
LECTURE 1. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 3, 2004

L.1. Systems, structure, life cycle, examples.

PLAN:

1.Profile of specialist 2.About course 3. Illustrative example of system and life cycle

4.Role of mathematics (models, algorithms) 5.Life cycle and logistic curve

6.Russian engineering experience 7.Levels of system complexity

8.Simple examples of systems 9.Monitoring systems

1.Profile of specialist

STRUCTURE:

A. Basic scientific disciplines

1.Mathematics

2.Physics, physical-chemical processes , etc.

B.Special engineering disciplines

1.Radioengineering, etc.

C. Information technology

D. Management / economics

E. System thinking

F. Creativity

G. Experience in applied domains

2.About course

A.Systems, multi-disciplinary systems

(airplane, machine, radar, team, plan, manufacturing systems, etc.)

B.Life cycle (life cycle engineering)

C.Design schemes (frameworks), support of life cycle

D.Structure of the course:

(1)lecture blocks

(schemes, models/methods, technological problems, applied examples)

(2)Assignment (simple preliminary works)

(3)Projects (realistic applied systems)

E.Neighbor courses:

*system engineering

*system design (e.g., architecture, mechanical engineering)

*technology management

*multicriteria decision making

*combinatorial optimization

*knowledge engineering

*applications (engineering, management, information technology)

3.Illustrative example of life cycle

A.Life cycle:

*preliminary research

*R&D

*manufacturing

*testing

*marketing

*utilization & maintenance

*recycling

B.A system (airplane):

*body

*engine

*electronics (control, communication, etc.)

*human environment

Additional support subsystem:

*maintenance

*training

*recycling subsystem

*etc.

4.Role of mathematics

A.Models

*structural models (e.g., graphs, networks)

*optimization models

*multicriteria decision making

*differential equations (dynamics)

*game theory

*uncertain models (probability, fuzzy sets)

B.Algorithms

C.Solving schemes

Real New Application =>

new or modified models / algorithms

5.Life cycle and logistic curve

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

T: about 12 years (submarines, airplanes, nuclear technology, etc.) TENDENCY: increasing T (2 years, 6 months)

t

R&D Manuf. Testing Market. Utiliz. Recycling

T 0

R&D Manuf. Testing Market. Utiliz. Recycling

T

RESULT: need of specialists in system design & specialists in life cycle engineering

Effectiveness

Resource

Start

Growth

Maturity

Decline

6.Russian engineering experience

Complex systems:

1.Airplanes

2.Aerospace systems (stations, etc.)

3.Communication systems

4.Nuclear technology

5.Defense systems (radars, etc.)

6.etc.

Factors:

1.Creative people

2.Educational system

3.Engineering traditions (in design of complex systems)

4.Complex problems

 (very large territory, various environments, etc.)

7.Levels of system complexity (A.Shenhar)

Level 1. Arrays (network of systems, e.g., network of radar defense systems)

Level 2. System (multiple functions; radar, defense system)

Level 3. Assembly (one function: TV)

Level 4. Component

8.Simple examples of systems

TEAM

Manager

a1

Technician

 a4

Researcher

 a2

Engineer

 a3

Friendship
Management

Common

experience

a2 a3

a4

a1

DSS

DATA

Models/

algorithms

Solving Analysis Planning
Library of

examples
Helper

User interface

9.Monitoring systems

R

Control

Integration

(fusion),

analysis

SENSORS

ACTUATORS

LECTURE 2-3. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 4, 2004

L.2. Modularity, system decomposition (partitioning), example.

L.3. Structural models (graphs, networks, binary relations), examples.

PLAN:

1.Decomposition (partitioning) of systems *decomposition – partitioning; *illustrative examples; *approaches

2.Issues of modularity: *description and a basic linguistic analogue

*applied examples (mechanical engineering, , aerospace engineering, etc.) *goals and results

3. Structural models: *graphs (graphs, digraphs, sign graphs)

*simple structures (e.g., chains, trees, parallel-series graphs)

*problems on graphs (metric/proximity, optimization, advance models)

1.Decomposition / partitioning of systems

Decomposition: series process (e.g., dynamic programming)

Partitioning: parallel process / dividing (combinatorial synthesis)

Methods for partitioning:

 *physical partitioning

*functional partitioning

Examples (for airplane, for human)

Examples for software:

1.Series information processing (input, solving, analysis, output)

2.Architecture:

data subsystem, solving process, user interface,

training subsystem, communication

3.Additional part: visualization (e.g., for data, for solving process)

4. Additional contemporary part (model management) as follows:

*analysis of an initial applied situation,

*library of models / methods,

*selection / design of models / methods,

*selection / design of multi-model solving strategy

1.Decomposition / partitioning of systems: Example for multifunction system testing

System

functions

Function

clusters

F1 F2 F3
Digraph

of clusters

Cluster F1 Cluster F2
Cluster F3

Main approaches to partitioning of systems

A.Content analysis and experience:

*by functions (basic functions, auxiliary functions)

*by system parts (physical partitioning)

B.Cluster analysis (clustering)

Cluster F1

Cluster F2

Cluster F3

Cluster F4

Cluster F5

Cluster F6

2.Issues of modularity

PRINCIPLES FOR MANAGEMENT OF COMPLEXITY :

*discrete pieces (modules)

*standard interfaces for module communication

Applications: *new technology design * organizational design

TEXTS

PRASES

WORDS

ABC

LINGUISTIC SYSTEM

Applied examples for usage of modularity

1.Genetics

2.Reconfigurable manufacturing

3.Software libraries of standard modules

4.Combinatorial Chemistry:

*molecular design in chemistry and biology

*drug design

*material engineering

*etc.

5.Aerospace & mechanical engineering

6.Electronics

7.Civil engineering

Main goals of modularity and resume

Main goals:

1.Management of complexity

2.Parallel work

3.Accomodation of future uncertainty

4.Variety of resultant modular systems

5.Flexibility, adaptability, reconfigurability of resultant modular systems

Resume:

1.Simple design process & simple all phases of life cycle

2.Short life cycle of product, long life cycle of product modules

3.Reconfigurable systems (e.g., manufacturing systems):

long life cycle for system generation

4.Simple design and support of product families (airplanes, cars, etc.)

5.Simple design and support of different products

(on the basis of module libraries as reuse)

3.Structural models

A.GRAPHS

1.Graphs

2.Digraphs (directed graphs, oriented graphs - orgraphs)

3.Graphs / digraphs with weights (for vertices, for edges / arcs)

4.Simple graphs: chains, trees, parallel-series graphs, hierarchies

5.Sign graphs

B.NETWORKS

C.AUTOMATA

D.BINARY RELATIONS

Illustration for graphs / digraphs

Graph: G = (A,E) where a set of nodes (vertices) A={1,…,n}

and a set of edges E  A×A (pairs of nodes)

Example: A={a, b, c}, E={(a, b), (b, c), (a, c)}

a
b

c

Digraph (orgraph): G = (A,E) where a set of nodes (vertices) A={1,…,n}

and a set of arcs E  A×A (pairs of nodes)

 Example: A={a, b, c}, E={(a, a), (a, b), (b, c), (a, c)}

a b

c

 a b c

a 1 1

b 1 1

c 1 1

Matrix

 a b c

a 1 1 1

b 1

c

Matrix

Illustration for graphs with weights

Graph (weights of edges): G = (A,E) where a set of nodes (vertices)

A={1,…,n} and a set of edges E  A×A (pairs of nodes)

Example: A={a, b, c}, E={(a, b), (b, c), (a, c)}

a
b

c

 a b c

a 2 5

b 2 3

c 5 3

Matrix

Graph (weights of edges & nodes): G = (A,E) where a set of nodes

(vertices) A={1,…,n} and a set of edges E  A×A (pairs of nodes)

Example: A={a, b, c}, E={(a, b), (b, c), (a, c)}

(weights of nodes are pointed out in brackets)

a(1) b(2)

c(4)

 a b c

a 2 5

b 2 3

c 5 3

Matrix

Simple structures (chains, trees, parallel-series graphs)

CHAIN

TREE

PARALLEL-SERIES

GRAPH

Simple structures (hierarchy)

Level 4

Level 3

Level 1

Level 2

Sign graph: illustrative examples

Ecological

system

+

+

-

-
FOX

RABBIT

Team
a0

Manager

a1 a2 a3

Researcher Engineer Technician

a0

a1 a2 a3

-

+
+

+ +

-

Some advanced structural models

1.Multigraphs

2.Graphs with versions for nodes (vertices)

3.Graphs with “vector weights”

4.Graphs with fuzzy weights

Problems on graphs

A.Metric / proximity (in graph between nodes, between graphs)

Proximity between graphs:

1.metrics, 2.edit distance (minimal “cost” transformation), 3.common part

B.Optimization on graphs:

1.Shortest path

 2.Spanning tree (& close approximation problems: spanning by other simple structures)

3.Traveling salesman problem

4.Minimal Steiner tree

5.Ordering of vertices

6.Alocation on graphs

7.Covering problems

C.Balance problem for sign graphs

D.Clustering (dividing into interconnected groups)

Optimization problems on graphs: illustrations

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

BASIC GRAPH (DIGRAPH):

weights for arcs (or edges)
2

1

2

2

4

4

1

3 4

3

2

4 3

2

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9
2

1

2

2

4

4

1

3 4

3

2

4 3

2

Shortest Path for < a0,a9 >:

L = < a0,a1,a2,a3,a4,a7,a9 >

2+1+1+2+2 = 8

Optimization problems on graphs: illustrations

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

Spanning tree (length = 19):

2

1

2

4

4

1

3 4

3

2

4 3

2

Traveling Salesman Problem :

L = < a0,a1,a3,a5,a7,a9,a8,a4,a2,a6>

2+1+3+4+2+2+3+4+4+4

a4

a3 a7

a1

a0 a2

a5 a6
a9

a8

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9
2

1

2

4

4

1

3 4

3

2

4 3

2

2

2

Optimization problems on graphs: illustrations

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

Steiner tree (example):

2

1

2

4

4

1

3 4

3

2

4 3

2

“Ordering” Problem (close problems: sequencing, scheduling):

a4

a3 a7

a1

a0 a2

a5 a6

a9
a8

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9
2

1

2

2

4

4

1

3 4

3

2

4 3

2

a0

a1,a2,a3

a4,

a5,a6,a7

a8,a9

2

Optimization problems on graphs: illustrations

Allocation (assignment, mapping):

Positions

. . .

