
(1.9) S(t)(u,9) = (Ug(t,0)u,T(t)g), t>0, (ug)cExZX.

It is not difficult to see that the family of operatof§(t)} defined by (1.9) forms
a semigroup on the extended phase sfiage>. We use this fact throughout this
paper.

Before formulating the main result for a family of proces$gg(t,7)} from a
dynamical viewpoint, we recall some definitions (see [4, 5]). E&e the Banach
space as before, and denote ¥ ) the set of all bounded subsetskf

DEFINITION 1.2 A setBy C E is called auniformly (with respect t&) absorbing
(or attracting) set for the family of processgdly(t, )} if for any 7 € R and any
B C B(E) there exist§ = T(7,B) > 7 such that

JUg(t,7)BC By, Vt=>T (absorbing property),
gex

and

tIirr supdiste (Ug(t,7)B,P) =0, VreR, BC B(E) (attracting property)
— oogez

DEFINITION 1.3 A closed seMs # & is called auniform (with respect ta) at-
tractor of the {Ug(t, 7)} if it is uniformly attracting and is contained in any closed

uniformly attracting seM (minimality property).

Following Haraux [6], a family of processes possessing a compact, uniformly
absorbing (uniformly attracting) set are called uniformly compact (or uniformly
asymptotically compact) processes. Now we are in position to formulate the main
result on the existence of attractors for a family of processesllLeE x ~ — E
be the projector defined By1(u,g)) = u.
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THEOREM 1.4 [4]. Let a family of processef8Jy(t,7)}, g € %, acting in the Ba-
nach space E be uniformly asymptotically compact &d 2,E) continuous.
Then the semigroupS(t)} : E x £ — E x X defined by(1.9) possesses the com-
pact attractorM *. MoreoverM = M;M * is the uniform attractor of the family of
processegUg}.

For a proof see [4].

We will apply Theorem 1.4 for the family of Cauchy problems (1.2) and (1.3).
We emphasize that in [4], the Cauchy problems (1.2) and (1.3) for bounded domain
were considered. However, nontrivial difficulties arise in the case of an unbounded
domain. Indeed, in contrast to a bounded domain,

e the operators of a proce$bly} or semigroup{S(t)} corresponding to equa-
tions (1.2) and (1.3) are not compact,

e the Laplace operator has a continuous spectrum, so that one can’t apply
Galerkin’s approximations for proving global existence in time solutions, and

e H(RM) is not compactly embeddediin(R"); therefore the operatot and
{S(t)} do not have absorbing sets that are compact in the original topology.

To simplify our presentation, we restrict ourselves to a family of Cauchy problems

= - — — n
(1.10) {"t”— vBu— f(u) —dou—g(xt), xeR", geH(goy),
u‘t:’r =Uur
and
(1.11)
{atu_+ vAU+ Y2 1 udiu+gradp = g(x,t), x€QCR?, geH(Qo),
Gh:T = LTT

with g(x,t) € H(go(x,t)), where byH (go(X,t)) we denote the hull of a given quasi-
periodic functiongo(x,t) of t. Note that by definition

H(go) = (T he R},

that is, the closure i€y(R,W) of the set of all translations of the given quasi-
periodic functiongg. On the other hand, a quasi-periodic functigyix,t) can be
represented as

go(X,t) = Go(X, aat,. .., cut)

wherego(X,w1,...,wj+27,...,wk) = Go(X,w1,. .. ,wk) and the numbersy, ..., ax
are rationally independent. Wheg(&1,...,wx) iS a continuous function off
(k-dimensional torus), one can easily see that theti(dp) is a set

(1.12) H @)(x,t)) = {Go(X, a1t +w1p, . .., axt + wko);wo = (w10, - - - ,wko) € Tk} .
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Thus due to (1.12) it is reasonable to consider the t@fuas the symbol space
through the map

(1.13) T* 3 wo — Go(X, ot +wo) 1= Go(X, cat +wig, .. ., akt +wko) € Co(R,W).

We set

(1.14) T (h)wo = [wo + ah] := wp+ ah(modT) .

