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1. Introduction

Let X be a compact set in a Hilbert space H : X bH . We recall the de5nitions of
the Hausdor6 and fractal dimensions of X (see, for instance, [8]).

De�nition 1.1. The Hausdor6 dimension of X in H is the number

dimH X = inf{d|�(X; d) = 0};
where �(X; d) = lim�→0+ �(X; d; �) and �(X; d; �) = inf

∑
rdi , the in5mum being taken

over all coverings of X by balls B(xi; ri) centred at xi with radii ri ≤ �.

De�nition 1.2. The fractal dimension of X in H is the number

dimF X = lim sup
�→0+

log2(NX (�))
log2(1=�)

;

where NX (�) is the minimum number of balls of radius � which is necessary to
cover X .

It is well known that dimH (X ) ≤ dimF(X ), where the inequality can be strict.
In our work we shall be dealing with estimates of the fractal dimension of the

invariant sets (attractors) of the semigroups generated by in5nite-dimensional dynamical
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systems. It was shown in [8] that if the sums of the 5rst m global Lyapunov exponents
of the invariant set X have a majorant f(m), then dimH X ≤ d0, where f(d0)=0. For
the fractal dimension it was shown there that dimF X ≤ const d0, where const¿ 1. In
our work we show (see Theorem 2.1) that if f(d) is concave, then dimF X ≤ d0. In
other words, the Hausdor6 and fractal dimensions have the same upper bound.
Turning to the applications we 5rst note that in all the examples of partial di6erential

equations considered in [8] the function f(d) is concave. Secondly, in the two particular
examples (a reaction–di6usion system and two-dimensional Navier–Stokes system) we
obtain f(d) explicitly and, consequently, we obtain explicit upper bounds of the fractal
dimension of the attractor in terms of the physical parameters.
Finally, we observe that Theorem 2.1 can be obtained by a careful analysis of

the corresponding results in [8]. However, we prove Theorem 2.1 generalizing to the
in5nite-dimensional case the method of [2], where the Kaplan–Yorke estimate for the
fractal dimension of the Lorenz attractor has been obtained.

2. Main estimate

Suppose that a semigroup St of continuous operators acts in a Hilbert space H and
let X be a compact strictly invariant set of St : StX = X; X bH . We suppose that the
semigroup St is uniformly quasidi6erentiable on X for each t, that is, for u; v∈X there
exists a linear operator DSt(u) such that

‖St(u)− St(v)− DSt(u)(u− v)‖ ≤ h(r)‖u− v‖; (2.1)

where ‖u− v‖ ≤ r, h(r) = o(1), and supt∈[0;1]supu∈X ‖DSt(u)‖L(H; H)¡∞.
We further suppose that the operator L=DSt(u) is compact. This involves no loss of

generality (see [8], Proposition V:1:1) and we are doing so for the sake of simplicity
only. Then the image of the unit ball B(0; 1) of H centred at the origin is the ellipsoid
E = LB(0; 1) with semiaxes �1(t; u) ≥ �2(t; u) ≥ : : : ; that are the eigenvalues of the
self-adjoint operator (L∗L)1=2.
Following [8] we set for integer k

!0(t; u) = 1;

!k(t; u) = �1(t; u)�2(t; u) · · · �k(t; u);

I!k(t) = sup
u∈X

!k(t; u):

Then limt→∞ t−1 log I!k(t) = q(k) and hence for any �¿ 0

I!k(t) ≤ cke(q(k)+�)t (2.2)

for some positive constants ck = ck(�), where q(k) is the sum of the 5rst k global
Lyapunov exponents (see [8], Section V:2:3).
The above de5nitions can be generalized for an arbitrary real d= k + s, 0 ≤ s¡ 1

by setting

!d(t; u) = !k(t; u)1−s!k+1(t; u)s:
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Using (2.2) we obtain the similar bound for I!d(t)

I!d(t) = sup
u∈X

!k(t; u)1−s!k+1(t; u)s ≤ cde(q(d)+�)t ; (2.3)

where cd = cd(�) = ck(�)1−sck+1(�)s and q(d) = q(k + s) = (1− s)q(k) + sq(k + 1).

Lemma 2.1. Let E be an ellipsoid with semiaxes �1 ≥ �2 ≥ : : : : If r ≥ �n+1; then the
minimum number of balls of radius r

√
n+ 1 which is necessary to cover E is

NE(r
√
n+ 1) ≤ 2n

!k(E)
rk

; (2.4)

where �k+1 ≤ r ≤ �k and !k(E) = �1 · · · �k . (If r ¿�1(E); then NE(r
√
n+ 1) = 1:)

In addition; for any "¿ 0

NE+B(0; ")("+ r
√
n+ 1) ≤ NE(r

√
n+ 1) ≤ 2n

!k(E)
rk

: (2.5)

Proof. Estimate (2.4) is the well-known covering lemma [3,8]. Estimate (2.5) follows
from the observation that if N balls of radius � cover E, then N balls centred at the
same points with radius �+ " cover E+ B(0; "). The proof is complete.