Set of

elements ALLOCATION

(mapping, assignment)

Example: system function clusters and covering by chains (covering of arcs)

F5

F6

F1

F2

F3 F4

F1 F2 F3 F4 F5 F6 F3

F1 F3 F5 F3

Digraph of system

function clusters

Illustration for clustering

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9 Basic graph

2

1

2

4

4

1

3 4

3

2

4 3

2

Clusters (a version):

C1 = { a0 , a1 }

C2 = { a3 , a5 }

C3 = { a8 , a9 }

C4 = { a2 , a4 , a6 , a7 }

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

4

4

3

3

2

3

2

2

Binary relations

Initial set A = {1, 2, …, n}, B = A × A ( (x, y) such that x, y  A)

Definition. Binary relation R is a subset of B

EXAMPLE: A={a, b, c, d}

B = {(a, a), (a, b), (a, c), (a, d), (b, a), (b, a), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d),

(d, a), (d, b), (d, c), (d, d)}

R1 = { (a, b), (b, c), (c, b), (d, c) }

R2 = { (a, d), (b, d), (a, c) }

R3 = R1 & R2

a b

c d

R1

a b

c d

R2

a b

c d

R3=R1&R2

Binary relations

SOME PROPERTIES:

1.Symmetry: (x, y)  R => (y, x)  R ( x  R ,  y  R)

2.Reflexivity: (x, x)  R  x  R

3.Transitivity: (x, y)  R , (y, z)  R => (x, z)  R ( x  R ,  y  R ,  z  R)

APPLICATIONS: *Friendship, *Partnership, *Similarity, *Etc.

Context Examples:

1.”Better” (dominance)

2.”Better & Equal” (dominance & equivalence)

3.”Equal” (equivalence)

Extended models:

1.Weighted binary relations (e.g., power of dominance)

2.K-relations

Prospective usage:

Combinatorial optimization problems on graphs with additional binary relations

(over node/vertices, over edges / arcs, over elements / positions)

LECTURE 4. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 10, 2004

L.4. Example: joint design of hierarchical system. Communication systems.

PLAN:

1.Joint design of a hierarchical system : *structural scheme *hierarchical model *generation of alternatives for system parts

*generation of criteria for evaluation of alternatives for system parts *multicriteria selection of alternatives

*synthesis of a composable system

 2.Discussion of prospective research directions in communication networks

Example of a hierarchical system: information center

Information center S=A*R*X*I*W

Personnel R

A1

A2

A3

A4

Computer

Resources

R=V*H
Copy

machine X
Information

Resources I

I1

I2

I3

I4

Information

products

for market W

W1

W2

W3

X1

X2

X3

Hardware

H=D*C*Q*T

Software

V=O*P*U*B

OS

O Packages for

communication

P
O1

O2

O3

P1

P2

P3

P4

P5

P6

P7

Intelligent

Interface

U

U1

U2

U3

U4

U5

U6

U7

U8

Databases

B=J*N

DBMS

J

J1

J2

J3

Hypertext

N

N1

N2

N3

N4

Computers

D

D1

D2

D3

LAN C

C1

C2

C3

C4

External

commu-

nication

Q

Q1

Q2

Q3

Equipment

for

information

transmission

T

T1

T2

T3

T4

T5

T6

Joint design of a hierarchical system: student business

ALTERNATIVES:

P1 a simple food

P2 support service (help) for usage of home PC

P3 special consulting service for searching for personnel in HighTech (for companies, for specialists)

F1 self-financing

F2 financing by relatives & friends

F3 financing by a bank

F4 financing by a company

M1 in university

M2 special office in Dolgoprudny

R1 Dolgoprudny

R2 Moscow

R3 New York

Student Business S=P*F*M*R

Product /

service P
Financial

support

F

Market

(place) R Manufacturing

 (place)
M

P1(1)

P2(3)

P3(2)

F1(2)

F2(1)

F3(2)

F4(1)

M1(1)

M2(2) R1(1)

R2(2)

R3(3)

Priority

Assessment of alternatives and total priority

P1 1 5 3

P2 3 5 2

P3 4 4 5

Cost of manufacturing (-) Volume of to-day’s market (+) Perspectives(+) Resultant grade Total priority

7

4

5

1

3

2

R1 1 0 0

R2 3 2 1

R3 3 3 5

 Volume (+) Possible competition (-) Distance(-) Resultant grade Total priority

1

0

-5

1

2

3

F1 1 1

F2 2 1

F3 5 5

F4 4 3

 Possible volume(+) Responsibility(-) Resultant grade Total priority

0

1

0

1

2

1

2

1

M1 1 5

M2 3 5

 Cost(-) Usefulness(+) Resultant grade Total priority

1

2

4

2

Assessment of compatibility between alternatives

P1

P2

P3

F1

F2

F3

F4

M1

M2

F1 F2 F3 F4 M1 M2 R1 R2 R3

5 4 0 0 5 3 5 2 0

4 5 1 2 5 5 4 5 3

0 1 4 3 0 5 2 5 5

 5 1 5 3 0

 5 1 5 3 0

 3 5 1 5 5

 3 5 1 5 5

 5 4 5

 3 5 4

NOTE: 5 corresponds to the best level of compatibility

 0 corresponds to incompatibility

Resultant composite decisions

S1 = P1 * F2 * M1 * R1 ; vector of quality N(S1) = (4; 4,0,0);

Description: (a) all elements are at the top level (1); (b) grades of compatibility are (5,5,5,5,5,4)

Another possible prospective decision is:

S2 = P3 * F4 * M1 * R2 ; vector of quality N(S1) = (4; 2,2,0);

Description: (a) levels of elements are (1,1,2,2); (b) grades of compatibility are (3,3,4,5,5,0)

Note: the decision is infeasible by compatibility

Bottlenecks (possible problems for improving the initial situation):

1.compatibility (P3,M1) equals 0 (=> to increase)

2.compatibility (F4,M1) equals 3 (=> to increase)

3.compaibility (M1,R2) equals 3 (=> to increase)

4.priorityity of P3 (=> to improve)

5.priority of R2 (=> to improve)

Prospective research directions in communication systems (the list is under extension)

1.General design of communication network

2.GRID-like network environment (GRID-computing, GRID-communication)

3.Extension of communication network:

3a.Improvement of an existing communication network

3b.Extension of an existing communication network via additional territory

4.Allocation of resources in communication networks

(applied situations, problem, models, and approaches)

5.Frequence assignment / allocation in communication networks

(applied situation, problems, models, and approaches)

6.Reliability issues for communication networks

 6a.Evaluation of reliability

6b.Design of reliable communication networks

7.Routing problems

Prospective research directions in communication systems (the list is under extension)

8.System testing in communication networks:

probing problem

9.Maintenance in communication networks

10.Mobile communication

11a.Movement of users

11b.Movement of all components of the system

11.System for information compression (algorithm part)

12.Communication networks & free scale networks

13.Planning of access to information/computer resources

(information bases on servers or computers)

in distributed information/computer environment

(users, communication network, and

a set of information servers/computer)

14.Design of topology for communication networks

Communication system: a scheme

Network

cluster

(segment)

Network

cluster

(segment)

Network

cluster

(segment)
Network

cluster

(segment)

Center 1

Center 2

Intersection

(bridge)

Infor-

mation

server

ACCESS NETWORK

. . .

Access

node

. . .

USERS

Infor-

mation

server

. . .

COMPUTERS
INFORMATION

SERVERS

Communication

network

LECTURE 5-6. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 11, 2004

L.5. Information technology. Human participation.

L.6. Schemes of design processes, Design problems.

PLAN:

1.Information technology and its properties

2.Organizational-engineering systems. Human participation (in systems, in design)

3.Design frameworks (series process, cascade-like process). Close frameworks for information processing

4.Main design problems (design, redesign / upgrade process, multistage design,

system evaluation, revelation of bottlenecks, system evolution / development)

Information technology: structure

R&D Manufacturing Testing Marketing Utilization/Maintenance Recycling/reusing

HARDWARE PART

*VLSI

*computers

*communication

SOFTWARE PART

*oper. systems

*DBMSs

*communication soft.

MATH./ALG. PART

*math. models

*algorithms

INFORMATION PART

*data

*knowledge

ORG. PART

*specialists

*users

*HCI

*group work

APPL. SYSTEMS

*MISs

*DSSs & ESs

*etc.

“Processing” conveyor

Material processing

(machines, personnel)
Row

material

Output (results):

Products (goods)

Information processing

(machines, personnel)
Data,

knowledge

Output (results):

Data, knowledge,

decisions

Comparison: material processing & information processing

STAGES Technology for trees Information technology

Source of row

materials

Row materials

Transportation

Manufacturing

*machines

*personnel

Output

Keeping

Users

Forest

Woods

Cars, trains

Machines

Engineers, Workers

Boards, etc.

Depository

Firm for building,

Private persons

1.Books, news papers

2.Data & knowledge bases

3.People

1.Data 2.Knowledge

Communication systems

Computers, software, communication

1.Specialists 2.Users

1.Data 2.Knowledge 3.Decisions

1.Data bases 2.Knowledge bases

1.Government

2.Firms

3.University & educational systems

4.Research Institutes & Universities

5.Private persons

Properties of information technology

1.Various kinds of sources: *statistics, books, data bases *specialists, population

2.Preservation of initial information & possibility for re-processing

3.Possibility for parallel / concurrent processing

4.Possibility for usage of many different methods

5.Possibility to accumulate results (outputs)

6.High “ecologiability”

7.High requirements to professional skills

8.Unique role of human

9.High requirements to information presentation (e.g., visualization)

10.Integration:

*exact science

*engineering

*psychology

*education/training

*art (e.g., TV, cinema)

11.Wide range of users:

*science

*industry

*management, economics

*education

*art

*private life

Morphological description of specialist

Level of specialist (by J. Piaget)

A.Without B.Certain C.Abstracted

object/operations (0..5) objects/operations(5…11) object/operations(11…)

System part/domain

Applied problem

Model

Algorithm

Software

Hardware

Etc.

Series design flow (J.R. Dixon)

1.INVENTORY (generation of design decisions)

2.EVALUATION, ENGIEERING

COMPUTING

(cost, stability, reliability, efficiency, productivity

performance)

3.DECISION MAKING

(selection)

DESIGN DECISIONS

REQUIREMENTS

(from government,

from market)

Cascade-like design flow

REQUIREMENTS

(from government,

from market)

SYSTEM (general designer/manager)

Subsystems (middle-level designer)

Components

(e.g., detail designer)

PROCESS

(Top-Down):

partitioning of:

*system

*requirements

. . .