ObviouslyT (h)Tk = T,

2 Examples

2.1 Examples of Nonautonomous Equations of Mathematical Physics
in Unbounded Domains Having Uniform Attractors

We consider reaction-diffusion equations (RDEsRIhof the following form:

u _ _ . B n
(2.1) {ST VA;J f(u)— Au—g(xt), XeRM,
t=r = Ur,

with g € H(go(x,t)) for some quasi-periodic functions (or, equivalenggx,t) =
Go(X,w(t), w(t) = [at +wol], @ = (aa,...,ax) € RX wo € Tk), Ao > 0. In Section 1

we noted the nontrivial difficulties that may arise in the case of unbounded domain.
As we see below, these difficulties are overcome by the systematic use of weighted
Sobolev spaces. Indeed, ldg,(R") be the weighted Sobolev space;> 0; the

norm in this space is defined by

22) Il = [ (L+[ex?)7 u0 P,
]Rn
wheree > 0 is a small enough but fixed number. Analogously, we defiggR")
by
(2.3) Uz, =S lloullg, -
lfl<s

CONDITION 2.1 Let f € C}(R") satisfy the following

1. f'(u) > —-C,

2. f(uyu>0,

3. |f(u)| < Clu***(1+ |u|9), where ga > 0 and for n> 2,

q+a<po= min{é.i}.
nn-2
and p=4/nifn< 2.
In addition, we assume that
4. go € CY(T¥,Hoy) andg, := g € C(T¥, Lq, (R") NLg, (R")) where g = (1 -

6)(3+1) and @ = (14 ) for somes > 0.
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THEOREM 2.2 Let Conditior2.1be satisfied and.ue Hy ,(R"), > 0. Then prob-
lem(2.1) has a unique solution(t,x) € Lo([7,T],H2,) NLe([7,+),H1), with
(1+|ex|2)?/?0eu € Ly([7, T], (Ho,)*) for any T > 0. Moreover, the following esti-
mates hold

(2.4) lu(t, )13, < [lu(r 15,6 +CullgllE ey )
(2.5)

t t
Jut) 3, + a1 [ llull, 06 < u(r )13, +Cz [ gl 60 +Catt—7),

t
(t=)ut )1, +az [ (0=7)u00]3,d0 <

(2.6) - ,
il | ol 0. 1ucr)13,) ).
(2.7) [Jur(t,X) — U2(t,X) [0y < Cs||ua(T,X) — Uz(7,X)|o,y,
whereas > 0, ap > 0, Cy,Cs,C4 are functions oft — 7), and G also depends on
(lglloa,lu(r)lloq), Ur == u(T,X).

PrROOF. Note that estimates (2.4)—(2.6) can be derived analogously to the au-
tonomous case [2]. For example, to obtain (2.4), we multiply (2.1)pbyand
integrate with respect tg, which leads to a differential inequality, verifying the
estimate (2.4) and (2.5). To obtain (2.6), we multiply (2.1)(by- 7)¢ - Au and
integrate with respect tg, which also leads to (2.6) using a differential inequal-
ity (see [2]). As for estimate (2.7), it is obtained in the standard manner, that is,
by subtracting two solutions of (2.1) and usififu) > —C. Hence the process
U, (t, 7)u- = u(t,x), whereu(t,x) is a solution of (2.1)U.,(t,7) : Ho, — Hon,
v>0,t>7,7€R, andwg € T, is well-defined. ]
PROPOSITION2.3 The family of processed),,(t,7)} is uniformly bounded and
uniformly asymptotically compact.

PROOF. Indeed, from estimate (2.4) it follows that
(2.8) [Uuo(t, U [loy < Co[lUurlloy), VE>7, TER,

where the constarily depends on initial datgu,||. This proves uniform bound-
edness with respect tay € TX. Moreover, the same estimate also implies that the
set

(2-9) Bo = {u € HO,’y : ||UH('2J7 <2C;- Hg”é(T",Hon)}

is a uniformlyHo ,-absorbing set for the familfJ,,, (t,7)}.