We 5rst assume that q(d) is majorized by a linear function; the role of concavity
will become clear in Corollaries 2.1 and 2.2.

Theorem 2.1. Suppose that for d ≥ 0; q(d) ≤ f(d) =−ad+ b; where a; b¿ 0. Then

dimFX ≤ d0 = b=a: (2.6)

Proof. We 5x a real p, 0¡p¡a, and an integer n¿d0 so that np+f(n)¡ 0. Then
there exists an �¿ 0 (from (2.2)) such that

e−npt ¿ cne(f(n)+�)t (2.7)

for t ≥ t(n; �). We 5x p; n, t(n; �), and also an arbitrary real D¿ 0 satisfying

D¿ max
0≤d≤n

(d+ f(d)=p) = b=p:

Then −p(D− d) + f(d)¡ 0 for d ∈ [0; n] and hence I!d(t)e−tp(D−d) → 0 as t → ∞.
Using this we can choose t∗ ≥ t(n; �) so large that for & = e−pt∗

2n+D(n+ 1)D=2 max
0≤d≤n

I!d(t∗)&D−d ¡ 1: (2.8)

We now set t = t∗ in (2.1) and let r be so small that h= &
√
n+ 1 = e−pt∗

√
n+ 1.

Then NX (r) balls cover X and by the invariance property

X =
NX (r)⋃
j=1

B(uj; r) ∩ X =
NX (r)⋃
j=1

St∗(B(uj; r) ∩ X ): (2.9)
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We denote by Ej the ellipsoids DSt∗(uj)B(0; 1) with semiaxes �1(t∗; uj) ≥ · · · and
observe that & ≥ �n(t∗; uj) (and more so &

√
n+ 1 ≥ �n(t∗; uj)). In fact, if we assume

the contrary: &¡�n(t∗; uj), then

e−npt∗ = &n ¡ (�n(t∗; uj))n ≤ !n(t∗; uj) ≤ I!n(t∗) ≤ cne(f(n)+�)t∗ ;

which contradicts (2.7).
By the di6erentiability of St we have the following inclusion for the right-hand side

of (2.9):

St∗(B(uj; r) ∩ X )⊂ St∗(uj) + r(Ej + B(0; h)): (2.10)

We consider the covering of the set r(Ej + B(0; h)) = r(Ej + B(0; &
√
n+ 1)) by balls

of radius 2r&
√
n+ 1. Then, in view of (2.5) and (2.4), the minimum number of these

balls satis5es the estimate

Nr(Ej+B(0;&
√

n+1))(2r&
√
n+ 1) = N(Ej+B(0;&

√
n+1))(2&

√
n+ 1)

≤NEj (&
√
n+ 1) ≤ 2n!i(t∗; uj)&−i

≤ 2n I!i(t∗)&−i (2.11)

for some i, 0 ≤ i ≤ n.
We set s= 2&

√
n+ 1. Then, in view of (2.9),(2.11), and (2.8),

NX (sr)≤NX (r) max
1≤j≤NX (r)

Nr(Ej+B(0;&
√

n+1))(2r&
√
n+ 1)

= NX (r) max
1≤j≤NX (r)

N(Ej+B(0;&
√

n+1))(2&
√
n+ 1)

≤NX (r) max
1≤k≤n

( I!k(t∗)2n&−k)

= 2n+D(n+ 1)D=2 max
1≤d≤n

( I!d(t∗)&D−k)s−DNX (r)

≤ s−DNX (r):

Since s ≤ const¡ 1, it follows that NX (skr) ≤ s−kDNX (r) for each integer k. For an
arbitrary �¿ 0 let k be such that sk+1r ¡ � ≤ skr. Then NX (�) ≤ (1=�)D((r=s)DNX (r)).
From De5nition 1.2 we see that dimF X ≤ D and hence dimF X ≤ b=p, which gives
(2.6) by letting p → a. The proof is complete.

