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Abstract

Families of binary low correlation sequences with high nonlinearity (in relation with
their Walsh Hadamard transform) are constructed by using the most significant bit of
linear recurrence sequences over the ring Z2l , for l ≥ 3. The engineering motivation is
the design of a multicode CDMA scheme with a control of low peak to average power
ratio (PAPR). Proof techniques combine Galois Ring theory (local Weil bound) with
spectral analysis over the additive group of Z2l . New estimates on the size of weighted
degree trace codes are derived. The parameters of the sequences families constructed
are shown to lie above a modified Varshamov-Gilbert bound.
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1 Introduction

In a recent paper [8] a communication model for multi-code CDMA was introduced where

the Peak to Average Power Ratio (PAPR) of a binary word c of length n = 2m is computed

as

PAPR(c) =
(n− 2d∗(c))

2

n
,

where d∗(c) is the distance of c to the first order Reed–Müller code RM(1, m), a quantity

called nonlinearity in the cryptographic community [1]. (This situation should not be

confused with codes for OFDM where the crucial quantity to control is the DFT like in
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e.g. [9]). In that communication model words that are evaluations of bent functions have

PAPR = 1. Similarly, almost bent functions [1] correspond to PAPR = 2. A natural

question, then, is to construct binary codes that are both good for the Hamming distance

and the codewords of which have low largest PAPR.

In this correspondence, we construct families of binary low correlation sequences with

high nonlinearity, or, equivalently, binary codes with high minimum Hamming distance

and low largest PAPR. In [8] the constructions are for short lengths and small PAPR. In

constrast, in the present work, we are providing large infinite families of length 2m of PAPR

arbitrary but parametrized by an integer l, thus achieving more design flexibility. Further,

the parameters of the sequence families constructed are shown to lie strictly above the

generalized Varshamov-Gilbert bound of [8, Lemma 2]. The technique employed uses the

most significant bit (MSB) of some linear recurrence sequence over the ring Z2l , for l ≥ 4.

The linear recurrence is chosen, like in [10], in such a way as to optimize the use of the

local Weil bound. Like in [5] a Fourier transform on the additive group of the ring is used

to derive correlation estimates of the binary sequences from character sum estimates on the

ring sequences they are derived from. At a technical level an estimate of the size of weighted

degree trace codes is derived (Lemma 4.1) that corrects some estimates in [9].

The note is organized as follows. Section II is dedicated to definitions and notation.

Section III explains the spectral approach and the character sum bound employed. Section

IV studies the fine detail of the polynomials over the ring extension, that are used to define

the sequences in Section V. Section VI and VII contain the bounds on, respectively, the

nonlinearity and the correlation. In Section VIII, for concreteness, the special case of l = 3

and polynomials whose weighted degree is at most three is considered. Section IX recapitu-

lates the parameters of the sequence families constructed in the previous section. The final

section (Section X) checks the statement about the generalized Varshamov-Gilbert bound

of [8, Lemma 2].

2 Preliminaries

Let R = GR(2l, m) denote the Galois ring of characteristic 2l with 2lm elements. Let ξ be

an element in GR(2l, m) that generates the Teichmüller set T of GR(2l, m). Specifically,

let T = {0, 1, ξ, ξ2, . . . , ξ2m−2} and T ∗ = {1, ξ, ξ2, . . . , ξ2m−2}. We use the convention that

ξ∞ = 0.

The 2-adic expansion of x ∈ GR(2l, m) is given by

x = x0 + 2x1 + · · ·+ 2l−1xl−1,

where x0, x1, . . . , xl−1 ∈ T . The Frobenius operator F is defined for such an x as

F (x0 + 2x1 + · · · + 2l−1xl−1) = x2
0 + 2x2

1 + · · · + 2l−1x2
l−1,
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and the trace Tr, from GR(2l, m) downto Z2l, as

Tr :=
m−1∑
j=0

F j.

We also define another trace tr from F2m downto F2 as

tr(x) :=

m−1∑
j=0

x2j

.