. . .

PROCESS

(Bottom-Up

design):

*generation

*evaluation

*selection

*synthesis

System architect

Coordinator

Local specialist

Roles by

Brooks

Levels of creativity (by G. Altshuller)

LEVEL 1. Usage of a well-known object (product, technology, decision, etc.)

LEVEL 2. Searching for & selection of the best object

LEVEL 3. Improvement (modification) of an object

LEVEL 4. Design of a new object

LEVEL 5. Design of a system of objects

Illustration of creativity levels for processing

Information processing Input

information

Output (results):

data, knowledge,

decisions

Fixed old algorithm

Information processing Input

information

Output (results):

data, knowledge,

decisions

Library of algorithms:

*algorithm 1

*algorithm 2

*algorithm 3

 . . .

*algorithm N

PROCESS:

*selection of

algorithm

*usage

PROCESS:

*usage

LEVEL 1

LEVEL 2

Illustration of creativity levels for processing

Information processing Input

information

Output (results):

data, knowledge,

decisions

Modified algorithm

Information processing Input

information

Output (results):

data, knowledge,

decisions

New designed algorithm
PROCESS:

*selection

*design of new

algorithm

*usage

PROCESS:

*selection

*modification

*usage

LEVEL 3

LEVEL 4

Illustration of creativity levels for processing

Information processing Input

information

Output (results):

data, knowledge,

decisions

New algorithm system

(library of algorithms,

algorithm framework, etc.

PROCESS:

*design of new

algorithm system

(e.g., algorithm,

algorithm library)

*usage

LEVEL 5

Design problems (technological problems)

1.Design

2.Redesign (improvement, upgrade process)

3.Multistage design

4.Evaluation

5.Revelation of bottlenecks

6.Modeling of system evolution /development (& forecasting)

LECTURE 7. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 17, 2004

L.7.Concurrent engineering and life cycle. Traditional hierarchical system design.

PLAN:

1.Concurrent engineering (concurrent processes, concurrency in life cycle)

2.Hierarchical system design

3.Some examples of applied systems (e.g., manufacturing systems)

4.Some problems in mobile communication systems

Illustration for concurrent engineering

0 t
Process 1 Process 2 Process 3 Process 4 Process 5

T =k
i=1 i

1 2
3 4 5

Process 1

Process 2

Process 3

Process 5

Process 4

t 0

T1 < T

t 0

Process 1

Process 2

Process 3

Process 5

Process 4

Tp < T1 < T

Series process

Concurrent scheme A

Concurrent scheme B

Concurrency in life cycle

0 t
R & D Manuf. Utiliz. Recycl.

t 0

Cycle 1

Scheme A

Market R & D Manuf. Utiliz. Recycl. Market

T 2T

Cycle 2

t

0

Scheme B

PLUS modularity, configuration management

Concurrency in life cycle for several products

t 0

Product A

t

0

Product B

ORGANIZATIONAL DIRECTION:

concurrency, modularity, configuration management, and coordination

for products A, B, etc.

. . .

. . .

Hierarchical system design

SYSTEM

A B C D E

Set of

alternatives

Composition of

selected alternatives

Selection of

the best alternatives

Set of the best

system decisions

BOTTOM-UP

PROCESS

Selection process:
1.Contsraints

2.Multicriteria selection (ranking)

3.Optimization approach

4.Expert judgment

Main approaches to system design

1.Multidisciplinary optimization (e.g., aerospace engineering, structural engineering)

2.Mixed integer non-linear programming (e.g., chemical engineering, process,

systems engineering)

3.Non-linear multicriteria (multiobjective) optimization including evolutionary

multiobjective optimization

4.Formal methods in design (e.g., mechanical engineering)

5.Global optimization methods

6.Grammatical design (i.e., grammar description of decomposable systems)

7.Methods of artificial intelligence (knowledge-based systems, neural networks,

genetic algorithms, etc.) (e.g., computer engineering, VLSI design)

8.Parameter Space Investigation PSI (e.g., mechanical engineering, nuclear engineering)

9.Hierarchical system design (traditional engineering organizational methods,

modular design methods, combinatorial synthesis)

10.Hybrid methods

LECTURE 8-9. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 18, 2004

L.8. Principles of system analysis. Paradigm of decision making. Basic DM problems.

L.9. Kinds of scales, Pareto-efficient decisions, system evaluation, hierarchy of requirements.

PLAN:

1.Priciples of system analysis. 2.Paradigm of decision making. 3.Basic decision making problems.

4.Kinds of scales. 5.Pareto-effective decisions 6.Evaluation of systems

7.Hierarchy of requirements / criteria 8.Roles in decision making process. Example

A scheme for a system

SYSTEM

Part A Part B Part C

Neighbor

system(s)

System(s) of higher

hierarchical level

EXTERNAL

ENVIRONMENT

Principles of system analysis

1.Examination of life cycle (e.g., R & D, manufacturing, testing, marketing,

utilization & maintenance, recycling)

2.Examination of system evolution / development (i.e., dynamical aspects)

3.Examination of interconnection with environment (nature, community, other systems)

4.Examination of interconnection among system parts / components

(physical parts, functions, information, energy, etc.)

5.Analysis of system changes (close to principle 2)

6.Revelation and study of main system parameters

7.Integration of various methods (decomposition, hierarchy, composition, etc.)

8.Investigation of main system contradictions (engineering, economics, ecology,

politics, etc.)

9.Integration of various models and algorithms (e.g., physical experiments,

mathematical modeling, heuristics, expert judgment)

10.Interaction among specialists from different professional domains and hierarchical

 levels (engineering, computer science, mathematics, management, social science, etc.)

Decision Making Paradigm (stages) by Herbert A. Simon

1.Analysis of an applied problem (to understand the problem:

 main contradictions, etc.)

2.Structuring the problem:

2.1.Generation of alternatives

2.2.Design of criteria

2.3.Design of scales for assessment of

alternatives upon criteria

3.Evaluation of alternatives upon criteria

4.Selection of the best alternative (s)

5.Analysis of results

Four Basic Decision Making Problems

Set of

alternatives

Choice/

selection

Linear

ranking

Group

ranking Clustering,

classification

The best

alternative
The best

alternative

Group of

the best

alternatives

Kinds of Problems by Herbert A. Simon

I.STANDARD PROBLEMS

II.FORMULIZED PROBLEMS

(models in mathematics as equations, optimization, etc.)

III.ILL-STRUCTURED PROBLEMS

*human factors, information from expert(s) & decision maker(s)

*uncertainty

IV.FORECASTING (decisions for the future)

Decision

Making

Problems

Applied Decision Making Problems

1.LEVEL OF GOVERNMENT:

*selection of research projects

*investment into infrastructure (e.g., transport, communication, education)

*selection of political decisions

2.LEVEL OF COMPANY:

*selection of product

*selection of market

*selection of personnel

*selection of partners

*selection of place for new plants, etc.

3.LEVEL OF PRIVATE LIFE:

*selection of apartment

*selection of university / college

*selection of car

*selection of bank program

*selection of place for vacation, etc.

Kinds of Scales

0

1. Quantity: quantitative scale

2.Quality: qualitative scales (levels, ordering, class)

2a.Ordinal scale

1 2 3
100

Estimate 2.5 Examples: *weight *temperature

1 2 3 4 5

2b.Nominal scale (for classes, clusters)

Initial

set of

elements

2c.Scale as partial order (generalization)

1

2’’

2’

3

4’

4’’

Description of decision making problem

Alternatives A=(A1, … , Ai , … , An) and criteria C=(C1, … , Cj , … , Ck),

 Ai a vector of estimates zi = (zi1 , …, zij , … zik)

z11, … , z1j , … , z1k

zi1, … , zij , … , zik

z11, … , z1j , … , z1k

zn1, … , znj , … , znk

z11, … , z1j , … , z1k

…

…

Z =

Matrix of estimates is:

Our goal is to get a “priority” for each alternatives: P(Ai)

Evaluation of P(Ai) can be based on the following:

1.Quantitative scale

2.Ordinal scale

3.Scale as partial order

 P(Ai)

 P(An)

 P(A1)

Pareto-effective (Pareto-optimal) decisions

C1 0

PARETO RULE:

Alternative X=(x1, … , xj , … , xk) and alternative Y=(y1, … , yj , … , yk),

X is better than Y if  j xj  yj and  i (1 i  k) such that xi > yi

C2 Ideal

decision
A1

A2 A3

A4 A5

Ao

A1 better A2

A3 better A5

A4 better A5

A1 better A5

A1 , A3, A4 are incomparable and have no dominating elements (only Ao)

A1 , A3, A4 are Pareto-effective decisions for set {A1, A2, A3, A4, A5}

Partial order on alternatives

C1 0

C2 Ideal

decision
A1

A2 A3

A4 A5

Ao

A1 better A2

A3 better A5

A4 better A5

A1 better A5

A1 , A3, A4 are incomparable and have no dominating elements (only Ao)

A1 , A3, A4 are Pareto-effective decisions for set {A1, A2, A3, A4, A5}

Evaluation of systems

Evaluation of a complex system can be based on the following:

1.Quantitative scale

2.Ordinal scale

3.Scale as partial order (including special discrete spaces)

Hierarchy of requirements / criteria

1.Ecology, politics

2.Economics, marketing

3.Technology (e.g., manufacturing issues, maintenance issues)

4.Engineering

Main roles in decision making process

1.DECISION MAKER (DM)

(to make the resultant decision, to evaluate alternatives, etc.)

2.SUPPORT SPECIALIST

(to organize the decision making procedure including support of all stages)

3.EXPERT(s) (to evaluate alternatives)

Phases of decision making process: Example for selection for the best company (P. Humphreys)

Phase 1. Analysis of initial requests (i.e., alternatives)

& deletion of the worst material (about 1/3 of the requests)
Initial set of

alternatives

(about 300)

Phase 2. Design of a special method for multicriteria

selection, evaluation of alternatives upon criteria,

selection of a group (a part) of the best alternatives

(about 20…30) (group of experts)

Phase 3. Choice of the best alternative(s) (about 1…3):

special procedure of expert judgment (group of Decision Makers)

Initial set of

alternatives

(about 300)

Initial set of

alternatives

(about 300)

LECTURE 10. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 24, 2004

L.10. Multicriteria decision making.