On the other hand, from estimate (2.6), it follows thétif 7, u, € Ho,, then
U, (t, 7)ur € Hy for Vw € TK. Moreover, the same estimates also implies that the
set

(2.10) Bi= |J |JUuo(r+1,7)Bo
weTkteR
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is also uniformlyHy ,-absorbing. Note that the sBf is bounded irH, ,. However,
in contrast to the bounded case, we can't stateBhas compact inHp,. Using
the same trick as in [2], one can avoid this difficulty by the assumption

(2.11) ()] < Clu*"(1+|u[™)

wherea andq are due to Condition 2.1. We omit the details. This proves Propo-
sition 2.3. Hence one can apply Theorem 1.4 for a family of proces$gst, 7)}
to yield existence of a uniform attract@gpe C Ho,, for U,,. O

2.2 Navier-Stokes Systems in the Two-Dimensional Strip with Quasi-
Periodic External Force

Consider a family two-dimensional Navier-Stokes systems (after projecting out
the pressure) with quasi-periodic external force, that is,

(2.12) O+ LU+ N (32, udlh) = g(x,t), x€QCR?, geH(g),
. J[t:T:lIr, LﬂaQ:O, divu=0,

where byl we denote the orthogonal prolecﬂar (L2(Q))? — H. Note that by
H(H1) we denote the closure ifL2(Q))?((H1(Q))?) with norm || - ||, ||-,-||1 of

the setVp = {v € (CF(Q))?: divv = 0}, g(t, X1, %X2) = (0 (t, X1, X2), P2 (t, X1, %2)) €

H (@o0)- Letdit,x) = Go(w(t),x), w(t) = [at +wo, Uy (X) = (Uzr(X), Uzr (X)).

PROPOSITION2.4 Letl, € H andge C(TX, (L(Q))?). Then there exists a unique
solutionu(x,t) of problem(2.12)such that

U€ [Lo(TH)NLo(T* HY),  due Lp(TH™),
and the following estimates hold:

(2.13) a]? < e DA |2+ v2A t sup 912,

weTkK

t
ey v/ m1d0<uﬁ+(tT>v1A11-uT-(/c.ﬂ2d0).
Tk

Hence problem (2.12) generates a family of proce$sgs(t,7) 1t > 7}, wo € TX.

Let Hy, = H1,(Q) be the Hilbert space defined by (2.3) addy) := HNHy,,

~ > 0. Analogously to theorem 1.3 and theorem 4.1 in [1], one can showthat

is invariant undefU,,(t,7)}; furthermore, a family of processdd),,(t,7)} is
uniformly asymptotically compact iRl (v) if g € Ho, andu. € Hy,. Hence due

to Theorem 1.4 a family of processf@ld,,(t,7)} possesses a uniform attractor in
H(v). It remains to estimate the Hausdorff dimension of the attractors of equations
(1.10) and (2.12).
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3 Hausdorff Dimension Estimates for Uniform Attractors with
Quasi-Periodic Symbols
3.1 Reaction-Diffusion Equations inR"

We start with RDEs irR" with quasi-periodic external force. Due to the results
in Section 2, a family of processéb,,, (t,7)}, wo € TX, corresponding to (1.10)
generates the semigrodf(t)},

S(t) : Ho,y X T — Ho, X T*
B1)  S(t)(uo,wo) = (Uuo(t,7)Uo, [at +wi]), Up € Hoy, wo € T, t >0,
which in turn corresponds to the following autonomous dynamical system:

(3.2) otu=vAu— f(u) — Aou—9g(X,w), Oiw=a,
' Ult—0 = Ug, wlt—o = wo, Up € Hon, wo € TK,

or
(3-3) oy =My, VYl—0="Yo,
wherey = (U,w) € Ho, x T and

(3.4) M(y) = (vAu— f(u) — Aou—g(X,w), ).

