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We formulate criteria on existence of sequences of periodic solutions (subharmon-

ics) for equations x′′ + α2x = b(t) + g(x, x′) (irrational α is fixed) with increasing
to infinity periods and amplitudes. Irrationality of the number α plays an essential

role in our theorems.

1. Introduction

Consider the equation

x′′ + α2x = b(t) + f(x); (1)

here b(t) is a continuous 2π-periodic function, f(x) is a continuous bounded
nonlinearity. We study periodic solutions of Eq. (1), their periods may be
equal to 2π or to some multiples of 2π. Periodic solutions of the period
2nπ are called subharmonics if n > 1. The existence of subharmonics was
studied by many authors, for different situations and by various methods.
For example, in [1] the authors prove existence of subharmonics for vector
equations, the essential assumptions in this paper are the gradient form of
the nonlinearity and the convexity of the potential.
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Below we study the question of existence of subharmonics of large am-
plitudes for an irrational α. Clearly, if α is irrational, then the set of
2nπ-periodic solutions of Eq. (1) is bounded for any fixed n, the estimate
depends on n. Thus, the amplitudes ak of a sequences xk(t) of subharmon-
ics for Eq. (1) may increase to infinity, only if the corresponded minimal
periods 2nkπ also increase to infinity.

Let us emphasize that since α is irrational there is no resonance, and
the existence of some 2nπ-periodic solution can be easily proven for any
integer n. The problem is to find solutions for which 2nπ, n > 1, is its min-
imal period. Moreover, such solutions exist rather rare and under essential
additional assumptions. The existence of a 2π-periodic solution (it is also
2nπ-periodic for any integer n) obscure the situation. The accumulated
Kronecker index [2] of all 2nπ-periodic solutions equals to 1 for any n and
the total index of all periodic solutions with the least period 2nπ, n > 1, is
equal to 0 (see the remark immediately after Theorem 1). Therefore, to ap-
ply the topological degree theory [2] to prove the existence of subharmonics
it is necessary to localize preliminary some of them. Such localization is an
important stage in the proofs below.

It is useful to survey briefly the general situation with existence and
boundedness of the set of all periodic solutions of Eq. (1).

If α is non-integer (nonresonant case), then the set of all 2π-periodic
solutions x(t) is non-empty and a priori bounded: ‖x‖ ≤ C|n2

0 − α2|−1.
Here n0 is the nearest to α integer, the constant C depends on b and f .
If f is smooth, |f ′(x)| ≤ q, and q < |n2

0 − α2|, then there exists a unique
2π-periodic solution.

If α = m ∈ N is integer (resonant case) the existence of 2π-periodic
solutions x(t) is defined by the properties of f and by the value

b =
∣∣∣ ∫ π

−π

eimtb(t) dt
∣∣∣. (2)

First results in this direction were obtained by Lazer and Leach [3], further
these results were continued by various authors (see e.g. [4 – 6]) and by
different methods (topological, variational etc). The usual assumption on
f is the existence of the limits f± of f(x) as x→ ±∞.

If such limits exist, then for 2|f+ − f−| 6= b the set of 2π-periodic
solutions x(t) is bounded; if, moreover, 2|f+−f−| > b, then this set is non-
empty. The twice resonant case (α ∈ N and 2|f+ − f−| = b) was partially
studied in [7].

If α = m ∈ N and if the limits of f± of f(x) as x → ±∞ do not exist,
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then a sequence of 2π-periodic solutions with arbitrarily large amplitudes
may exist (see [6]). Let, for instance, f : R → R be continuous and bounded.
We consider the odd function

Ψ(R) =
∫ π

−π

sin t f(R sin t) dt (3)

The main assumptions on the function f in (1) are the relations:

ψ∗
def= lim sup

ξ→+∞
|Ψ(ξ)| > ψ∗

def= lim inf
ξ→+∞

|Ψ(ξ)|. (4)

Techniques and explanations how to compute the numbers ψ∗ and ψ∗ and
the following result may be found in [6]. If ψ∗ < |b| < ψ∗, then Eq. (1)
has an unbounded sequence of 2π-periodic solutions. If |b| < ψ∗, then
Eq. (1) has at least one 2π-periodic solution, and the set of such solutions
is bounded. If |b| > ψ∗, then Eq. (1) may have or have not 2π-periodic
solutions, the set of them is bounded again. It seems, however, that the
case ψ∗ = ψ∗ is more natural than ψ∗ 6= ψ∗.