PLAN:

1.Multicriteria decision making: *utility function, * method of pair comparison,

*method of incomparability (“equivalence”) levels, *outranking technique (ELECTRE), *AHP, etc.

2.Integration of results obtained on the basis of several methods (or subsystems of criteria)

Examples of utility functions

Alternatives A=(A1, … , Ai , … , An) and criteria C=(C1, … , Cj , … , Ck),

 Ai a vector of estimates zi = (zi1 , …, zij , … zik) , j is a weight of criterion j

Arithmetic Fa = k
j=1 j zj / zjb

Geometrical Fg = 
k

j=1 (zj / zjb)

Quadratic Fq = k
j=1 j (zj / zjb)2

Harmonic Fh = 1 / (k
j=1 j (zj / zjb))

Power Fp = k
j=1 j (zj / zjb)k

General Fo = k
j=1 j  (zj / zjb)

where  is a differential function,

zjb is an estimate-base

j

Illustrative numerical example for multicriteria ranking

Mathematics Sport Fa Fq Pareto

 C1 C2 approach

A1

A2

A3

A4

A5

A6

A7

10 8 18 / 1 164 / 1 1

8 9 17 / 2 145 / 2 2

9 9 18 / 1 162 / 1 1

6 8 14 / 5 100 / 4 3

7 7 14 / 5 98 / 4 3

9 6 15 / 4 117 / 3 3

10 7 16 / 3 149 / 2 1

1, 3

2

7

6

4, 5

Fa

1, 3, 7

2

4, 5, 6

Pareto

approach

1, 3

2, 7

6

4, 5

Fq

Pareto-approach for example above

C1 0

C2

A1

A3

A4

A5

A2

A2 better A4

A2 better A6

A3 better A6

A3 better A4

10

5

10 5

A6

A7

A3 better A2

A3 better A5

A1 better A4

A7 better A5

A1 better A5

A7 better A6

A2 better A5

Method of “equivalence” (incomparability) levels: Initial Alternatives

C1 0

C2
Ideal

decision

A7

A11

A8

A9 A14

Ao

A15

A13

A10 A6

A16

A12

A1 A3

A2 A4

A5

Method of “equivalence” (incomparability) levels: Pairwise Comparison

C1 0

C2
Ideal

decision

A7

A11

A8

A9 A14

Ao

A15

A13

A10
A6

A16

A12

A1 A3

A2 A4

A5

Pairwise Comparison:

1.Dominance

2.Incomparability

Method of “equivalence” (incomparability) levels: basis or layers of incomparability

C1 0

C2
Ideal

decision

Ao

Method of “equivalence” (incomparability) levels: extended layers of incomparability

C1 0

C2
Ideal

decision

Ao

Method of “equivalence” (incomparability) levels: evaluation of new alternatives

C1 0

C2
Ideal

decision

Ao

Illustration for arithmetic utility function: layers of incomparability

C1 0

C2
Ideal

decision

Ao

Illustration for quasi-quadratic utility function: layers of incomparability

C1 0

C2
Ideal

decision

Ao

Illustration example for a “complex” situation of incomparability layers

C1 0

C2
Ideal

decision

Ao

Outranking technique (method ELECTRE) by B. Roy

Alternatives A=(A1, … , Ai , … , An) and criteria C=(C1, … , Cj , … , Ck),

 Ai a vector of estimates zi = (zi1 , …, zij , … zik) , j is a weight of criterion j

 pair Au, Av  A to compute:

Coefficient of “concordance”

 uv = (1 / k
j=1 j) (j  X (u, v))j

Coefficient of “discordance”

 uv = 0 if | Y (u, v) | = 0 else

 maxj ((j | zuj – zvj |) / (dj 
k

j=1 j))

X (uv) = { j | zuj  zvj }, Y (uv) = { j | zuj < zvj }, dj is scale size

RULE: Au better Av if (uv  p) & (uv  q)

where p, q are thresholds (e.g., p = 0.9 and q = 0.2)

Illustrative numerical example for multicriteria ranking

 C1 C2 C3 C4 C5

 0.1 0.1 0.15 0.4 0.25

A1

A2

A3

A4

A5

dj

10 8 8 10 4

1 9 7 5 3

0 9 10 6 1

10 2 14 3 2

7 7 5 8 3

11 8 10 8 4

Version of Result 1: p = 0.7 q = 0.3  A1 better A3

Version of Result 2: p = 0.8 q = 0.2  incomparable ones

Criteria {j}

weight  j

u = 1, v = 3

A1 A3 ?
X(1,3) = { 1,4,5 }

Y(1,3) = { 2,3 }

13 = (1 / 1) (0.1 + 0.4 + 0.25) =0.75

13 = max { (0.1 (9-8) / 8) , (0.15 (10 – 8) / 10) =

 max { 0.125 , 0.03} = 0.125

Analytic Hierarchy Process (T.L. Saaty)

C1 C2 C3 C4 C5

BOTTOM-UP

PROCESS B1
B2 (= 3c3+ 4 c4+ 5c5)

(= 1c1+ 2 c2)

J* (= 1b1+ 2b2)

Basic level

Integration level

Total level

Design parameters

of product

Usefulness

for manufactory

Usefulness for

transportation

Usefulness for

marketing

Usefulness for

maintenance

Parameters of

testability

APPLIED EXAMPLE FOR LIFE CYCLE

Integration (aggregation) of results

1, 3

2

7

6

4, 5

Fa

1, 3, 7

2

4, 5, 6

Pareto

approach

1, 3

2, 7

6

4, 5

Fq

Previous example:

Intuitive integration:
1, 3

2,7

4, 5, 6

Integration (aggregation) approaches

1.Election rules

2.Election rules & deletion of “margin results”

3.Multicriteria approaches above

4.Membership function (including fuzzy results)

Integration (aggregation) approach: Example for usage of ELECTRE (M.Sh. Levin, DSS COMBI)

(0,0)

(1,1)

q

p
(1,0)

(0,1)

(0.6,0) (0.9,0)

(0,0.4)

(0,0.1)

Grid of thresholds

SOLVING SCHEME:

1.Method ELECTRE

(for each threshold pair)

2.Ranking (obtaining layers)

3.Aggregation of results

LECTURE 11-12. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Sept. 25, 2004

L.11. Framework of decision making, examples.

L.12. Function, mapping. Optimization models.

PLAN:

1.Framework of multicriteria decision making

2.Partitioning the procedure of multicriteria decision making

 3.Numerical examples: *partitioning of initial problem *aggregation of results

4.Mapping

Framework of multicriteria decision making & its partitioning (parallelization)

ALTERNATIVES

CRITERIA

DECISION

MAKER

DM

EXPERTS

. . .
METHODS

SOLVING

PROCESS

DECISIONS

APPROACHES FOR PARTITIONING OF

DECISION MAKING FRAMEWORK:

1.By criteria

2.By alternatives

3.By experts

4.By methods

5.Hybrid approaches

Parallel Processing Scheme

DATA (VERSION 1)

AGGREGATION

SOLVING

PROCESS

RESULTANT

DECISIONS
INITIAL

DATA

PARTI-

TIONING
DATA (VERSION i)

SOLVING

PROCESS

DATA (VERSION N)
SOLVING

PROCESS

. . .

. . .

PRELIMINARY

DECISIONS

PRELIMINARY

DECISIONS

Example: Partitioning by criteria groups

 C1 C2 C3 C4 C5

A1

A2

A3

A4

A5

10 8 9 7 6 1 3 3

8 7 7 9 10 3 1 3

10 7 6 7 9 3 2 2

9 9 9 8 9 1 1 1

7 10 10 8 8 1 2 2

C6 C7 TOTAL

FINAL

AGGREGATION

Example: Partitioning by alternative groups

 C1 C2 C3

A1

A2

A3

A4

A5

A6

A7

A8

A9

10 8 9 1

8 7 7 3

10 7 6 3

9 9 9 1

7 10 10 1

10 10 6 1
6 8 9 2

7 7 9 3

9 8 9 1

1st step

 C1 C2 C3

A1

A4

A5

A6

A9

10 8 9 2

9 9 9 3

7 10 10 1

10 10 6 1

9 8 9 4

PRELIMINARY STAGE

FINAL STAGE

Example: Joint partitioning by criteria groups & alternative groups

 C1 C2 C3 C4 C5

A1

A2

A3

A4

A5

A6

A7

A8

A9

10 8 9 7 6

8 7 7 9 10

10 7 6 7 9

9 9 9 8 9

7 10 10 8 8

10 10 6 7 9

6 8 9 10 8

7 7 9 10 10

9 8 9 9 9

Possible schemes for joint partitioning by criteria groups & alternative groups

 C1 C2 C3 C4 C5

A1

A2

A3

A4

A5

A6

A7

A8

A9

Ranking 1

Ranking 3

Ranking 2

Ranking 4

Possible schemes for joint partitioning by criteria groups & alternative groups

Ranking 1

Ranking 3

Ranking 2

Ranking 4

AGGREGATION (1 & 2)

AGGREGATION (3 & 4)

FINAL AGGREGATION

Ranking 1

Ranking 3

Ranking 2

Ranking 4

AGGREGATION (1 & 3)

AGGREGATION (2 & 4)

FINAL AGGREGATION

SCHEME 1

SCHEME 2

Example: Integration tables (Glotov & Paveljev)

1

2

3

4

Scale

for A

1

2

3

4

Scale

for C

1

2

3

Scale

for D

1 1 2 3
2 2 3 3

3 3 4 4

Scale for B

1

2 D

3

1 2 3 4

 C

1 1 2 2
1 2 2 3

2 2 3 3

3 3 3 4

Scale for S

1

2 B

3

4

1 2 3 4

 A

S = A*B = A*(C*D)

A

B=C*D

C D

EXAMPLE: Basic estimates are the following: 4 for A, 3 for C, 1 for D;

 intermediate estimate for B is 2;

 resultant estimate for S is 3.

NOTE: multidimensional integration tables are possible (and usefu l) too.

