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We present estimates for the number of unbounded branches of periodic solutions
in a problem on bifurcation from infinity with degeneration of the linear part of

order two and suggest sufficient conditions for the existence of many barnches.

1. Problem statement

Consider the scalar equation

x′′ + λx = b(t) + f(x) (1)

with a continuous function b(t) ≡ b(t+2π), a continuous bounded function
f and the scalar parameter λ. We say that Eq. (1) has an unbounded branch
of periodic solutions with the limit ξ = ξ(t) as λ → 1 if for every sufficiently
large r > 0 Eq. (1) with some λ = λr has a solution xr(t) ≡ xr(t + 2π)
such that ‖xr‖L2 = r and λr → 1, ‖xr/r − ξ‖L2 → 0 as r → ∞, where
L2 = L2(0, 2π). If such a branch exists, then λ = 1 is a bifurcation point in
the problem on bifurcation of 2π-periodic solutions of Eq. (1) from infinity.
It is important to note that due to the boundedness of f the linearization
at infinity brings Eq. (1) with λ = 1 to the equation x′′ + x = 0, which has
the two-dimensional set of 2π-periodic solutions r sin(t + ϕ), i.e. we have a
bifurcation problem with degeneration of the main linear part of order two.

Let f = f0 + f1 and the continuous bounded functions f0, f1 satisfy

lim
x→−∞

f0(x) = f−, lim
x→+∞

f0(x) = f+; lim
x→∞

1
x

∫ x

0

f1(s) ds = 0 (2)

with f− 6= f+. Set f̄ = 2|f− − f+| and consider the Fourier expansion

b(t) = B0 +
∞∑

k=1

Bk sin(kt + βk), Bk ≥ 0, k ∈ N, (3)
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of the forcing b. If B1 > 0, B1 6= f̄ , then Eq. (1) has 2 unbounded branches
of periodic solutions as λ → 1; this follows, e.g. from the results of [1].

Here we study the case B1 = 0, which turns out to be “richer”.

2. Main result

Using the Fourier expansion (3), define the continuous 2π-periodic function

χ(ϕ) =
∑

k=3,5,7,...

(1− k2)−1Bk sin(kϕ− βk). (4)

An isolated zero ϕ0 of the function χ is called regular if in some neighbor-
hood of ϕ0 this function has different signs for ϕ < ϕ0 and for ϕ > ϕ0.

Theorem 2.1. Let B1 = 0. Let f = f0 + f1 and relations (2) hold with
f− 6= f+. Let function (4) have K > 0 regular zeros ϕ1, . . . , ϕK on the
segment [0, 2π). Then Eq. (1) has at least K unbounded branches of periodic
solutions with the limits ξk(t) = π−1/2 sin(t+ϕk), k = 1, . . . ,K, as λ → 1.

¿From the Sturm – Hurwitz Theorem it follows that any real cotinuous
2π-periodic function (3) has at least 2n zeros on the segment I = [0, 2π) if
B0 = · · · = Bn−1 = 0. Therefore function (4) has at least 6 zeros on I.

If all zeros of function (4) are isolated, then it has at least 6 regular
zeros on I and by Theorem 2.1 Eq. (1) has at least 6 unbounded branches
of 2π-periodic solutions as λ → 1. For b(t) = cos(2t) + sin(nt) with any
odd n > 1 formula (4) implies χ(ϕ) = (1−n2)−1 sin(nϕ); here there are 2n

regular zeros on I and 2n unbounded branches of periodic solutions. The
number K of regular zeros of function (4) on I is even for any function b.

In Theorem 2.1 all the branches are continuous in the sense of [3].

3. Remarks

a. Starting from the pioneering work [2], interest of many authors is at-
tracted to the equation

x′′ + x = b(t) + f(x), (5)

i.e. Eq. (1) with the fixed λ = 1; this is the so-called resonance case. The
relation B1 6= f̄ implies an a priori estimate ‖x‖C1 ≤ const for the norms of
all 2π-periodic solutions (if any) of Eq. (5). If B1 < f̄ , then Eq. (5) has at
least one such solution; the topological index at infinity of the completely
continuous vector fields related to the periodic problem is non-zero. If
B1 > f̄ , then Eq. (5) may have no 2π-periodic solutions; the topological
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index at infinity is zero. In particular, there are no 2π-periodic solutions if
B1 > f̄ and f+ < f(x) < f− for all x ∈ R.

b. We do not use the variational structure of the periodic problem for
Eq. (1). The conclusion of Theorem 2.1 is valid for the perturbed equation
of the form, e.g. x′′+x = b(t)+f(x)+(λ−1)g(t, x, x′, x(t−τ), λ) with any
continuous function g(t, · · · ) = g(t + 2π, · · · ) satisfying the global estimate
|g(· · · )| ≤ δ for a sufficiently small δ > 0. Generically, this perturbation is
non-potential and destroys the variational structure for λ 6= 1.

Analogs of Theorem 2.1 are valid for other problems, e.g. periodic prob-
lems for vector equations, problems on subharmonics, two-point problems
etc. For vector equations the problems are generically non-potential.

c. The proof of Theorem 2.1 is by topological methods. The main point
is to reduce the problem to operator equations, which are topologically non-
degenerate. The number of unbounded branches of periodic solutions of (1)
is defined by a scalar branching equation. In case B1 > 0, one obtains this
equation just by multiplying Eq. (1) with x′, integrating over the period and
passing to the limit as ‖x‖C →∞ in the resulting equation 〈x′, b〉 = 0; here
〈·, ·〉 is the scalar product in L2(0, 2π). One arrives at X1B1 sin(ϕ−β1) = 0,
where X1 sin(t+ϕ) and B1 sin(t+β1) are the first harmonics in the Fourier
expansions of x and b. Here there are 2 solutions ϕ = β1 and ϕ = β1 + π,
which define 2 unbounded branches of 2π-periodic solutions of (1).

If B1 = 0 as in Theorem 2.1, then the limit of 〈x′, b〉 = 0 as ‖x‖C →∞
is 0 = 0 and the above scheme does not work. The trick is to use in place
of 〈x′, b〉 = 0 the equivalent equation 〈u′, f(x) + (1 − λ)x〉 = 0, where
u is a unique 2π-periodic solution of u′′ + u = b(t) satisfying 〈u, sin t〉 =
〈u, cos t〉 = 0. Passing to the limit in 〈u′, f(x)+(1−λ)x〉 = 0 as ‖x‖C →∞,
λ → 1, one obtains the branching equation χ(ϕ) = 0.
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