This result on unbounded sequences of periodic solutions cannot be
adapted for the case of rational non-integer α. The equation

x′′ +m2n−2x = f(x) + b(t)

(m and n are coprime integers) after the rescaling of time has the form

x′′ +m2x = n2[f(x) + b(nt)].

The value (2) computed for this equation is always zero, and the men-
tioned above result from [6] does not guarantee the existence of unbounded
sequences of 2nπ-periodic solutions. If ψ∗ > 0, then at least one 2nπ-
periodic solution exists; the set of such solutions is a priori bounded.

Equations (1) (resonant or nonresonant) may have subharmonics. For
example, let f(x) = k sign(x) for |x| > 1 and f(x) = kx for x ≤ 1; let b(t) =
ε sin t. If 4α2 = 4k + 1, then Eq. (1) has for |x| < 1 the form x′′ + x/4 =
ε sin t; it has natural unique 2π-periodic solution x0(t) = −4/3 ε sin t and
two dimensional continuum of the subharmonics x0(t)+a sin(t/2+φ). The
only condition is that a and ε are so small that max |x0+a sin(t/2+φ)| ≤ 1.

If α is irrational, then the set of 2nπ-periodic solutions of Eq. (1) is
bounded for any fixed n, the estimate depends on n. If α is rational, then
such set may be unbounded as well as in the resonant case.

The question on the boundedness of the set of all periodic solutions
in C for resonant equations seems to be rather difficult (e.g., see papers by
R. Ortega and coauthors in 90’s or [8] and citations therein).
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2. Main results

2.1. Assumptions on nonlinearities

We study the equation

x′′ + α2x = g(t, x, x′) (5)

with a bounded continuous nonlinearity g(t, x, x′). The main assumption
of Theorems 1 and 2 below is that g has the following special form:

g(t, x, y) = b(t) + f(x) + f0(y) + f1(t, x, y), (6)

i.e., it contains the principal (controllable) part b(t) + f(x) + f0(y) and the
smaller (uncontrollable) term f1. The odd function (3) and the correspond-
ing limit

ψ = lim inf
R→∞

|Ψ(R)|

play the principal role in our constructions. The main condition is ψ > 0
or, equivalently, ψ 6= 0. This conditions is valid for functions f that satisfy

f+ = lim
x→+∞

f(x) 6= f− = lim
x→−∞

f(x). (7)

In this case ψ = 2|f+ − f−|. The condition ψ > 0 holds for various other
functions ([6]). If the primitive of f̃ has sublinear growth at infinity, then∫ π

−π

sin t f̃(R sin t) dt→ 0 as R→∞.

We can choose as f̃ any periodic or almost periodic functions with zero
average, functions of the type sin(x3) and sin( 3

√
x), their combinations and

many others. For an even function f̃ such integral is zero. Therefore, if the
function f is the sum of a function satisfying (7), a function with sublinear
primitive, and an even function, then again ψ = 2|f+ − f−| 6= 0.

In Sec. 3.1 we discuss more general types of admissible nonlinearities.

2.2. Main theorems

Theorem 1. Let the number α be irrational and suppose that the equations
b(−t) = −b(t), f1(−t,−x, y) = −f1(t, x, y) and f(−x) = −f(x) hold. Let
ψ > 0 and

Φ = sup |f1(t, x, y)| <
1
4
ψ. (8)

Then Eq. (5) with f0 ≡ 0 has an infinite sequence of odd periodic solutions,
whose minimal periods and amplitudes tend to infinity.
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Under the assumptions of this theorem the function t 7→ g
(
t, x(t), x′(t)

)
is odd for any odd differentiable function x(t).