Throughout this note, we let n = 2m and R∗ = R\2R. Let MSB : Z
n
2l → Z

n
2 be the

most-significant-bit map, i.e.,

MSB(x0 + 2x1 + . . .+ 2l−1xl−1) = xl−1.

3 DFT and the local Weil bound

We assume henceforth in the whole paper that l ≥ 4. Let l be a positive integer and

ω = e2πi/2l
be a primitive 2l-th root of 1 in C. Let ψk be the additive character of Z2l such

that

ψk(x) = ωkx.

Let µ : Z2l → {±1} be the be the mapping µ(t) = (−1)c, where c is the most significant bit

of t ∈ Z2l,i.e. it maps 0, 1, ..., 2l−1 − 1 to +1 and 2l−1, 2l−1 + 1, ..., 2l − 1 to −1. Our goal is

to express this map as a linear combination of characters. Recall the Fourier transformation

formula on Z2l:

µ =

2l−1∑
j=0

µjψj , where µj =
1

2l

2l−1∑
x=0

µ(x)ψj(−x). (1)

For all β in the ring R := GR(2l, m), we denote by Ψβ the character

Ψβ : R → C
∗, x �→ ωTr(βx).

Note that for the defined above ψk and Ψβ, we have:

ψk(Tr(βx)) = Ψβk(x). (2)

Let f(X) denote a polynomial in R[X] and let

f(x) = F0(x) + 2F1(x) + . . .+ 2l−1Fl−1(x)

denote its 2-adic expansion. Let di be the degree in x of Fi. Let χ be an arbitrary additive

character of R, and set Df to be the weighted degree of f , defined as

Df = max {d02
l−1, d12

l−2, . . . , dl−1}.
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With the above notation, we have (under mild technical conditions) the bound

|
∑
x∈T

χ(f(x))| ≤ (Df − 1)2m/2. (3)

See [4] for details. We will need the following property of the weighted degree:

Lemma 3.1 Let f(x) ∈ R[x] and α ∈ R∗ = R\2R is a unit of R and let g(x) = f(αx) ∈
R[x]. Then

Dg = Df ,

where Df , Dg are respectively the weighted degrees of the polynomials f(x) and g(x).

Proof. Due to the linearity, we can assume that f(x) is of the form 2iF (x), where F (x) ∈ T
is of degree d. Thus

F (x) = c0 + c1x+ . . .+ cdx
d,

where cj ∈ T , j = 0, 1, . . . , d and the weighted degree Df of f is equal to 2l−1−id. Suppose

that

αk =
l−1∑
j=0

αjk2
j .

Substituting αx into F (x), and using the above expansion we obtain that F (αx) equals

d∑
k=0

ckα
kxk =

d∑
k=0

ck

( l−1∑
j=0

αjk

)
xk.

Changing the order of summation, this is

l−1∑
j=0

2j

d∑
k=0

αjkx
k =

l−1∑
j=0

2jFj(x),

where Fj(x) are polynomials in T [x] of degree at most d. Since α is a unit and α0k �= 0

(k = 0, . . . d), the polynomial

F0(x) =
d∑

k=0

α0kckx
k,

is of degree d. Thus the weighted degree of f(αx) equals 2l−1−id. �

4 Polynomials over the Galois ring GR(2l, m).

Recall that R = GR(2l, m). A polynomial

f(x) =

d∑
j=0

cjx
j ∈ R[x]
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is called canonical if cj = 0 for all even j.

Given an integer D ≥ 4, define

SD = {f(x) ∈ R[x] | Df ≤ D, f is canonical},

where Df is the weighted degree of f . Observe that SD is an GR(2l, m)−module. The main

result of this section is:

Lemma 4.1 For any integer D ≥ 4, we have:

|SD| = 2(D−�D/2l�)m,

where �x	 is the largest integer ≤ x.

Proof. By definition of the weighted degree, we have

max {d02
l−1, d12

l−2, . . . , dl−1} ≤ D,

and in particular:

d02
l−1 ≤ D, d12

l−2 ≤ D, . . . , dl−1 ≤ D.