As was shown in Section 2, the family of proces$ds, (t,7)}, wo € T, is uni-
formly asymptotically compact iflp,, (Proposition 2.3). Therefore, due to Theo-
rem 1.4, the semigroufS(t)} defined by (3.1) possesses a compact attractior
Ho, X TX. Moreover, the projectioArpe, Arpe := M1A, is a uniform attractor of
the{U,,(t,7)} and obviously

where by dimAgrpe and dimA we denote the Hausdorff dimensionhla , (Ho, x

’11"‘) of the attractors oArpg andA, respectively. Hence to obtain an estimate for
dimARpg, it is sufficient to obtain an upper bound for dém We emphasize that
the upper bound for dir is based on a well-known formula by Constantin, Foias,
and Temam [8]. To this end we give a theorem of the differentiability of operators
S(t) : yo — y(t) with respect to initial datgp € A.

THEOREM 3.1 Suppose that ConditioR.1 holds. Then the operator(§ defined

by (3.1)is uniformly differentiable o\ (we denote its derivative by (8 yo), Yo €

A) with respect to the metricgh = Lo(R").

PrROOF. Analogously to the bounded domain case, one can easily see that the
differential S(t,yo) atyo = (Uo, 10), S(t,Y0)Zo = z(t), is the solution of the varia-
tional equation
(3.6)

0rv = vlhw — f(u(t,x))v — Aov + g, (X, w(t))n
0tn =0, v|t=o = vo, N|t=o0 = Mo, U(t,X) = Uy, (t,7)Ug, w(t) = [at + w0
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with v(t) = v(t,X) € Ho,0, n € RK, Z(t) = (v(t,X),n). m
We denote by’ (y(t)),
M'(y(t)) (v(t), ) ==
vhw = fi(ut))v = Aov + g, (X w(t))n, Y(t) = (u(t),w).

Due to the formula by Constantin, Foias, and Teman [8],Alim d provided
that, for anyy(t) = (u(t,x), 1), u(t,x) = U, (t,7)uo, Uup € A, the following inequal-
ity holds:

(3.7)

(3.8) limy_ o= /supz (t)zj,z;)dr <0

whereEy is anyd-dimensional subspace in the Hilbert spig, x RX andzj €
Eq, j = 1,...,d, is any orthonormal family irHg o x R¥ belonging toH, o x RX.
Therefore in order to obtain an upper bound for Aimwe have to estimate
S (M (y Y(t)Zj,Z)) 2(rn)xrK, Where

Zj = (vj,1;) € Hoo X R", (2,2 Lo(gn) e = G -
To this end, we start with
(M(Y(1))2.2) L2(rm) i =
vl 7ol = Aollvl= [ it [ (@

wherez= (v,7) € L(R") x R¥, ¢, = (29, ... 29

owy’ * Qwy /"
It follows from (3.9) that for any positive > 0 we have

(M (y(0))2.2) < —v]| 7] = Dollo]— [ Fi(uo?dx
+ [16L1'7 ol 1gLI % - idx
< vl 7ol ~ollel~ [ fiutax 2 [ 1g,lofdx

I gt

where 0< § < 1. LetGy = max, .« [ g, |* °dx Thus
(M'(y(t)z2)
b G
> 7ol ollo2~ [ P 3 [ 1aL ol Pl 2ol

= (A1v,0) + (Aan,m)

(3.9)
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whereA;, j = 1,2, are quadratic forms defined by
310) (Aw,0) =~ 7ol dollel2~ [ titutas 2 [ I, ofPel,

_G1 2
(3.11)  (Aen,n) =z nl”.
We denote byAzz) an expression of the form
(3.12) (A1z,2) == (Agw,0) + (A, m), 2= (v,7).

Let us recall that our basic task is to estimate the expression

d
> (M'(¥(t))Z,2)L,mn) < Wherezj = (vj,n;) € L2(R") x R, (z,2) = dij .
=1

PROPOSITION3.2 Let{z} = (vj,nj), j = 1,...,d, be any orthonormal system in
Lo(R™) x RK. Then there exists an integer number R < k; < k, and {wi} €
Lo(R™), {&m} € RX i=1,...,d —k;, m=1,...,k;, which are orthonormal in
Lo(R") andRX, respectively, such that

d _ d—kg Ky
(3.13) JZl(Azj,z,-) < i; (Aqvi,vi) +W;(Aznm,nm)-

PROOF. Consider the subspate- R4* of the formL = {&1vy + - - - 4+ Egvg } X
RK, whereg; eRY, j=1,...,d. In L there is a scalar product induced fraa{R") x
RX. Consider the restriction ¢Azz) to L. Note thatz; = (vj,7;) C L and is ortho-
normal inL.