In the proof below we find the required odd subharmonics of the period
2nπ in the form xn(t) = R sin(mn t)+h(t), where R > 0 is large, ‖h‖ = o(R).

For the same n there exists another odd subharmonic x̃n = −R sin(mn t) +

h̃(t), generically h(t) 6= −h̃(t). In an appropriate Banach space of the pairs
(R, h) the topological indices of these subharmonics are +1 and −1.

Theorem 2. Let α be irrational, and suppose that f1(−t, x,−y) =
f1(t, x, y) and b(−t) = b(t). Let ψ > 0 and furthermore suppose that (8)
holds. Then Eq. (5) with arbitrary even bounded f0 has an infinite sequence
of even periodic solutions, their minimal periods and amplitudes tend to in-
finity.

The proof of Theorem 2 conceptually is close to that of Theorem 1 (see
Sec. 4) and we omit it. The difference is that the unknown solution instead
of (17) has the form x(t) = R cosmt+ h(t) with even h.

Let us stress that in Theorem 2 we do not suppose any symmetry of
the function f(x); from ψ > 0 it follows that its odd part [f(x)− f(−x)]/2
is essentially nonzero. Under the assumptions of Theorem 2 the function
t 7→ g

(
t, x(t), x′(t)

)
is even for any even function x(t).

Both Theorems 1 and 2 are applicable for equations with non-odd and
non-even b(t), if a shift b(t + φ) is either odd or even. For the equation
x′′+α2x = sin t+f(x) with odd f both theorems are applicable (Theorem 2
after an appropriate shifting the time). Every periodic solution of the
least period 2nπ is embedded in the family N of n shifts x(t + 2kπ), k =
0, 1, . . . , n − 1. In this case the family N may contain both even and odd
solutions.

Under the assumptions of Theorems 1 and 2 the amplitudes An of large
subharmonics of the period 2nπ satisfies conditions An ≥ c n2 (c > 0). It
is possible that there are also subharmonics with smaller amplitudes.

Generically, the situation under conditions of Theorems 1 and 2 is as
follows. The accumulated index of all periodic solutions of the least period
2nπ in L2

(
(0, 2nπ),R

)
is zero. Only the possibility to consider the corre-

sponding operators in more narrow space of odd or even functions allows
us to find a solution of non-zero index. The situation may be illustrated
with the following example. If we perturb the equation zz̄ = 1 on the com-
plex plane with a small term εizz̄, then all solutions of the non-perturbed
equation (there exist plenty of them!) disappear for any arbitrary small ε.
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In contrast, solutions of the real equation x2 = 1 can not be destroyed by
small real perturbations.

3. Possible generalizations

3.1. Nonautonomous controllable nonlinearities

It is possible to include in the controllable part of the system some other
nonlinearities. Let us give some examples.

Almost without changing of the proof it is possible in Theorem 1 to
include terms of the form a(t)f2(x′) with arbitrary f2 and odd a(t) and
terms of the form a(t)f2(x) with even (odd) a(t) and odd (even) f2(x).
The only assumption is that a(t) is finite trigonometrical polynomial with
zero average. The proof uses the equality∫ π

−π

sinmt sin(nkt+ φ) f2(R sinmt) dt = 0,

it is valid for any fixed k 6= 0 for sufficiently large coprime m and n.
Analogously, it is possible to include the terms a(t)f2(x) and a(t)f2(x′)

in the formulation of Theorem 2.
It is also possible to generalize all theorems to the case of unbounded

sublinear nonlinearities using constructions from [9].

3.2. Equations of higher order

Theorems 1 and 2 without additional difficulties may be generalized for
equations

L
(
d
dt

)
x = g(t, x, x′)

of higher order with an even polynomial L(p), and for more general equa-
tions

L
(
d
dt

)
x = M

(
d
dt

)
g(t, x, x′)

from the control theory (here M is also some even polynomial, degM <

degL). The only condition is that L(p) = (p2 + α2)L1(p) where the poly-
nomial L1 has no roots on the imaginary axis.