Mapping & Optimization Models

x

y=f (x)

x1 x2

f(x2)

f(x1)

x  R

0 0

X

x  X  R y  Y  R

Y
MAPPING y=f (x)

Mapping & Optimization Models

z

x1

x2

z = f(x1,x2)

z = f(x1,x2)  R2

(x1,x2)  X  R2

f(x1,x2)  Z  R
x’2

x’1

X Y
MAPPING

GENERALLY:
(x1, … ,xm)  X  Rm

(y1, … ,yn)  Y  Rn

Mapping & Optimization Models

x

y=f (x)

x1 x2

f (xo)

xo

x  X  R

max f (x)

subject to

 x X

X =[x1, x2] (admissible domain)

max f (x)

subject to

 x  x1

 x  x2

max f (x)

subject to

 1 (x)  0

 . . .
 k (x)  0

GENERALLY:

x

y=f (x)

x’o

f (xo)

xo

Optimal Point

Global Optimal Point

Local Optimal

 Point

f (x) is objective function

 j (x) is constraint function (1  j  k)

Illustration table for optimization models

 Objective Constraint Type of Method

function f (x) j (x) model

 Linear Linear Linear *simplex

 *ellipsoid

 method

 *method of

 Karmarkar

Quadratic Linear Quadratic *simplex

 *ellipsoid

Convex Linear Convex *gradient

 method

 *ellipsoid

 method

Integration (aggregation) approaches

NOTES:

1.Objective function can be examined as vector-like one too

(multi-objective optimization)

2.Constraints can be examined as binary relations too

3. In discrete optimization discrete spaces are examined

4.In stochastic optimization all parameters / functions

 can be stochastic ones

5.It is possible to take into account uncertainty by two ways:

*stochastic parameters / functions

*parameters / functions on the basis of fuzzy sets

LECTURE 13. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 1, 2004

L.13. Basic models of combinatorial optimization I.

PLAN:

1.Basic combinatorial optimization problems:

*knapsack problem, *solving schemes for multicriteria knapsack problem, *multiple choice problem.

2.Algorithms: *types of solutions (exact, approximate), *types of algorithms (polynomial and enumerative algorithms),

3.Complexity of problems.

4.Global approaches and local techniques

Knapsack problem

max m
i=1 ci xi

s.t. m
i=1 ai xi  b

xi  {0, 1}, i = 1, … , m

possible additional constraints

 m
i=1 aik xi  bk , k = 1, … , l

.

1 i m (index)

a1 ai am (required resource)

c1 ci cm (utility / profit)

x1 xi xm (Boolean variable)

Algorithms for knapsack problem

1.Ordering by decreasing of ci / ai (algorithm by Danzig, heuristic)

2.Branch-And-Bound method

3.Dynamic programming (exact solution)

4.Dynamic programming (approximate solving scheme)

5.Probabilistic methods

6.Hybrid schemes

Simple versions of knapsack problem

1. ci = co (equal utilities)

2. ai= ao (equal required resources)

Polynomial algorithm:

1. ordering by non-decreasing of ai

2. ordering by non-increasing of ci

Extended versions of knapsack problem

1.Knapsack problem with objective function as min

2.Knapsack problem with several “knapsacks”

3.Knapsack problem with additional structural (logical) constraints

over elements (e.g., some kinds of trees)

4.Multi-objective knapsack problem

5.Knapsack problem with fuzzy parameters

Heuristic solving scheme for multicriteria (multiple objective) versions of knapsack problem

ALGORITM SCHEME (case of linear ranking):

STEP 1.Multicriteria ranking of elements (to obtain linear ranking)

STEP 2.Series selection of elements

(the best element, the next element, etc.)

After each selection: testing the resource constraint ( b).

 If the constraint is not right it is necessary to delete the last

 selected element and to STOP.

 Else: to STEP 2.

STOP.

Linear

ranking

Selection & testing (Step 2)

Selection & testing (Step 2)

Selection & testing (Step 2)

Heuristic solving scheme for multicriteria (multiple objective) versions of knapsack problem

ALGORITM SCHEME (case of group ranking):

STEP 1.Multicriteria ranking of elements (to obtain group ranking)

STEP 2.Series selection of elements

(elements of the best group, elements of the next group, etc.)

After each selection: testing the resource constraint ( b).

If the constraint is not right it is necessary to go to STEP 3.

Else: to STEP 2.

STEP 3. Solving for the last analyzed element group the special case of

knapsack problem (with equal utilities) as series selection

of elements from the list (non-increasing by ai).

Here constraint is the following:  b - (iQ) ai

(where Q is a set of selected elements from the previous groups)

STOP.

Selection & testing (Step 2)

Group

ranking

Selection & testing (Step 2)

Constraint is not right, go to Step 3

Multiple choice problem

max m
i=1 

qi
j=1 cij xij

s.t. m
i=1 qi

j=1 aij xij  b

 qi
j=1 xij  1 , i = 1, … , m

xij  {0, 1}, i = 1, … , m , j = 1, … , qi

.

 J1 Ji Jm

.

. . .

  i | Ji | = qi , j = 1, … , qi

Algorithms for multiple choice problem (as for knapsack problem)

1.Ordering by decreasing of cij / aij (heuristic)

2.Branch-And-Bound method

3.Dynamic programming (exact solution)

4.Dynamic programming (approximate solving scheme)

5.Probabilistic methods

6.Hybrid schemes

Illustration for dynamic programming

Search Space

START

point

END

point

Series Design of a Solution:

1.From START point to END point

2.From END point to START point

Illustration for complexity of combinatorial optimization problems

Polynomial solvable

problems

NP-hard

problems

Approximate

polynomial

solvable

problems

Knapsack

problem

Multiple choice

problem

Quadratic

assignment

problem

Morphological

clique

problem

Clique

problem

TSP

Classification of algorithms

BY EXACTNES OF RESULT (solution):

1.Exact solution

2.Approximate solution (for worst case):

*limited error (absolute error) *limited error (relative error) *other situations

3.Approximate solution (statistically)

4.Heurstic (without an estimate of exactness)

BY COMPLEXITY OF SOLVING PROCESS (e.g., number of steps):

1.Polynomial algorithms (of length of input, for example:

O(n log n)), O(n), O(1), O(n2)

2.Polynomial approximate schemes (for a specified exactness / limited error, for

example: O(n2/) where   [0,1] is a relative error for objective function)

3.Statistically good algorithms (statistically polynomial ones)

4.Enumerative algorithms

. . .

BASIC ALGORITHM RESOURCES:

1.Number of steps (computing operations)

2.Required volume of memory

3.Required number of interaction with specialists (oracle)

(to get additional information)

4.Required communication between processors (for multi-processor algorithms)

Global approaches and local techniques

GLOBAL APPROACHES:

1.Partitioning into subproblems

2.Decomposition (extension of an obtained “good” local solutions)

(examples: dynamic programming, Branch-And-Bound)

3.Grid method with deletion of “bad points”

4.Approximation approach (i.e., approximation of initial problem or

its part(s) by more simple construction(s))

LOCAL TECHNIQUES:

1.Local optimization as improvement of a solution or its part

2.Probabilsitic steps

3.Greedy approach (selection of the “simple” / “close” / etc. step)

4.Recursion

Illustration for improvement of a solution (local optimization)

START

point

END

point

. . .

LOCAL IMPROVEMENT

LOCAL IMPROVEMENT

INITIAL ROUTE

LECTURE 14-15. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 2, 2004

L.14. Basic models of combinatorial optimization II.

L.15. Scheme of multicriteria design PSI

PLAN:

1.Basic combinatorial optimization problems:

*integer nonlinear programming (special formulation & applied example),

*packing problems & bin-packing problem (illustration),

*scheduling problems (problem and algorithm for assembly process, 3 examples for one-machine scheduling,

*maximal clique problem (illustration)

2.Scheme of multicriteria design (PSI – parameter space investigation)

Integer Nonlinear programming (modular design of series system from the viewpoint of reliability)

max m
i=1 (1 - qi

j=1 (1 - pij xij))

s.t. m
i=1 qi

j=1 dij xij  b

 qi
j=1 xij  1 , i = 1, … , m

xij  {0, 1}, i = 1, … , m , j = 1, … , qi

pij is reliability , dij is cost

.

 J1 Ji Jm

.

. . .

  i | Ji | = qi , j = 1, … , qi

 

(by Berman & Ashrafi)

Integer Nonlinear programming (modular design of series system from the viewpoint of reliability)

.

.

. . .

(by Berman & Ashrafi)

.

.

. . .

EXAMPLE 1

(series scheme)

EXAMPLE 2

(parallel-series

scheme)

Algorithms for Integer Nonlinear Programming Problem

1.Branch-And-Bound method

2.Dynamic programming

4.Heuristics (e.g., reducing the problem to a continuous one)

Packing problem (illustration)

1

1

2

2

3

3

4

4

5

5

7
6

6

7

8

8

9

9

10

10

11

11

12
13

14 . . .

REGION FOR

PACKING

ELEMENTS

GOALS:

*Maximum of

packed

elements

*Minimum of

free space

Bin-packing problem (illustration)

CONTAINERS

FOR

PACKING

ELEMENTS

. . .

1

1

2

2

3

3

4

4

5

5

6

6

GOAL:

Usage of

minimal number

of containers

Scheduling problems: illustrative example for assembly process (algorithm of longest tails)

GOAL:

Minimal total

complete time
1

3

2

6

5

4

9

8

7 10

11

12

13

14

15

16

17

18

19

Tasks &

precedence constraints

 1
(distance

from corner)

7

2

2
3

3

3

4

4

4

5
5

6

6

6

6 7

7

7

3 processors:

t

1

2

3

0

17

18

19

12

16

14

13

15

9

10

11

6

7

8

3

4

5 2 1

8

Simple scheduling problems for one machine (processor): Problem Formulation

Initial set of elements: R = { 1 , … , i , … , n }

Schedule (linear ordering): S = < s[i] , … , s[i] , …, s[n] >

s{i} is the element number on position i in schedule S

f(S) is a real-value positive objective function

Problem is:

Find optimal schedule S*: f(S*) = min f(S)  S

1

2 3

4 5

6

7

8
Precedence constraints: G = (R,E)

(usually: free-cycle)

E is mapping R into R

Basic Illustrative Figure

R

. . .

1

2

3

n-2

n-1

n

mapping

R => S

Basic Schedule Problem [Hardy, Littlewood, Polya, 1930]

Sequence (a) = { a1, a2, … , an }

Sequence (b) = { b1, b2, … , bn }
=>

S = < b(s[1]), b(s[2], … , b(s[n]))>

f (S) = n
i=1 ai b (s[i]) => min

LEMMA: S* is an optimal schedule if

(1) sequence (a) is ordered under non-increasing

(2) sequence (b) is ordered under non-decreasing

Sequence (a)

Sequence (b)

PROOF: Let a1 > a2 > … > an & b1 < b2 < … < bn

Let exist j and k that aj > ak & bj > bk (j < k)

Than we interchange bj and bk in sequence (b) and get:

f = aj bk + ak bj – (aj bj + ak bk) = (aj - ak) (bk - bj)  0.