Then

(A(§rv1+ -+ - +&qvd,0), (§av1 + - - +&qug, 0))

(3.14) = (Ar(§1v1+ -+ E&qud, Eav1+ - - -+ Edvg) + (Aoh,0)
d
= > (Aqvi, ))&+ (A20,0) = (BE, &) + (A0,0) .

i,j=1

From (3.14) it follows that the operaté_ris block diagonal,

-~ (B O
(o x)

and it can be transformed to a diagonal fokmn

A1
(3.15) A= Ad

V1
Dk
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by orthogonal transformation iy (R¥) andR¥, respectively. Letv,...,wq and
v1 ..., be orthonormal iH andRX eigenvectors oB andA,, respectively. Ob-
viously orthonormal eigenvectors Afhave the fornt; = (wi, 0) and(m = (0,vm),
i=1,..,dm=1,....k

Then due to Courant’s principle (see [8]), we have

d _
=1 =1

where{(; }j-1,..d are eigenvectors of the matexin L corresponding to the greater
eigenvalues of the block operatdr Without loss of generality, we assume that
(due to the block structure &) eigenvectors of\ are

(W1(t,%0),0),- -, (Wa-u (t,Y0), 0), (O,v1(t,Y0)), - -, (0,114 (. ¥0)) »

where 0< k; < k, k; € N. Note thatA, = St1d, where Id is the(k x k) identity
matrix. This proves Proposition 3.2. O

COROLLARY 3.3 There exists orthonormal in B Ly(R") vectors w(t,Yo),. ..,
Wd,kl(t,yo), 0 < k; <k, such that

d _ d—ki , d—ky , d—k; 2
(Az,z)< ~v S [vwilP= 3 dolwilP= Y [ fiupddx
> (Az.z ; IEDRTIED YA

=1

(3.17)
+3 z [ gl e St
Denote
A
(3.18) ' (u) = max<0,flj(u) - 7()) .

Then obviously

d d—kq

o
(Az,7) < —22(d—kg) + 7k1—u/ o wi[2dx
JZL 1 2] > Zl j

d—kg y b L0k
+ /f’,(u) -dx+—/\g’ |+~ |w;|“dx.
jZl J 2 W ; J

Using the Lieb-Thirring inequality (see [7]), that is,

(3.19)

n

d—kl d— kl
(3.20) /Z vaj|2>c0/< WJ2> dx
j=1
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where the consta@ does not depend ahandk;, we obtain

d _ >\O Gl d—kz 5 +%
Z 7,zj) —?(d—k)+%k—uco/ Z || dx

(3.21)
& s (O 2 d
¢ | b / - |
# [ 1 3 i s [ | S ) ox
Let p(x) := ‘-j:'l‘l \wj|2. Then (3.21) can be rewritten as
zAz,,zJ _2o 2K+ (;;k I/Co/|,0 ()13 dx
(3.22) =1

+/f X)dx+ o /ygw\“()x.

Due to the Holder inequality, we have

(3.23) /f’ X)dx < </|f |1+2dx> </|p (%) > "

In the same manner, we have

= 2
[ ( [1aLi@o38) 7 ( flaoed) ™

2
2

L
- (el i)
— ([ 1noltax) ™,

It is clear that the right-hand side of (3.22) is not greater thia)where

B24) ()=~ 22(d—K)+ SV O(L) 1 Colg(t)

The functionr (t) for fixedt has a maximum with respect tpyhenq = qo, where
o = Ca(n)r 2 -V3.
Therefore (3.22), (3.23), and (3.24) yield

d

Let

Thus to provide (3.8) it is sufficient that

2041+ Sk <o.