Corollary 2.1. Suppose that q(n)≥ 0 and q(n+1)¡ 0 and the piecewise linear func-
tion q(d) (see (2:2) and (2:3)) is concave (or; more generally; lies below the straight
line joining the points (n; q(n)) and (n+ 1; q(n+ 1))). Then

dimF X ≤ d0 = n+
q(n)

q(n)− q(n+ 1)
: (2.13)

Proof. We denote by f(d) the linear function whose graph is the straight line described
in the corollary. Then, by concavity, q(d) ≤ f(d) and q(d0) = f(d0) = 0. Estimate
(2.13) now follows from Theorem 2.1.
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The next result will be used in applications most often.

Corollary 2.2. If q(m) ≤ f(m); for m = 1; : : : ; where f(d) is a concave function of
the continuous variable d and f(d∗) = 0; then

dimF X ≤ d∗:

3. Applications to evolution equations

The examples below are given as an illustration of the main theorem. We did not
try to improve the physical results published in the literature.
We 5rst brieMy recall the formal scheme from [8] for estimating the sums of the

5rst m global Lyapunov exponents, that is, the numbers q(m).
If the semigroup St generated by the equation

@tu= F(u); u(0) = u0 (3.1)

has an invariant set X , then

q(m) ≤ lim sup
t→∞

sup
u0∈X

sup
)i∈H
i=1;:::; m

(
1
t

∫ t

0
Tr F ′

u(S*u0) ◦ Qm(*) d*
)

: (3.2)

Here Qm(*) is the orthogonal projection in H onto Span(U1(*); : : : ; Um(*)), where the
Ui are the solutions of the 5rst variation equation

@tUi = F ′
u(St(u0)) · Ui(t); Ui(0) = )i: (3.3)

3.1. Reaction–di<usion system

We consider the following system:

@tu= -aNu− f(u) + g; u|@O = 0; (3.4)

where x∈ObRn, a= {aij} is a constant N × N -matrix with positive symmetric part
(a + a∗)=2 ≥ I , -¿ 0, and u, f, g are N -dimensional vector functions. We set H =
(L2(O))N and suppose that g ∈ H . We suppose that f(v) and f′

v(v) are of class
C(RN ;RN ) and the following conditions hold for all v; z ∈ RN :

− C ≤ f(v) · v; −Dz · z ≤ f′
v(v)z · z; |f′

v(v)| ≤ C(|v|p−2 + 1) (3.5)

for some positive C and D. The exponent p satis5es the inequality p ≤ 2n=(n−2) for
n ≥ 3 and p¡∞ for n ≤ 2.
The system (3.4) with initial condition u(0) = u0 ∈ H1 = (H 1

0 (O))
N has a unique

solution and thereby generates the semigroup St : H1 → H1. The semigroup St has
a compact attractor AbH which is bounded in H2 = (H 2(O) ∩ H 1

0 (O))
N (see [1],

Theorem I:5:2).
If the following condition holds:

|f(v+ z)− f(v)− f′
v(v)z| ≤ C(1 + |v|p1 + |z|p1 )|z|1+2;

where p1¡ 4=(n − 2); (n¿ 2) and 2¿ 0 is suPciently small, then the operators of
the semigroup St are di6erentiable on A in H in the sense of (2.1).
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Theorem 3.1. The fractal dimension of A in H satis=es the estimate

dimF A ≤ N
(
n+ 2
43n

)n=2 1
Q(1 + n=2)

|O|
(
D
-

)n=2

; (3.6)

where |O| denotes the n-dimensional measure of O.

Proof. The 5rst variation equation (3.3) corresponding to (3.4) has the form

@tU = -aNU − f′
u(u(t))U:

Therefore, in this case

Tr F ′
u(u(t)) ◦ Qm(t) =

m∑
i=1

(-aN’i; ’i)−
m∑
i=1

(f′
u(u(t))’i; ’i)

≤−-
m∑
i=1

‖∇’i‖2 + D
m∑
i=1

‖’i‖2 ≤ −-
m∑
i=1

5i + Dm;

where the vector-functions ’i = ’i(t) ∈ H ∩ (H 1
0 )

N are an orthonormal basis in
Span(U1(t); : : : ; Um(t)) (see (3.1)–(3.3)), and where we have taken into account (3.5),
the property of a that (a + a∗)=2 ≥ I and the variational principle (see [8],
Lemma VI:2:1):

∑m
i=1 ‖∇’i‖2 ≥

∑m
i=1 5i, the 5i being the eigenvalues of the Dirich-

let problem for the operator −IN in O. Clearly {5i}∞i=1 = {Rn; : : : ;Rn}∞n=1; where the
Rn are the eigenvalues of the scalar Dirichlet problem for −N in O and each Rn is
repeated N times. This gives that

m∑
i=1

5i = N
k∑

i=1

Ri + pRk+1 = p
k+1∑
i=1

Ri + (N − p)
k∑

i=1

Ri ;

where m= Nk + p, 0 ≤ p¡N . Using the estimate
m∑
i=1

Ri ≥ c0|O|−2=nm1+2=n; c0 =
43n
n+ 2

(Q(1 + n=2))2=n

from [6] we see that
m∑
i=1

5i ≥ c0|O|−2=n(p(k + 1)1+2=n + (N − p)k1+2=n)