It is also possible to obtain analogs of Theorem 1 and 2 for vector
systems z′′ + Az = b(t) + f(t, z, z′) with odd or even 2π-periodic forcing
term b(t), the corresponding symmetric vector nonlinearity f , if the matrix
A has a simple positive eigenvalue that is not square of any rational.
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3.3. On a quantity of subharmonics

The set of numbers n such that there exist subharmonics of the period 2nπ
does not coincide with sufficiently large denominators of convergents.

Let us choose γ ∈ (0, 1) and Cγ > 0. Let the number α may be
approximated by the rational number m/n, i.e., let∣∣∣α− m

n

∣∣∣ ≤ Cγn
−1−γ . (9)

As it follow from the proof given below, for sufficiently large such n sub-
harmonics of the period 2nπ also exist. Estimate (9) seems to be valid for
essentially ‘dense’ set of integer numbers n than the set of denominators of
convergents.

3.4. Result for equations without symmetries

Here we formulate without proof a theorem on existence of subharmonics
that are neither even nor odd. This theorem is applicable only for the case
where the forcing term has infinitely many nonzero terms in its Fourier
series. Authors do not know similar results for b(t) having a finite number
harmonics only (e.g. for b(t) = sin t)).

Consider Eq. (1). Let limits (7) exist, without loss of generality we
suppose that f+ = −f− 6= 0. Furthermore, let us suppose that for some
β > 0 the estimate

lim sup
|x|→∞

|x|β
∣∣f(x)− fsign x

∣∣ <∞, (10)

is valid; fsign x = f+ for x > 0 and fsign x = f− for x < 0.
We denote n and m = m(n) the numerators and the denominators of

convergents of irrational α. Let N be an infinite sequence of the denomi-
nators n such that εn sign(f+) = α2 −m2/n2 > 0. (i.e., we consider either
even or odd convergents only). Suppose the sequence N contains an infinite
number of convergents with odd denominators n.

Let the function b be absolutely continuous and have a piece-wise con-
tinuous derivative. Consider the Fourier series

b(t) =
a0

2
+

∞∑
k=1

ak sin(kt+ ϕk), ak > 0, k = 1, 2, . . . (11)

of the function b and put

∆m = max
t∈R

|dm|, dm(t) =
∑

k=1,3,5,...

akm

m2k2 − α2
sin(ϕkm − kt). (12)
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The function dm has the period 2π and satisfies dm(π + t) = −dm(t).
The principal conditions for subharmonics existence are given in terms

of the rate coefficient β, of the asymptotics of ∆m as m → ∞, and of the
numbers εn.

Theorem 3. Let f+ 6= 0. Let the number α be transcendental and either
|εn|n1+β ≤ c <∞ and

lim
n→∞

∆1+β−1

m(n)

n2(1+β−1)|εn|
= ∞, (13)

or |εn|n1+β →∞ and

lim
n→∞

∆m(n)

n3|εn|
= ∞. (14)

Then Eq. (1) has an infinite sequence of 2nπ-periodic solutions, their am-
plitudes An tend to infinity as |εn|−1.

The condition |εn|n1+β →∞ may be valid if β > 1 only.
Let |εn| ∼ n−1−β+ε, ε > 0 and am ≥ m−γ . Then the assumptions of

this theorem are valid if β > γ + 2− ε.
Equalities (13) and (14) and usual estimates on the rate of convergence

of Fourier coefficients to zero imply the condition εnn
2+γ → 0 as n → ∞

for some γ > 0. This condition may be valid only for transcendental α
(Roth Theorem). Moreover, the set of such very well approximated α has
measure zero.