142 _
(3.26) Tm /c4y WA (r)dr - =
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To guarantee (3.26) we follow [2] but in a slightly different way. Note that
(3.26) implies that dird < d or, equivalently,

. G n — 1 t n
(3.27) dimA < k+ leglk+ 2CaNg v 2 fim . V2 (r)dr+e
—00 0
for anye. It remains to estimate the integral in (3.22). Let us recall that

V() =Va(t) +Va(t)

_2
</|f |z+1dx> " and Va(t) 2/|gw\ (1-0)(3+1 g

Note thatV,(t) < Csbh, whereCs is some constant/ (t) can be estimated in the
following way. We consider two cases: (L)Y0) # 0 and (2)f/(0) = 0. We show
that in each casg’ (u)| = 0 for |u| < §, whered is sufficiently small.

Casel. f/'(0) #0.

Obviously, for sufficiently small > 0, we havef (u) = f/(0)u+o(u) for |u] < ¢
or f(u)-u= f’(0)u?+o(u?) for |u| < §. Sincef (u)-u> 0, we obtain that’(0) > 0
for |u] < § and, due to continuity’(u) > 0 if |u| < 6. Hencef’ (u) = 0.

Case2. f/(0) =0.

It follows from Condition 2.1 that
(3.28) |f/(u)| < Ju|*Cq(u).
Hence

where

|f'(u)] <6“Cy for|u| < 6.
Choosing so small that
Ao
o < i
C10?° < 5
we obtain thatf’ (u)| = 0 for < |u| <.

Let us recall that our main goal is to estimate

</|f |z+1dx> "

whereu(t,x) = Uy, (t,0)up. Sincey(t) = (u(t,yo),w(t)) belongs to the attractor
A C Ho, x R C Ho o x R¥, we have

(3.29) \|u(t),-)||2:/uz(t,-)dxgcA forallt >0

andy(t) € A. Therefore due to (3.29) the measure offlIfor which |u(t,x)| > &
satisfies

(3.30) meagx € R": u(t,x)| >0} <Ca -6 2.
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Thus taking into account (3.29), (3.30), afigu) > —C, we conclude that
Vi(t) <Cad—2C3H,
On the other hand/>(t) < C;-b. Thus we obtain
(3.31) dimA < k+ %A51k+ 2C40g v 2(Cad 2C3H 4 Crb) 2 HL,
We recall that the parameterin (3.31) is an arbitrary positive number. Analo-
gously to [4], one can find an optimal value fo(depending ork) that yields
(3.32) dimA < k+ Cgk##z + Cq 2

whereCg andCqy depend ord, Ao, Ca, [|9llc(tx H, ) @ndn but not onk. As a result
of the estimate (3.32), we obtain that the uniform attradtgse admits

(3.33) dimArpe < K+ Cgkiz +Co 2 .

Remark3.4. One can construct an example of a reaction-diffusion equation having
a uniform attractoAjpe such that

(3.34) dimAgpe > k.
In other words, the main terinin the estimates (3.33) is exact.

Remark3.5. In the autonomous case, that ks 0, estimate (3.33) becomes the
well-known upper boun€ - »~"/2 for the Hausdorff dimension of the attractor of
the autonomous reaction-diffusion equation (see [2]).

3.2 Two-Dimensional Navier-Stokes Equations with Quasi-Periodic Ex-
ternal Force
We consider the family of Navier-Stokes systems (2.12) in the domain

Q= {(X1,X2) 1 —00 < X1 < 00, 0<% < d}
whereg(x,t) = §(x,w(t)), w(t) = [ot +wo], wo € T, a = (a,...,ax) € R, and
w = (w1,...,wk). As was shown in Section 2, this family is equivalent to the au-
tonomous system

— — 2 a_ ~
(3.35) atU:—IiLU—nZizluia—nggo(X,w), atwfa,

Ult=0 = Uo, w|t=0 = wo, Uo € H(7), wo € T,
or, equivalently,
ay=M(y), y=(Uw),

where

_ 2 U .
(3.36) M(y) = (—VLu— M -Zluia_xi +90(X,w),a> .