. . . Sequence (a)

j k

Sequence (b) . . .

Basic Schedule Problem by Smith (1956)

R = { 1, … , i , … , n }

S = < s[1], … , s[i], … , s[n] >

f(S) = n
i=1 fi(Ci) => min (1)

Ci is a completion time for job (task) i

fi(Ci) = ai Ci + bi (penalty function, ai > 0)

THEOREM 1: S* is an optimal schedule (f(S*)  f(S)  S) if

1. exists a real value function g(i,j) such that g(i,j)<g(j,i) => f(S)<f(S*)

2. in S* i<j if g(i,j) < g(j,i)

This is Problem 1 (P1)

Basic Schedule Problem by Tanaev (1966)

R = { 1, … , i , … , n }

S = < s[1], … , s[i], … , s[n] >

f(S) = n
i=1 fi => min (2)

Ci is a completion time for job (task) i

fi(Ci) = ai exp( Ci) ( > 0)

This is Problem 2 (P2)

Algorithm for Problems 1 and 2: non-decreasing of the indicator

Problem 1 P1: (i) = τi / ai

Problem 2 P2: (i) = ai exp (λ τi) / (1 – exp λ τi)

NOTE:

Considered algorithms (on the basis of ordering) can be used

(an extended version) in the case of precedence constraints

as tree or parallel-series graph

Maximal clique problem (illustration)

Initial graph G = (R, E), R is set of vertices, E is set of edges

Problem is: Find the maximal (by number of vertices) clique

(i.e., complete subgraph)

G = (R,E)

Clique

consisting of

6 vertices

(maximal

complete

subgraph)

Scheme of multicriteria system design

SPACE OF

SYSTEM

PARAMETERS

SPACE OF

SYSTEM

CRITERIA

SYSTEM

DECISION(S)

Hierarchy of requirements / criteria

1.Ecology, politics

2.Economics, marketing

2.Technology (e.g., manufacturing issues, maintenance issues)

3.Engineering
SPACE OF

SYTEM

PARAMETERS

SPACE OF

SYTEM

CRITERIA

Scheme of multicriteria design PSI (parameters space investigation) (Sobol & Statnikov)

P1

P2

CONSTRAINTS

GRID

REPRESENTATIVE POINTS

SPACE OF

SYSTEM

CRITERIA

MAPPING TO

CRITERIA SPACE

C1

C2 SELECTION OF

PARETO-EFFECTIVE

DECISIONS

LECTURE 16. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 8, 2004

L.16. Interchange techniques, genetic algorithm, etc.

PLAN:

1.Technical documentation (Russian experience as a set of basic documents)

2.Types of interchange techniques

3.Genetic algorithms

4.Multi-objective evolutionary optimization

5.Multidisciplinary optimization

6.Mixed Integer Nonlinear Programming

Technical documentation (Russian experience)

1.Preliminary “avan”-project

2.”Avan”-project

 3.Technical suggestion (proposal)

4.Technical project

5.Work-project

6.Report on the 1st-stage of utilization

(including suggestion on system improvement)

7.Resultant report on utilization

(including suggestion on system improvement)

BASIC VERSION

 1.Technical suggestion (proposal)

2.Technical-work project

3.Report on utilization

COMPESSED VERSION

Types of 2-Exchange Technique (Illustration)

j k

Sequence . . .

j j+1

Sequence . . .

j n

Sequence . . .

BASIC VERSION

VERSION FOR NEIGHBOR ELEMENTS

VERSION WITH LAST (1-ST) ELEMENT

3-Exchange Technique & 4-Exchange Technique (Illustration)

j-2

j-1 j

Sequence . . .

j+1
VERSION FOR 3-EXCHANGE CASE

j-1 j

Sequence . . .

j+1
VERSION FOR 4-EXCHANGE CASE

Exchange Technique: Two-dimensional Case (Illustration)

Array . . .

2-EXCHANGE CASE

 . . .

 . . .

 . . .

 . . .

Array . . .

4-EXCHANGE CASE

 . . .

 . . .

 . . .

 . . .

Genetic algorithms (illustration for knapsack problem)

Solution x0 = (x1 , … , xi , … , xm)

Basic knapsack problem is:

max m
i=1 ci xi

s.t. m
i=1 ai xi  b

xi  {0, 1}, i = 1, … , m

Genetic algorithms (illustration for knapsack problem)

STEP 1. AN INITIAL SOLUTION x0 STEP 2. DIVIDING OF x0 INTO 2 PARTS

STEP 3. MUTATION (GENERATION OF

 VERSIONS): *exchange of elements,

 *change of elements, etc.

. . .

a1

a2

a3

a4

...

b1

b2

b3

b4

...

STEP 4. GENERATION OF NEW SOLUTIONS

 BY PAIRS (ai, bj)

. . .

c1

c2

c3

c4

...

a b

Genetic algorithms (illustration for knapsack problem)

STEP 5. Deletion of some solutions by

 resource constraint ( b)

. . .

c1

c2

c3

c4

...

STEP 6. Selection of the best solution(s)

. . .

c1

c2

c3

...

Selection by two ways:

1.Selection by utility function

2.Selection of Pareto-effective

 solutions. This is

Multi-Objective Evolutionary Optimization

STEP 7. Repetion of steps 2, 3, 4, 5, and 6

 for selected solutions

Multidisciplinary optimization (structural & aerospace engineering)

max f (x) (or extr f(x))

subject to

 1 (x)  W weight

B1  2 (x)  B2 height

C1  3 (x)  C2 temperature

D1  4 (x)  D2 reliability

 . . .
 k (x)  0

General optimization model

with constraints corresponding to certain disciplines

(e.g., weight, reliability, etc.):

 j (x) is a constraint function (1  j  k)

Int. Society for Structural and Multidisciplinary Optimization

(civil engineering, ship engineering, marine engineering, aerospace engineering)

//www.issmo.org

Optimal design of structures (including issues of fluids)

Mixed Integer Nonlinear Programming (process systems engineering & chemical engineering)

min F (x, y)

subject to

 h (x, y) = 0

 g (x, y)  0

 where x is vector of binary variables (selection of subsystems)

 y is vector of continuous variables / parameters (e.g., size)

Generalized optimization model that involves integer & continuous variables:

*Global optimization

*Process Systems Engineering (chemical engineering, etc.)

*Prof. C.A. Floudas (Princeton Univ, Chemical Engineering)

*Prof. I.E. Grossmann (Carnegie Mellon Univ., Chemical Engineering)

Basic Methods for Mixed Integer Nonlinear Programming

1.Branch-And-Bound method

2.Combinatorial hybrid techniques

3.Gradient method

4.Interior point method

LECTURE 17-18. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 9, 2004

L.17. Basic models of combinatorial optimization III.

L.18. Basic models of combinatorial optimization IV.

PLAN:

1.Spanning (illustration): *spanning tree, *minimal Steiner problem, *2-connected graph

2.TSP, assignment (formulations)

3.Multple matching (illustration) , usage in processing of experimental data

4.Graph coloring problem, covering problems (illustration and applications)

5.Alignment, maximal substructure, minimal superstructure (illustration, applications)

6.Timetabling

Spanning (illustration): 1-connected graph

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

Steiner tree (example):

2

1

2

4

4

1

3 4

3

2

4 3

2

a4

a3 a7

a1

a0 a2

a5 a6

a9
a8

2

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

Spanning tree (length = 19):

2

1

2

4

4

1

3 4

3

2

4 3

2

a4

a3 a7

a1

a0 a2

a5 a6
a9

a8

2

Spanning (illustration): 2-connected graph

Spanning by two-connected graph:

Revelation of two 3-node cliques

(centers)

Spanning (illustration): 2-connected graph

Spanning by two-connected graph:

Connection of each other node

with the two centers

Traveling salesman problem

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9
2

1

2

4

4

1

3 4

3

2

4 3

2

FORMULATION:

Set of cities: A = { a1 , … , ai , … , an }

Distance between cities i and j :  (ai , aj)

 is set of permutations of elements of A,

permutation

s* = < a(s*[1]), … ,a(s*[i]), … ,a(s*[n]) >

 min(s  ) f(s)=f(s*)

f(s)=n-1
i=1  (a(s[i]), a(s[i+1]) +  (a(s[n]), a(s[1])

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9
2

1

2

4

4

1

3 4

3

2

4 3

2

2 2

L = < a0,a1,a3,a5,a7,a9,a8,a4,a2,a6>

2+1+3+4+2+2+3+4+4+4

Traveling salesman problem

ALGORITMS:

1.Greedy algorithm

2.On the basis of minimal spanning tree

3.Branch-And-Bound

Etc.

VERSIONS (many):

1.Cycle or None

2.m-salesmen

3.asymetric one (i.e., distances

 (ai , aj) and  (aj , ai) are different ones)

4.Various spaces (metrical space, etc.)

5.Multicriteria problems

Etc.

Assignment problem

a3

a1

a2

an

b1

FORMULATION:

Set of elements: A = { a1 , … , ai , … , an }

Set of positions B = { b1 , … , bj , … . bm } (now let n = m)

Effectiveness of pair i and j is: z (ai , bj)

 = {s} is set of permutations (assignment) of elements of A

into position set B:

s* = < (s*[1]), … ,(s*[i]), … ,(s*[n]) > , i.e., element ai into position s[i] in B

The goal is:

max n
i=1 z (i, s[i])

b2

b3

bm

.

Assignment problem

ALGORITMS:

1.Polynomial algorithm (O(n3))

VERSIONS:

1.Min max problem

2.Multicriteria problems

Etc.

Multiple matching problem

A = { a1, … an } B = { b1, … bm }

C = { c1, … ck }

EXAMPLE:

3-MATCHING

(3-partitie graph)

ALGORITMS:

1.Heursitcs

(e.g., greedy algorithms, local optimization, hybrid heuristics)

2.Enumerative algorithms (e.g., Branch-And-Bound method)

3.Morphological approach

VERSIONS:

1.Dynamical problem (multiple track assignment)

2.Problem with errors

4.Problem with uncertainty (probabilistic estimates, fuzzy sets)

Etc.