4. The proof of Theorem 1

4.1. Introduction to the proof

We will use below the continued fraction of the irrational number α ([10]).
We use the estimate ∣∣∣α− m

n

∣∣∣ ≤ 1
n2

(15)

that is valid for any convergent m/n of the continued fraction of the irra-
tional number α ([10]). According to (15), the estimate |εn| ≤ (2α+1)n−2

holds. The numerator m ∼ αn tends to infinity almost proportionally to n.
We fix an a priori unknown positive integer n and find 2nπ-periodic

solution of Eq. (5). In the proof n is a sufficiently large denominator of
convergent of α We denote εn = α2−m2n−2; this value may be positive or
negative.
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Let us rescale time in (5). Each 2nπ-periodic solution of (5) may be
generated by the corresponding 2π-periodic solution of the equation

x′′ + α2n2x = n2g(nt, x, x′n−1), (16)

where g(t, x, x′) = b(t) + f(x) + f1(t, x, x′). We search the required odd
2π-periodic solutions of (16) in the form

x(t) = R sinmt+ h(t). (17)

If h(t) is odd and 2π-periodic, then x(t) is also odd and 2π-periodic.
The integer number n is considered as a large parameter, the value

R > 0 and the function h are unknowns; they depend on n; the value of R
is large, the norm ‖h‖C1 is o(R).

Under the main condition ψ > 0 for large R the function Ψ has the
constant signature σ(f). In the proof below we consider only ‘a half’ of
the values of n: such that σ(f)εn > 0. We put R ∼ |εn|−1, therefore for
algebraic irrational α the value R has the order n2, for transcendental α it
may tend to infinity arbitrary quickly.

Below we show that for sufficiently large n Eq. (16) has an odd 2π-
periodic solution (17).

4.2. Spaces and operators

Consider the space L2
odd = L2

odd(−π, π) of odd square integrable functions
with a usual norm. Any x(t) ∈ L2

odd may be represented in the form

x(t) =
∞∑

k=1

ak sin kt,

the convergence here is in L2.
Denote by Γ = Γn the linear operator in L2

odd that is inverse to the
differential operator x′′+α2n2x with the 2π-periodic boundary conditions.
Let Qm = E − Pm, where Pm is the orthogonal projector onto the line
λ sinmt. The operator Γn is completely continuous and self-adjoint in L2

odd,
its spectrum consists from the sequence of simple eigenvalues (α2n2−k2)−1,
k = 1, 2, . . . , and from zero. For any x ∈ L2

odd the function Γx is differ-

entiable. The operator Γ′ = Γ′n = d
dtΓ does not act in L2

odd. It is defined
on L2

odd and maps odd functions to even ones; it is completely continuous
as an operator from L2

odd to L2. Under the assumptions of Theorem 1 the
operator x 7→ g(t,Γnx, n

−1Γ′nx) acts in the space L2
odd and is completely

continuous.
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The norm of Γ in L2
odd equals n−2|εn|−1, it is attained on the function

sinmt. The norm of the operator ΓQm in L2
odd admits the estimate c n−1.

Here and below we use the same notation c for all constants, their exact
values do not play any role.

4.3. Equivalent system

Function (17) is an odd solution of Eq. (16) iff the pair (R, y), R ∈ R+,
y(t) ∈ L2

odd is a solution of the system

πεnR =
∫ π

−π

sinmt Y1(t) dt, y = n2QmY1(t) (18)

with two unknowns R and y. For ξ ∈ [0, 1] we use the denominations

Yξ(t) = gξ

(
nt,R sinmt+ ξΓy(t),

(
mR sinmt+ ξΓ′y(t)

)
n−1

)
,

gξ(t, x, y) = f0(x) + ξ
[
b(t) + f1(t, x, y)

]
The mapping (R, y(t), ξ) 7→ Yξ(t) is completely continuous with respect to
its variables for any n. Consider for ξ ∈ [0, 1] the deformation

Ξ = Ξ(R, y; ξ) =
(
ΞR(R, y; ξ),Ξh(R, y; ξ)

)
with the components

ΞR(R, h; ξ) = R− [πεn]−1

∫ π

−π

sinmtYξ(t) dt,

Ξh(R, h; ξ) = y − ξn2QmYξ(t).
(19)

Singular points (R, y) of the deformation for ξ = 1 generate necessary
periodic solutions (17) with h = Γy.