Since dl−1 is odd, it follows that:

dl−1 ≤ Dl−1 = 2

⌊
D − 1

2

⌋
+ 1.

Similarly, for any 0 ≤ j ≤ l − 1, we have that dj:

dj ≤ Dj = 2

⌊
D − 2l−j−1

2l−j

⌋
+ 1.

Thus for the fixed set of l − 1 odd numbers D0, D1, . . . , Dl−1, we have:

|{f(x) ∈ R[x]| dj ≤ Dj, j = 0, 1, . . . , l − 1, f is canonical}| = 2m(D0+1
2

+
D1+1

2
+...+

Dl−1+1

2
).

Furthermore, we obtain

D0 + 1

2
+
D1 + 1

2
+ . . .+

Dl−1 + 1

2
=

l−1∑
j=0

⌊
D − 2l−j−1

2l−j

⌋
+ l − 1. (4)

Since for any real x and integer k we have that �x + k	 = �x	 + k, the right hand side of

(4) is equal to
l−1∑
j=0

⌊
D + 2l−j−1

2l−j

⌋
=

l−1∑
j=0

⌊
D + 2j

2j+1

⌋
.
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There exist integer numbers r, and k such that D = 2lk+ r, where 0 ≤ r ≤ 2l − 1. Thus

the above expression is equal to:

(2l − 1)k +
l−1∑
j=0

⌊
r + 2j

2j+1

⌋
. (5)

Next, we will prove by induction that:

l−1∑
j=0

⌊
r + 2j

2j+1

⌋
= r. (6)

Indeed, the case l = 2, can be verified directly. Now suppose (6) holds for all l ≤ L. Consider

the case l = L+ 1. When 0 ≤ r ≤ 2L − 1, we have that⌊
r + 2L

2L+1

⌋
= 0,

and (6) holds by the induction hypothesis. When 2L ≤ r ≤ 2L+1 − 1, we can write that

r = 2L + r′, where 0 ≤ r′ ≤ 2L − 1 and observing that the term (corresponding to j = L)⌊
2L + r′ + 2L

2L+1

⌋
= 1,

the left hand side of (6) is equal to

L−1∑
j=0

⌊
2L + r′ + 2j

2j+1

⌋
+ 1 = 1 +

L−1∑
j=0

2L−j−1 +
L−1∑
j=0

⌊
r′ + 2j

2j+1

⌋
.

Note that
L−1∑
j=0

2L−j−1 = 1 + 2 + . . .+ 2L−1 = 2L − 1. (7)

Moreover by induction hypothesis (for l = L):

L−1∑
j=0

⌊
r′ + 2j

2j+1

⌋
= r′. (8)

Thus (7) and (8) imply (6).

Note that k = �D/2l	. So, applying (6), (5) is equal to:

(2l − 1)k + r = 2lk + r − k = D −
⌊
D

2l

⌋
.

The Lemma follows. �
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5 Binary codes and sequences

Definition 5.1 For any integer D ≥ 4, let Cl(m,D) denote the Z2l-linear code of length n:

Cl(m,D) = {x = (x∞, x0, . . . , xn−2) ∈ Z
n
2l | xj = Tr(f(ξj)), f ∈ SD}. (9)

Define now the punctured at infinity version of Cl(m,D).

Definition 5.2 For any integer D ≥ 4, let Cl(m,D)∗ denote the Z2l-linear code of length

n− 1:

Cl(m,D)∗ = {x = (x0, . . . , xn−2) ∈ Z
n−1
2l | xj = Tr(f(ξj)), f ∈ SD}. (10)

The following result is direct from the order of ξ and Lemma 4.1.

Lemma 5.3 Let C(l,m,D) = MSB(Cl(m,D)) be the image of Cl(m,D) defined by (9) un-

der the MSB map. Then C(l,m,D) is a binary code of length n with 2(D−�D/2l�)m codewords.