Multiple matching problem

Recent applied example: usage of assignment problem(s) to define velocity of particles

 

FRAME 1 FRAME 2 FRAME 3

VELOCITY SPACE

MODELS & ALGORITMS:

1.Correlation functions (from radioengineering: signal processing)

2.Assignment problem between two neighbor frames

(algorithm schemes: genetic algorithms, other algorithms for assignment problems,

hybrid schemes)

3.Multistage assignment problem (e.g., examination of 3 frames, etc.)

(algorithm schemes: genetic algorithms, other algorithms for assignment problems,

hybrid schemes)

VERSIONS :

1.Basic problem

2.With errors

3.Under uncertainty

Etc.

Recent applied example: usage of assignment problem(s) to define velocity of particles

APPLICATIONS (air/ water environments):

1.Physical experiments

2.Climat science

3.Chemical processes

4.Biotechnological processes

Recent applied example: usage of assignment problem(s) to define velocity of particles

Contemporary sources:

1.PIV systems (laser/optical systems)

2.Sattelite photos

3.Electronic microscope

Etc.

Graph coloring problem (illustration)

Initial graph G = (A, E), A is set of vertices, E is set of edges

Problem is:

Assign a color for each vertex with minimal number of colors

under constraint: neighbor vertices have to have different colors

G = (A,E)

Graph coloring problem (illustration)

G = (A,E)

Right

coloring

Graph coloring problem (illustration)

APPLICATIONS:

1.Assignment of registers in compilation process (A.P. Ershov, 1959)

2.Frequency allocation / channel assignment

(static problem, dynamic problem, etc.)

3.VLSI design

etc.

Example: system function clusters and covering by chains (covering of vertices)

F5

F6

F1

F2

F3 F4

F1 F2 F3 F4 F5 F6

Digraph of system

function clusters

THE LONGEST PATH

Application: system testing

Example: system function clusters and covering by chains (covering of arcs)

F5

F6

F1

F2

F3 F4

F1 F2 F3 F4 F5 F6 F3

F1 F3 F5 F3

Digraph of system

function clusters

APPLICATION: TESTING OF “CHANGES”

Illustration: covering by cliques

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

Basic graph

Cliques (a version):

C1 = { a0 , a1 , a2 }

C2 = { a3 , a5 , a4 }

C3 = { a7 , a8 , a9 }

C4 = { a2 , a4 , a6 , a7 }

a0

a1

a2

a3

a4

a6

a5

a7

a8

a9

a2

a7

a4

APPLICATION: ALLOCATION OF SERVICE (e.g., communication centers)

Alignment (illustration)

CASE OF 2 WORDS:

A A B B D X

A D A C X Z

Word 1

Word 2

ALIGNMENT PROBLEM: minimal additional elements

Alignment (illustration)

CASE OF 2 WORDS:

A A B B D X

A D A C X Z

Word 1

Word 2

A A B B D X Z

Minimal Superstructure

C

Alignment (illustration)

CASE OF 2 WORDS:

A A B B D X

A D A C X Z

Word 1

Word 2

A A B B D X Z

Superstructure

C

A A B B D X

A
D A C X Z

Alignment (illustration)

CASE OF 2 WORDS:

A A B B D X

A D A C X Z

Word 1

Word 2

APPLICATIONS: 1.Linguistics

 2.Bioinformatics (gene analysis, etc.)

 3.Processing of frame sequences (image processing)

 4.Modeling of conveyor-like manufacturing systems

A A B B D X

A
D A C X Z

Alignment (illustration)

OTHER VERSIONS OF PROBLEM:

 *CASE OF N WORDS

 *CASE OF 2 ARAYS

 *CASE OF N ARRAYS

 *M-DIMENSIONAL CASES

 *ETC.

Substructure and superstructure (illustration)

CASE OF 2 CHAINS:

A A B B D X

A D A C X Z

Chain 1

Chain 2

A A B B D X Z

Problem 2: Minimal Superstructure

C

A D X

Problem 1: Maximal Substructure

A

Substructure and superstructure (illustration): case of 2 orgraphs

7

5 6

“Maximal” Substructure

 (by arcs)

1 4

2 3

H1

7

5 6

1 4

2 3

H2

7

5 6

1 4

2

About

H1&H2

Substructure and superstructure (illustration): case of 2 orgraphs

 Minimal Superstructure

Maximal

Substructure

1

3

4 5

7

H2

8

3 2

4 5

6

H1

8

1

3 2

4 5

6 7

8
3

4 5

8

Substructures and superstructures (illustration)

APPLICATIONS: 1.Decision making / Expert judgment

 (relation of dominance)

 2.Information structures (data bases)

 3.Information structures (knowledge bases)

 4.Bioinformatics

 5.Chemical structures

 6.Network-like systems

 (e.g., social networks, software)

 7.Graph-based patterns

 8.Images (graph models of images)

 9.Linguistics

 10.Organizational structures

 11.Engineering systems

 12.Architecture

 13.Information retrieval

 14.Pattern recognition

 15.Proximity for graph-like systems

 etc.

Substructures and superstructures (illustration)

OTHER VERSIONS OF PROBLEM:

 *CASE OF N GRAPHS (BINARY RELATIONS)

 *CASE OF WEIGHTED GRAPHS

 *CASES UNDER SPECIAL CONSTRAINTS

 *ETC.

Timetabling

APPLICATIONS: 1.Scheduling in educational institutions

 (universities, schools)

 2.Scheduling in hospitals

 3.Scheduling in sport (e.g., basketball)

 ETC.

COMPOSITE ALGORITM SCHEMES on the basis of model combination:

1.Graph coloring

2.Assignment / Allocation

3.Combinatorial design

4.Basic scheduling

Etc.

LECTURE 19. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 15, 2004

L.19. Morphological synthes.

PLAN:

1.Morphological analysis

2.Hierarchical Morphological Multicriteria Design (HMMD)

(morphological synthesis, combinatorial synthesis): Fundamentals

3.Five development phases of morphological analysis

4.Preliminary phases (1, 2, 3, 4)

5.HMMD: *formulation, *solving schemes, *examples

Morphological clique

Fundamentals of Hierarchical Morphological Design

1.Morphological analysis (F. Zwicky, 1943)

2.Paradigm of multicriteria decision making (H. Simon)

3.Dynamic programming (R. Bellman)

4.Engineering practice in hierarchical design of complex

multidisciplinary systems

5.Combinatorial optimization

6. Knowledge engineering (multidisciplinary information):

extraction, organization, usage

Development Phases of Morphological Analysis

1.Morphological analysis [F. Zwicky]

2.Closeness of feasible combination to “IDEAL” [Ayres,1969;

Iakimets, Inst. for System Analysis,

Russian Academy of Sci. (RAS), 1977]

3.Multicriteria evaluation of feasible combinations and selection

of Pareto-effective decisions [Inst. for Control Problems (IPU),

Inst. for System Analysis (ISA), Inst. for Machine-engineering

(IMASH); RAS, 1972/82]

4.Hierarchical design (composition of local Pareto-effective

solutions) [Comp. Center, RAS, Krasnoshekov et al.,1979…]

5. Hierarchical Morphological Multicriteria Design (HMMD)

(combinatorial morphological synthesis) [Levin, 1994…]

Morphological analysis

A1
Ai An

System

.

Morphological

class 1:

|A1| = m(1)

Morphological

class i:

|Ai| = m(i)

Morphological

class n:

|An| = m(n)

Subsystem 1 Subsystem n Subsystem i

Morphological analysis: Closeness to “IDEAL” (Ayres, 1969)

X
Y Z

System

.

Subsystem X Subsystem Z Subsystem Y

X1

IDi

IDn

ID1

X2

X3

X4

Y1

Y2

Y3

Y4

Y5

Z1

Z2

Z3

“IDEAL” : X1 * Y3 * Z3

(infeasible combination)

S1 = X4 * Y3 * Z3

S2 = X2 * Y5 * Z1

 (“IDEAL” , S1) <  (“IDEAL”, S2)

 is a closeness (proximity)

Multicriteria evaluation of feasible combinations & selection of Pareto-effective points (1972..1982)

X
Y Z

System

.

Subsystem X Subsystem Z Subsystem Y

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Y5

Z1

Z2

Z3

STEP 1. Generation of feasible combinations:

S3 = X4 * Y2 * Z3

S4 = X4 * Y1 * Z3

S1 = X4 * Y3 * Z3

S2 = X2 * Y5 * Z1

STEP 2. Evaluation upon criteria

STEP 3. Selection of Pareto-effective solutions

Morphological analysis

Complexity: m(1)*…*m(i)*…*m(n)

Decreasing of complexity:

Horizontal partitioning

Vertical partitioning

Hierarchical morphological design (engineering experience, phases 3, 4)

Z X Y

S=X*Y*Z

Alternatives Alternatives Alternatives

Search strategies

START

point Optimal

point
Search Space

Morphological combinatorial synthesis: example

Z X Y

X1(2)

X2(1)

X3(1)

Z1(1)

Z2(1)

Z3(2)

Y1(3)

Y2(1)

Y3(2)

Y4(3)

S=X*Y*Z

S1=X1*Y4*Z3

Concentric presentation of morphological clique with estimates of compatibility

X3, X2 X1 Z3 Z1, Z2

Y4

Y1

Y3

Y2

3 2

1 3
2

3

3

2

3

Discrete space of quality (by components)

<3,0,0>

<2,1,0>

<2,0,1>

<1,1,1>

<1,0,2>

<0,1,2 >

<1,2,0>

<0,3,0>

<0,2,1>

<0,0,3 >

S1

Ideal Point

The worst point

Discrete space of quality (by components, by compatibility)

Ideal Point

w=1

N(S1)

w=3

w=2
THIS IS THE SPACE OF VECTORS:

N(S) = (w (S) ; n1(S) , n2(S) , n3(S))

where w (S) is the estimate of compatibility

(e.g., minimum of pairwise compatibility estimates)

& n1 (S) is the number of components

at the 1st quality level, etc.

Discrete space of quality (by components, by compatibility) & improvement

Ideal Point

w=1

N(S1)

w=3

w=2

Improvement action

Two-criteria space of quality & improvement action

Ideal Point

Quality of compatibility

Quality of elements

Improvement action

Two types of solving schemes

 1.Enumerative directed heuristic:

analysis and checking

since the best point.

2.Dynamic programming methods:

extension of the method for

knapsack problem or

multiple choice problem.