Due to Section 2, equation (3.35) generates a semigf8{ip},
S{t)yo =Y(t), Yo= (U, wo), Y(t) = (u(t),w(t)),
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which has an attractdkys C H(v) x R,

Moreover, the operators are quasi-differentiable on the attréctorH () x
T (the case of unbounded domain makes no difference). Its quasi differential
S(t,yo0)(vo,n) = (v(t),n) is a solution of the variation equation

0= —vL— B(U(t), 5) — B(2, 0t) + g, (x,w(t))
(837 {am =0, 7= (- 7= (1) = 010),
whereB(0,v) = M 2 ; idiG, U(t,X) = U(t,Yo), Yo € A. Note that equation (3.37)
can be rewritten in the form
(3.38) 0z=M(y(1))z, Zio=2,20=(v,7).
Herey(t) = (u(t),w(t)), yo € A, w(t) = [at +wo], U(t) = Uy, (t,0)Uo, is a solution
of (3.35).
(3839)  M'(y(t))z= (—vLv—B(u(t),v) — B(v,u(t)) + g, (x,w(t))7,0).

Let us recall that our basic task is to estimate the Hausdorff dimension of at-
tractorAns C H(y) x RX, We estimate the Hausdorff dimension of attradqg
with respect to the norl x RK(H(0) = H). We follow the scheme developed for
reaction-diffusion equations iR". To apply the Constantin-Foias-Temam formula,
we have to estimate
d

(3.40) M’ (Y(1))Z},7) (L,))?
J;( Y(1)Zi,Z) (L,(@)

whereE, is d-dimensional space ifHx(Q))? (the standard Sobolev space of or-
der 2) and{z} C Eq, j = 1,...,d, are the orthonormal family ifL(Q))? x RX
belonging to(H2(Q))? x RX. It is easy to check that

(M (Y())5,5}) = —v(L5,) - (B(t.Y0), 9), )

~ (B(5,0(t.y0)).) + [ (@,.mnsivix
Q
(3.41) < —v(Lwv,v) — (B(U(t,Yo), v),v) — (B(v,t, o)), v)

b [ 152 21/—r 146
+3 [k | 10170

= (A1, v) + (A2n,n)

where
(Arv,v) == —v(Lv,v) — (B(U(t,Yo),v),v) — (B(v,U),v)
3.42
( ) _g/|grw|1—6|v|2dx
(3.43) (Aanm) = 2 (nm), G = sup [ g, dx.

2b wGTkQ
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Before we estimatg?:l(M’(y(t))z_j,z_j), note that
(3.44) A1 =:inf{—Av,v), v € C5(Q), ||v|]| =1} > 0.

We use this fact throughout this paper. Let us estimate (3.41) using Proposition 3.2.
Indeed,

d d—k; kg
Zl(M'(Y(t)Zj,Zj) < Zl (Aawj, wj) + Zl(Azﬁm,Em)
i= = M=

d— k1 d— kl _

dk1

- G
+ 3 (B, 0t yo) ) + 5 z /\gw o1, P+ otk
A G vid
< —ZH(d— k) + 2k /|ij|2dx

d k1
/zwvwwmmz > [ 1.

d ki
<—V—)\l(d K+ —k——/z |7 [2dx

d kq kq
/zwvww,\zciwz/rgwﬁ 5(2 wﬁ) dx,

=1

wherew] andn, are due to Proposition 3.2 agigle Ans. Denotep(x):= 3 ' 1wl
Hence, due to the Lieb-Thirring inequality, we have

(3.45) i ))Z,Zj)

VA1 d—k

<-ZEd-K+ / |7 Wi 2dx
Zl j
+b/\g:,|l—‘S ) dx+/2|vm'p<x>dx
G
k- I/Co/p dx+/2|vu|p

b 2 1 /22
+2(s/p (axs o [ 1> Zax

<_ U)\l(d )+
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+/ <2|v ulp(X)dx— vCop?(x) + %;ﬁ)dx