= c0|O|−2=nN ((p=N )(k + 1)1+2=n + ((N − p)=N )k1+2=n)

≥ c0|O|−2=nN (k + p=N )1+2=n = c0|O|−2=nN−2=nm1+2=n;

where we used the inequality 6(k + 1)1+2=n + (1 − 6)k1+2=n ≥ (k + 6)1+2=n, 6 = p=N ,
which follows from the convexity of the function k → k1+2=n.
Therefore

q(m) ≤ f(m) =−-c0|O|−2=nN−2=nm1+2=n + Dm:

The function f is concave. The root of the equation f(d) = 0 is d∗=N |O|(D=c0-)n=2,
and we see from Corollary 2.2 that (3.6) holds.
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Remark 3.1. The semigroup St is Lipschitz on A from H to H1. Therefore, estimate
(3.6) holds for the fractal dimension of A in H1.

3.2. Navier–Stokes equations

We now consider the two-dimensional Navier–Stokes system

@tu+
2∑

i=1

ui@iu= -Nu−∇p+ f;

div u= 0; u|@O = 0; u(0) = u0;

(3.7)

where O is an arbitrary bounded domain O b R2.
We denote by P the orthogonal projection in (L2(O))2 onto the Hilbert space H

which is the completion in (L2(O))2 of the space of smooth solenoidal vector func-
tions with compact supports in O. Applying P we write (3.7) as an abstract evolution
equation in H :

@tu+ -Au+ B(u; u) = f; u(0) = u0; (3.8)

where A = −PN and B(u; v) = P(
∑2

i=1 u
i@iv). We denote by 51 the 5rst eigenvalue

of A.
Eq. (3.8) generates the semigroup St : H → H which is di6erentiable in H and has

a compact attractor A b H (see [1,8] for the case of a smooth @O and [5] for the
case of a non-smooth @O).

Theorem 3.2. The fractal dimension of A satis=es the following estimate in terms
of the Grashof number G = ‖f‖=(51-2):

dimF A ≤
(
2
3

)1=2
(51|O|)1=2 ‖f‖51-2

; (3.9)

where |O| is the area of O. If; in addition;
‖f‖
51-2

¡
1
4
33=2�1=2; (3.10)

then A= Iu; where Iu is the unique globally asymptotically stable stationary solution.

Proof. We have the following estimate for q(m) (see [4], inequality (2.11)):

q(m) ≤ f(m) =−-3m2

2|O| +
‖f‖2
51-3

:

Now (3.9) follows from Corollary 2.2.
It was shown in [4] that A= Iu if

‖f‖
51-2

¡
1
c20

; (3.11)

where c0 is the best constant in the inequality

‖ ‖L4(O) ≤ c0‖ ‖1=2‖∇ ‖1=2;  ∈ H 1
0 (O):
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Therefore to get (3.10) we merely substitute in (3.11) the best (to date) closed form
estimate of c0 from [7]: c0¡ 2 × 3−3=4�−1=4, which is only about 2:5% greater than
the sharp value of c0 obtained numerically. The proof is complete.

Remark 3.2. The estimates of the Hausdor6 and fractal dimension of the attractor

dimH A ≤ c(O)
‖f‖
51-2

; dimF A ≤ 2c(O)
‖f‖
51-2

;

where the dimensionless constant c(O) depends only on the shape of O, were obtained
by Temam [8]. It follows from Theorem 3.2 that

dimF A ≤ c(O)
‖f‖
51-2

; where c(O) ≤
(
2
�

)1=2
(51|O|)1=2:

By using the inequality

51 ≥ 2�
|O|

(see [4], inequality (1.6)), we get from (3.9) and (3.10) the following result.

Corollary 3.1. The fractal dimension of A satis=es the following estimate:

dimF A ≤ c1(O)
‖f‖ |O|

-2
; (3.12)

where the constant c1(O); in general; depends on the shape of O and admits the
following absolute upper bound:

c1(O) ≤ 1
� : (3.13)

If; in addition;

‖f‖ |O|
-2

¡
1
2
(3�)3=2; (3.14)

then A= Iu and dimA= 0.

Remark 3.3. One can see, as in [4], that Theorem 3.2 and Corollary 3.1 hold if O⊂R2
is an arbitrary domain with 5nite area.
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