Further, its punctured at ∞ version C(l,m,D)∗ is shift-invariant.

By this lemma, it makes sense to define the binary periodic sequences family S(l,m,D)

as the (periodized) image under the MSB map of Cl(m,D)∗, or, equivalently the sequences

whose periods are the words of C(l,m,D)∗.

6 PAPR

We employ the same techniques and notations as in the preceding section. Observe first

that the scalar product xy of x, y ∈ F
m
2 can always be expressed – thanks to the existence

of a self-dual basis of F
m
2 over F2 – by means of the trace function:

x.y = tr(xy).

(We tacitly identify an element of F2m with its coordinate vector over the said basis.) Let

ĉ(y) denote the Walsh-Hadamard Fourier coefficient of ct in y, namely:

ĉ(y) =
∑

x∈F2m

(−1)c(x)+tr(xy), (11)

where c(ξt) = ct, for t ∈ T , is viewed as a Boolean function.

Theorem 6.1 For all c ∈ C(l,m,D) and all y ∈ F
m
2 , we have the bound

|ĉ(y)| ≤ (2l ln(2)/π + 1)(D − 1)
√
n
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Proof. For any u ∈ R we write ū ∈ F2m for its mod 2 reduction. Then for any u, v ∈ R

we have that:

tr(ūv̄) = MSB(2l−1Tr(uv)).

Consequently

MSB(Tr(f(x))) + MSB(2l−1Tr(ux)) = MSB(Tr(f(x) + 2l−1ux)).

Note that for any u ∈ R the weighed degree of 2l−1ux ∈ R[x] is ≤ 1. Thus if f(x) ∈ SD

then the polynomial f(x) + 2l−1ux belongs to the linear space SD. So, in (11) without lost

of generality, we can drop the tr term. Recall that ξ ∈ T ∗ is a generator of the Teichmüller

set. By definition of ψj and Ψα, (where 0 �= q ∈ R), for any 0 ≤ j ≤ 2l − 1, we have:

ψj(Tr(x)) = Ψj(x).

As we have ct = MSB(Tr(f(ξt))), and by (1), we obtain that (−1)ct is equal to:

µ(Tr(f(ξt))) =

2l−1∑
j=0

µjψj(Tr(f(ξt))) =

2l−1∑
j=0

µjΨj(f(ξt))).

Changing the order of summation, we obtain that:

n−2∑
t=∞

(−1)ct =
2l−1∑
j=0

µj

∑
x∈T

Ψj(f(x)). (12)

Applying (3), the absolute value of the Right Hand Side of (12) can be estimated from

above by:

((Df − 1)
√

2m + 1)

2l−1∑
j=0

|µj|. (13)

Recall Corollary 7.4 of [5] which states that for l ≥ 4 the following estimate holds:

2l−1∑
j=0

|µj| <
2l ln(2)

π
+ 1.

Thus (13) can be estimated from above by:

(2l ln(2)/π + 1)(Df − 1)
√

2m.

The result follows. �
This translates immediately in terms of PAPR.

Corollary 6.2 For all c ∈ C(l,m,D) , we have, for large n, the bound

PAPR ≤ 0.195l2(D − 1)2(1 + o(1)).

Proof. Follows immediately, by the well-known connection between Walsh-Hadamard

transform and distance to the Reed Muller code of the first order [6, 8]. �
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7 Minimum Distance

Theorem 7.1 With notation as above, and for all phase shifts τ, in the range 0 < τ <

2m − 1, let (n = 2m)

Θ(τ) =

n−2∑
t=0

(−1)ct(−1)c′t+τ ,

where ct = MSB(Tr(f1(ξ
t))) and c′t = MSB(Tr(f2(ξ

t))). We then have the bound (l ≥ 4):

|Θ(τ)| ≤
(

2l

π
ln(2) + 1

)2

[1 + (D − 1)
√

2m],

where D = max{Df1 , Df2}.