Let us prove that for a proper choice of constants rj > 0 on the boundary
of the cylinder

Zn =
{
R : R ∈ [r1ε−1

n σ(f), r2ε−1
n σ(f)]

}
×

{
y ∈ L2

odd : ‖y‖L2 ≤ r3n
2
}

this deformation has no singular points for ξ ∈ [0, 1] (see Sec. 4.5). Then
we prove (in Sec. 4.6) that for ξ = 0 the rotation on ∂Zn of the vector field
Ξ(R, y; 0) is non-zero. This proves Theorem 1 according to general degree
theory [2].
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4.4. Auxiliary statements

Let positive ρ belongs to some unbounded set R ∈ R+, and let R(ρ), r(ρ) :
R → R be some functions, and R(ρ) →∞ as ρ→∞.

Lemma 1. Let q(t) be Lipschitz continuous, and suppose that e(t) is twice
continuously differentiable and satisfies mes{t ∈ [−π, π] : e′(t) = 0} = 0.
Let, furthermore,

lim
ρ→∞

r(ρ)
R(ρ)

= 0. (20)

Then the following equality is valid:

sup
‖h‖C1≤r(ρ)

∫ π

−π

q(t)
(
f
(
R(ρ)e(t) + h(t)

)
− f

(
R(ρ)e(t)

))
dt = 0. (21)

From this Lemma it follows that equality (21) implies the relation

sup
‖h‖C≤c r;

m−1‖h′‖C≤c r

∫ π

−π

sinmt
(
f
(
R sinmt+ h(t)

)
− f

(
R sinmt

))
dt = 0 (22)

for any integer m (partially, for m = m(ρ) → ∞). After the change of
variables t := mt we get the average of m→∞ infinitesimal terms.

The proof of Lemma 1 is given in Sec. 4.7, the proof for r = const was
given in [6].

In the proof of Theorems 1 and 2 we use estimates of norms in C1 of
functions h = Γy.

Lemma 2. The inequalities

‖Γy‖C ≤ c n, ‖Γ′y‖C ≤ c n2, ‖
(
Γy

)′′‖C ≤ c n3 (23)

are valid for the component y of all singular points of Ξ(R, y; ξ).

Two first estimates (23) follow from the estimates

‖ΓnQm‖L2→C ≤ c n−1 and ‖Γ′nQm‖L2→C ≤ c,

from the uniform boundedness of Yξ. The last estimate follows from the
equality

(
Γy

)′′ + α2n2Γy = n2gξ and the first estimate (23).
From estimates (23) for zeros (R, y) of the deformation Ξ(R, y; ξ) it

follows the relationship

Ψ(R)−
∫ π

−π

sinmt f
(
R sinmt+ ξΓy(t)

)
dt = o(1). (24)
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Remark. We do not use estimates of the second derivatives (Γy)′′ in
the proof of Theorem 1 since there is no term f0(x′). However, in the proof
of Theorem 2 (and in the proofs of nonformulated generalizations of both
Theorems 1 and 2, mentioned in Sec. 3.1) the relationships∫ π

−π

q(t)
[
f0

(
R
m

n
cosmt+ ξn−1Γ′y(t)

)
− f0

(
R
m

n
cosmt

)]
dt→ 0

are necessary; they can be easily obtained.

4.5. Nondegeneracy of the deformation

It is necessary to prove that the deformation Ξ is a homotopy of the bound-
ary ∂Zn of the cylinder Zn for a proper choice of the numbers rj . This
boundary consists from two parts: from the set

∂ZR
n =

{
Rεnσ(f) = rj , j = 1, 2; ‖y‖L2 ≤ r3n

2
}

and from the set

∂Zy
n =

{
R ∈ [r1ε−1

n σ(f), r2ε−1
n σ(f)]; ‖y‖L2 = r3n

2
}
.

Nondegeneracy on the set ∂ZR
n is valid for sufficiently small r1 > 0

and sufficiently large r2 > 0. Let our deformation is degenerated for some
ξ ∈ [0, 1]. Suppose without loss of generality that σ(f) = 1, εn > 0 and
Rεn = r1. Let us take the limits in the equality

R = [πεn]−1

∫ π

−π

sinmtYξ(t).

For large n due to (24) it implies the inequality

πr1 ≥ ψ −
∫ π

−π

| sinmt|Φ dt,

it is impossible according to condition (8) for r1 <
1
π (ψ − 4Φ).