+bz/‘g/ 121-9) dx
8Cor e

In (3.45) we chose > 0 such thabs = Cor. Note that the expression

vCo
(3.46) 2|7 ulp— sz

has its maximum at|27 u|?/Cov. Therefore we obtain from (3.45)

(3.47) Z §10)3,3) <~ 21(d—K)+ Stk il GZ /|vu| dx.
Due to estimate (2.14) we have
t
v [ 117 Pt < Qo]+t 2A 6 +-20 A o] -G
0
Hence (3.47) yields

U1 G; bGz ZHu_on

(3.48) ,Z )5,2) < - 2 FI _k+8Cov+ Co?
| 2 1o A
+®)\llG§+173

From (3.48) it follows that
G1V7 Kt bsz 72 n ZGl _4
2b\1 4Co)\1 Co)\2 '

Recall thatb is an arbitrary positive parameter in (3.49). It is not difficult to see
that the optimal value fdp in (3.49) is equal to

(3.49) dimA <k+

Thus we have
(3.50) dimA <k+3-ks + S v 4

: o )\2 .
Remark3.6. This result is to be contrasted with the well-known estimates for the
Hausdorff dimension of the attractor for tike— S system in a bounded domain
Q C R?%

(@) dimA < Cr—2 (autonomous case, [3]) and

(b) dimA < k+CkY3+Cor~2 (nonautonomous case).

In the case 0f) = {(Xx,%2) : —0 < X3 < +00, 0 < xp < d}, we have
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(a) dimA <Cr~*and
(bl) dimA < k—l—C3k2/3+C4I/74.

The presence af~* (instead ofv—?) is based on spectral arguments. Indeed, in
the case of a bounded dom#&nc R?, the spectrum of-A is discrete and enables
us to prove (b) (see [3]). However, in the c&%e= {(x1,X2) : —00 < X3 < 400, 0 <

X2 < d}, one can easily see that the spectrum-afis

(3.51) o(—D) = [(g)zw] .

A proof of (3.51) is based on the following simple argument. Let us consider
the equation

(3.52) —Au+Nu=g, gelyQ),

or, equivalently,

—_ 2y = - _
(3.53) { Au+Xu=h, h=—-gelLyQ),

u(xg,0) = u(x,d) = 0.

We seek a solution of (3.52) in the form

8

(3.54) u(xe,x2) = Y fa(xe)en(x2)
n=1

whereey(X2) is a solution of the following eigenvalue problem:

(3.55) n(0) = en(d) 0.

with pn = n/d. It follows from (3.53), (3.54), and (3.55) th&{(x;) satisfies the
following equation:

{dn%xawﬁaq(xa ~0,0<x<d,

(3.56) f2(x0) + (AZ - (%”)2) fa(00) = P()

where—oo < x1 < 400 andhp(Xy) is due toh(x1,x2) = ¥ -1 hn(X1)en(x2). Obvi-
ouslyhn(x1) € La(—,+), and ifw := A\? — (7/d)? does not belong to the spec-

trum of the operator-A; wherel; := 6‘3—; then f,(x1) € Lo(—00,+00). Thus from
2

(3.56) it follows that, fon = 1, the[(7/d)?, ] belongs to the continuous spectrum
of —A. Itis not difficult to prove that there is no other spectrum point.

Remark3.7. Note that\; as defined by (3.44) is equal ta/d)?. Indeed,(r/d)?
is the first eigenvalue of A, with the Dirichlet boundary condition of, = [0,d].
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Consider
(3.57)

2y 92
(—Du,u) = / dxl/ (gx ou >u(x1,x2)dx2
1

_/ dxl/ u(Xq,X%2)dx

n / dxg / ——u (X1, %2)d%

© rd 2 7\ 2 o d 92y

2 (/_00/0 u (Xl’XZ)XmdXZ> : (d) +/_oo dX]_/O _TX%U(X]_,Xz)dXZ
2

= (g) /u2<X1,X2)dX1dX2.

Q
Therefore\; = (7/d)?. This proves the last remark.
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