Proof. As we have ct = MSB(Tr(f1(ξ
t))), where t ranges between 0 and n− 2 and by (1),

we obtain that (−1)ct is equal to:

µ(Tr(f1(ξ
t))) =

2l−1∑
j=0

µjψj(Tr(f1(ξ
t))) =

2l−1∑
j=0

µjΨj(f1(ξ
t))).

Changing the order of summation, we obtain that:

Θ(τ) =

2l−1∑
j1=0

2l−1∑
j2=0

µj1µj2

n−2∑
t=0

Ψj1(f1(ξ
t))Ψj2(f2(ξ

t+τ)). (14)

By definition of Ψ, we have:

Ψj1(f1(ξ
t))Ψj2(f2(ξ

t+τ )) = Ψ(g(ξt)),

where g(x) = j1f1(x)+j2f2(xξ
τ ). Note that if f(x) ∈ SD then f(xξτ) ∈ SD since, by Lemma

3.1 the change of variables x → xξτ does not increase the weighted degree. Moreover SD is

an R-linear space. Thus the polynomial g(x) belongs to SD along with f1 and f2. Applying

(3), we obtain:∣∣∣ n−2∑
t=0

Ψj1(f1(ξ
t))Ψj2(f2(ξ

t+τ ))
∣∣∣ =

∣∣∣ ∑
x∈T ∗

Ψ(g(x))
∣∣∣ ≤ 1 + (D − 1)

√
2m. (15)

Recall the Corollary 14 of [5] which states that for l ≥ 4 the following estimate holds:

2l−1∑
j1=0

2l−1∑
j2=0

|µj1µj2| =
( 2l−1∑

j=0

|µj|
)2

≤
(

2l ln(2)

π
+ 1

)2

. (16)

Combining (15) with (16) the result follows. �
Using the standard connection between crosscorrelation and Hamming distance of binary

sequences we obtain the following.

Corollary 7.2 The binary code C(l,m,D) of length 2m has minimum distance

≥ 2m−1 − 1

2
(0.44l + 1)2(D − 1)2m/2.
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8 The case l = 3 and D = 3

In this section we consider in details the case l = 3 and D = 3. Let R = GR(8, m). Following

Section IV, define

S3 = {f(x) ∈ R[x] | Df ≤ 3, f is canonical},
where Df is the weighted degree of f . Let

f(x) = F0(x) + 2F1(x) + 4F2(x)

be the 2-adic expansion of f and di be the degree in x of Fi. Then

Df = max {4d0, 2d1, d2} ≤ 3

implies d0 = 0, d1 ≤ 1, and d2 ≤ 3. Thus f(x) = 2F1(x) + 4F2(x), where

F1(x) = c0x, F2(x) = c1x+ c2x
3, c0, c1, c2 ∈ T .

As |T | = 2m, we obtain that S3 has 23m elements.

Recall Lemma 2 of [5]:
7∑

i=0

|µi| = (2 +
√

2). (17)

Thus we obtain the estimate on PAPR. The estimate on the minimum distance follows from:
7∑

i=0

7∑
j=0

|µiµj| =
( 7∑

j=0

|µj|
)2

= (2 +
√

2)2.

To summarize, for m ≥ 10, the binary code C(3, m, 3) has the following parameters:

• length n = 2m

• size |C(3, m, 3)| = n3

• PAPR at most ≤ 46.6(1 + o(1)).

• minimum Hamming distance at least

≥ n

2
− (2 +

√
2)2

√
n.

For instance, in case of m = 10, we get the estimate

• length n = 1024

• size |C(3, 10, 3)| = 230

• PAPR at most ≤ 46.7.

• minimum Hamming distance at least

≥ 139.
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9 Conclusion

In this note we constructed a distance invariant binary code C(l,m,D) with the following

parameters

• length n = 2m

• size |C(l,m,D)| = 2(D−�D/2l�)m

• PAPR at most 0.195l2(D − 1)2

• minimum Hamming distance d at least ≥ 2m−1 − 1
2
(0.44l + 1)2(D − 1)2m/2

Equivalently we constructed a family S(l,m,D) of binary periodic sequences of

• period n− 1 = 2m − 1

• size |SD| ∼ 2(D−�D/2l�)m/(n− 1)

• PAPR at most 0.195l2(D − 1)2

• periodic correlation at most (0.44l + 1)2[1 + (D − 1)2m/2]

By comparison the explicit constructions in [8] are limited to a small PAPR (=1 or 2) and

logarithmic family size. Here we allow an arbitrary PAPR but with many more sequences.