Nondegeneracy on the set ∂ZR
n for r3 > 0 large enough follows from

Lemma 1.

4.6. Index calculation

For ξ = 0 the homotopy Ξ takes the form

ΞR(R, h; 0) = R− [πεn]−1

∫ π

−π

sinmt f(R sinmt) dt,

Ξh(R, h; 0) = y.



November 18, 2003 23:35 WSPC/Trim Size: 9in x 6in for Proceedings 14a

13

The rotation of this field on ∂Zn according to the standard Rotation Prod-
uct Formula coincides with the non-zero rotation of the scalar field

R− [πεn]−1

∫ π

−π

sinmt f(R sinmt) dt = R− [πεn]−1Ψ(R)

on the interval [r1ε−1
n σ(f), r2ε−1

n σ(f)]. It is easy to check that this field
take the values of various signature at the ends of the interval.

4.7. Proof of Lemma 1

Let us choose a number ε > 0 and cover the set {t ∈ [−π, π] : e′(t) = 0}
by a finite family of open intervals with the total length less than
ε/(4 sup |q| sup |f |). Fix these intervals, they are independent from ρ. Since
the functions f and q are bounded, the corresponding integral is not greater
than ε/2.

The rest part of the interval [−π, π] is another family of intervals [aj , bj ].
On any such interval the function e(t) is strictly monotone and its derivative
is separated from zero:

|e′(t)| > δ > 0, t ∈
⋃

[aj , bj ].

For sufficiently large values of ρ the function R(ρ)e(t) +h(t) is also strictly
monotone on any [aj , bj ] and

|R(ρ)e′(t) + h′(t)| > δ/2, t ∈
⋃

[aj , bj ].

To prove the lemma it is sufficient to establish that for any j

lim
ρ→∞

sup
‖h‖C1≤r(ρ)

∫ bj

aj

q(t)
(
f
(
R(ρ)e(t) + h(t)

)
− f

(
R(ρ)e(t)

))
dt = 0.

Now j is fixed up to the end of the proof of the lemma.
Let us make in the integral∫ bj

aj

q(t) f
(
R(ρ)e(t) + h(t)

)
dt

the monotone substitution of time t = t(τ), τ = τ(t) defined by the for-
mula R(ρ)e(τ) = R(ρ)e(t) + h(t); this substitution is well defined by the
construction. In the obtained integral∫ τ(bj)

τ(aj)

q
(
t(τ)

)
τ ′(t) f

(
R(ρ)e(τ)

)
dτ
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we should prove that

|aj − τ(aj)|, |bj − τ(bj)|, |τ − t(τ)|, |τ ′(t)− 1| → 0. (25)

The functions e(t) and e(t) + [R(ρ)]−1h(t) are strictly monotone for
large ρ. Therefore on the corresponding set the inverse function e−1 is
well-defined. By construction, it is Lipschitz continuous. Hence from

τ = e−1
(
e(t) + [R(ρ)]−1h(t)

)
= t+ e−1

(
e(t) + [R(ρ)]−1h(t)

)
− e−1

(
e(t)

)
it follows that

|τ − t| =
∣∣∣e−1

(
e(t) + [R(ρ)]−1h(t)

)
− e−1

(
e(t)

)∣∣∣ ≤ L
∣∣[R(ρ)]−1h(t)

∣∣ = o(1)

(L = L(δ) is a Lipschitz constant of e−1). This guarantees that three
first terms in (25) tend to zero. Now let us differentiate the identity
R(ρ)e(τ) = R(ρ)e(t) + h(t) with respect to τ , we obtain R(ρ)e′(τ) =
[R(ρ)e′(t) + h′(t)]t′(τ). The last value from (25) tends to zero according to

|t′(τ)− 1| =
∣∣∣ e′(τ)
e′(t) + [R(ρ)]−1h′(t)

− 1
∣∣∣ =

∣∣∣e′(τ)− e′(t)− [R(ρ)]−1h′(t)
e′(t) + [R(ρ)]−1h′(t)

∣∣∣.
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