It is shown in the Appendix that these parameters, in a suitable range, lie above the Gilbert-

Varshamov-style bound of [8, Lemma 2].

10 Appendix: a Gilbert-Varshamov-style bound

For any 0 ≤ r ≤ n, set

H(r) =

r∑
k=0

(n
k),

i.e. the number of words in a Hamming sphere of dimension n and radius r. Let

H2(x) = −x log2(x) − (1 − x) log2(1 − x).

Lemma 7, Ch.10, §11 of [6] asserts that for any 0 < µ < 1/2 the following estimate holds

2nH2(µ)√
8nµ(1 − µ)

≤ H(µn) ≤ 2nH2(µ). (18)

The goal of this section is to verify that for the certain choice of parameters l, m and D the

code C = C(l,m,D) satisfies

2nH(d∗ − 1) + 2(D−�D/2l�)mH(d− 1) ≥ 2n,
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where d∗ = min {d∗(c) : c ∈ C}. In fact, we want to show that

2(D−�D/2l�)mH(d− 1) ≥ 2n, (19)

where recall that

d ≥ n

2

(
1 − (0.44l + 1)2(D − 1)

2
√
n

)
.

Using the Taylor expansion of ln, we have that for any |δ| < 1

H2

(
1

2
(1 − δ)

)
= 1 − 1

ln 2

∞∑
k=1

δ2k

2k(2k − 1)
.

Taking into account that |δ| < 1 and

∞∑
k=2

1

2k(2k − 1)
=

1

3 · 4 +
1

5 · 6 + . . . <
1

3
,

we obtain

H2

(
1

2
(1 − δ)

)
> 1 − δ2

2 ln 2
− δ4

3 ln 2
. (20)

Thus, using (18) and (20), we obtain

H(d− 1) ≥ H
(n

2
(1 − δ)

)
≥ 2nH2(

1
2
(1−δ))√

2n(1 − δ2)
≥ 2n(1−δ2/(2 ln 2)−δ4/(3 ln 2))

√
2n

, (21)

where

δ =
(0.44l + 1)2(D − 1)

2
√
n

.

Taking the logarithms of (19) and applying (21), we arrive at

D(1 − 2−l)m− nδ2

2 ln 2
− nδ4

3 ln 2
− ln(2n)

2
≥ 0.

We recall that n = 2m and rewrite this inequality

D(1 − 2−l)m ≥ nδ2

2 ln 2

(
1 − 2δ2

3

)
+

(m+ 1) ln(2)

2
. (22)

Assume that l ≥ 1 and D ≥ 1 are fixed integers, choose m ≥ 8 so that 2m ≥ l4D. Then√
n = 2m/2 ≥ 2m ≥ l2D and

δ ≤ l2D

2
√
n
≤ 0.5.

When l ≥ 2 (m is at least 8 and D ≥ 1), the right hand side of inequality (22) can be

estimated from above by (we use that 1/(2 ln 2) < 0.73 and δ < 0.45l2D/
√
n)

0.73nδ2 + 0.37m < 0.15l4D2 + 0.37Dm < 0.3Dm+ 0.37Dm < 0.75Dm ≤ D(1 − 2−l)m.
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When l = 1 (m is at least 8 and D ≥ 4), the right hand side of inequality (22) can be

estimated from above by (we use that 1/(2 ln 2) < 0.73 and δ < 1.04l2D/
√
n)

0.73nδ2 + 0.37m < 0.79l4D2 + 0.1Dm < 0.4Dm+ 0.1Dm < 0.5Dm.

Thus inequality (22) is verified.
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