Examples of clique & quasi-clique

3-element

clique

4-element

clique

Quasi-clique

Space of combinatorial optimization problems

Polynomial solvable

problems

NP-hard

problems

Approximate

polynomial

solvable

problems
Knapsack

problem

Multiple choice

problem

Quadratic

assignment

problem

Morphological

clique

problem

Clique

problem

TSP

“Sequence” of close problems

1.Knapsack problem

2.Multiple choice problem

3.Quadratic assignment problem

4. Integer non-linear programming

5. Mixed non-linear programming

LECTURE 20-21. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 16, 2004

L.20. Application of morphological synthesis

L.21. System bottlenecks, improvement, multistage design

PLAN:

1Hierarchical Morphological Multicriteria Design (HMMD).

Examples: *design of team *design of solving strategy *

2.Approaches to revelation of bottlenecks

3.Multistage design

Application example 1: Design of team

Manager

Engineer

Researcher

Team: S = A * B * C

A
B C

A1

A2

A3

B1

B2

B3

B4

C1

C2

C3

C4

Application example 1: Design of team (assessment of alternatives for Manager)

A1 5 3 10

A2 15 5 20

A3 10 4 15

Experience

3

Market

4

Salary

-1

Total

rank
3

1

2

Application example 1: Design of team (assessment of alternatives for Engineer)

B1 15 5 7

B2 6 6 3

B3 10 0 9

Experience

 3

Salary

 -3

Total

rank

1

2

2

B4 3 0 3 2

West

Experience

 2

Application example 1: Design of team (assessment of alternatives for Researcher)

C1 15 3 10

C2 5 5 7

C3 4 7 4

Experience

2

Creativity

4

Salary

-3

Total

rank
3

2

1

C4 6 4 6 2

Application example 1: Design of team

Manager

Engineer

Researcher

Team: S = A * B * C

A
B C

A1(3)

A2(1)

A3(2)

B1(1)

B2(2)

B3(2)

B4(2)

C1(3)

C2(2)

C3(1)

C4(2)

Application example 1: Design of team (estimates of compatibility)

B1 B2 B3 B4 C1 C2 C3 C4

A1 2 3 3 1 2 0 0 3

A2 3 0 0 1 0 3 0 0

A3 3 0 1 1 1 0 3 0

B1 0 3 3 0

B2 1 1 0 3

B3 0 0 2 0

B4 0 0 0 3

Application example 1: Design of team

Manager

Engineer

Researcher

Team: S = A * B * C

A
B C

A1(3)

A2(1)

A3(2)

B1(1)

B2(2)

B3(2)

B4(2)

C1(3)

C2(2)

C3(1)

C4(2)

Application Example 1: Design of Team (resultant decisions)

S1=A2*B1*C2 N(S1)=(3;2,1,0)

S2=A3*B1*C3 N(S2)=(3;2,1,0)

Application Example 2: Strategy for multicriteria ranking

Stage 1:

Forming

preference

relations Stage 2:

Forming

a linear

ordering

Stage 3:

Ranking

Strategy: S = G * L * R

G
L R

G1

G2

G3

G4

L1

L2

L3

L4

L5

R1

R2

R3

R4

Application Example 2: Strategy for multicriteria ranking

G L R

1

3

2

5

4 2

4

1

3

5

2

5

4

3

1

2 & 5

3 & 4

1

Application Example 2: Strategy for multicriteria ranking

LOCAL ALTERNATIVES (COMBI-PC, 1989…):

G1 Pairwise comparison

G2 ELECTRE-like technique

G3 Additive utility function method

G4 Expert stratification

 L1 Line element sum of preference matrix

 L2 Additive function

L3 Series revelation of “max” element

L4 Series revelation of Pareto-elements

L5 Expert stratification

R1 Series revelation pf “max” element

R2 Series revelation of Pareto elements

R3 Dividing the linear ordering

R4 Expert stratification

Application Example 2: Strategy for multicriteria ranking

G2 L1 R3

Strategy 1

G1 L4 R2

Strategy 2

G4 L5 R4

Strategy 3

EXAMPLES OF STRATEGIES:

Application Example 2: Strategy for multicriteria ranking

G3 L3 R1

Strategy 4

G1’’’

L3 R1

Strategy 5 G1’

Aggregation
G1’’

EXAMPLES OF STRATEGIES:

Approaches to revelation of system bottlenecks

Approach 1.

Engineering analysis (expert judgment)

Approach 2.

Design of system structure, assessment of reliability of system

components, and selection of the most non-reliable ones

(“Pareto approach” from Japanese system of

quality management)

Approach 3.

Design of system structure, assessment of system

components / parts, and multicriteria ranking of the system

part (to reveal the most important parts)

Approach 4.

Analysis of the total vector estimate of the composable

system decision S: N(S) = (w(S); n1(S), n2(S),…)

Approaches to revelation of bottlenecks

SYSTEM

1 2 3 4 5 6 7 8

1.1

1.2

1.3

1.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

5.1

5.2

5.3

8.1

8.2

8.3

8.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

2.1

CRITERIA:

C1

C2

C3

C4

C5

C6

Pareto-effective & near Pareto-effective solutions

Ideal Point

Quality of compatibility

Quality of elements

Improvement action

Revelation of bottlenecks via analysis of N(S)

Ideal Point

w=1

N(S1)

w=3

w=2

Improvement action

THIS IS THE SPACE OF VECTORS:

N(S) = (w(S); n1(S) , n2(S) , n3(S))

HERE A SOLUTION EXISTS SUCH THAT

AN IMPROVEMENT OF ITS ELEMENT

CAN LEAD TO THE ESSENCIAL

IMRPOVEMENT OF THE SOLUTION

Application Example 3: Multistage design

Stage 1

. . .

T 0

Stage 3

. . .

Stage 2

. . .

Trajectory

LECTURE 22. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 22, 2004

L.22. System improvement (examples), system evolution (example)

PLAN:

1Hierarchical Morphological Multicriteria Design (HMMD):

Application to system improvement (transformation, upgrade, adaptation)

2.System evolution / development:

Example for several generations of software DSS COMBI-PC

3.Example for complex system analysis and design

(modeling, analysis, & design of modular system):

 (a) system modeling, (b) system comparison, (c) revelation of bottlenecks,

(d) system design, (e) system upgrade, (f) modeling of system generations.

Morphological clique

Application example 1: Design of team

Leader
Manager Designer

Team: S = L*R*M*D

L1(2)

L2(3)

L3(2)

S1=L3*R3*M3*D3

R1(2)

R2(3)

R3(1)

L R
Researcher

M1(3)

M2(3)

M3(2)

D1(3)

D2(3)

D3(1)

M D

Application example 1: Design of team

Team: S = L*R*M*D

L3(2)

S1=L3*R3*M3*D3

R3(1)

M3(2)

D3(1)

IMPROVEMENT ACTIONS:

1.New member

2.Improvement of member

3.Improvement of compatibility

4.New structure

Application example: Improvement of team

New

members
Professional

courses

Trips &

communication

 S = A * B * C

A1(2)
A2(2)

A3=A1&A2(2)

B1(1)
B2(2)

B3(1)

B4(1)

C1(2)
C2(1)

C3(1)

S1=A3*B1*C2
Plan for improvement

C B A

B5=B3&B4(2)

C4=C1&C3(3)

B6=B1&B4(3)
B7=B1&B2&B4(3)

S2=A3*B1*C3

Design alternatives for improvement of a team

A1 new leader

A2 new manager

A3 = A1 & A2

B1 course on advances in science & engineering

B2 course on foreign language

B3 course on system analysis

B4 course on creativity

B5 = B3 & B4

B6 = B1 & B4

B7 = B1 & B2 & B4

C1 course on human relation

C2 joint trip to rest-home

C3 joint participation in professional conference

C4 = C1 & C2

Improvement of system

Members

(DA’s)

Compatibility New structure

Improvement (change) system

Improved

members

(DA’s)

New

members

(DA’s)

Improvement of system

SYSTEM IMPROVEMENT PROCESS:

1.Improvement / Upgrade

2.System change (e.g., development / evolution)

3.System transformation

4.Adaptation (including on-line adaptation)

Hierarchical design of system improvement

Ideal Point

w=1

w=3

w=2

DISCRETE SPACE OF QUALITY:

N(S) = (w(S); n1(S) , n2(S) , n3(S))

Pareto-effective

points

DESIGN OF A COMPOSITE

IMPROVEMENT PLAN :

Generations of software DSS COMBI-PC

System 0
S0 = T

Techniques

T

T1

System 1
S1 = T * U

Techniques

T

T2

T1

T3

U

L1

User

interface

System 2
S2 = T *U(L)*Y

Techniques

T

T2

T1

T3

U=L

L1

User

interface

Language

L
Y1

Tool for synthesis

of solving strategy

Y

Generations of software DSS COMBI-PC

System 3
S3 = T *U(L*G)*Y*E*H

Techniques

T

T2

T1

T3

L1

User inter-

face U=L*G

Language

L
Y1

Tool for synthesis

of solving strategy
Y

G1

E1

Library of

examples
E

H1

Hyper-

text
H

L2

System 4
S4 = T *U(L*G)*E*H

Techniques

T

T2

T1

T3

User inter-

face U=L*G

Language

L

E1

Library of

examples
E

H1

Hyper-

text
H

L2 G2

G

G

Graphics

Graphics

Generations of software DSS COMBI

System 0

T
0

System 1

System 2

System 3 System 4

Improvement

LECTURE 23-24 (compressed version). Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 23, 2004

L.23. Basic systems problems. Example for notebook.

L.24. Systems for signal processing, system change process.

PLAN:

1.Analysis of a new domain: construction of a new world

2.Hierarchical Morphological Multicriteria Design (HMMD): framework of analysis & design problems.

3.Illustrative example for note book 4.Layers of “systems”: *system, * requirements, *standards

5.Development / evolution of modular systems: illustrative examples: *notebook, *device for signal processing

6.Standard “system change” operations

7.Basic combinatorial optimization problems for system improvement / adaptation / upgrade / etc.:

*knapsack, *multicriteria ranking, *multiple choice problem, *multicrtieria knapsack,

*multicrtieria multiple choice problem, *scheduling, *combinatorial synthesis, *multi-stage design

Analysis of a new domain: construction of a new world

TWO SITUATIONS:

1.Principally New Domain

2.New Domain for Researcher

NEW DOMAIN

ALGORITHM SCHEME:

1.Revelation of basic concepts

(objects, resources, goals, participants)

2.Revelation of basic relations over

the above-mentioned concepts

3.Formulation of main problems

(e.g., resource assignment, planning/

scheduling)

4.Design of solving schemes

5.Solving of numerical examples

6.Study of real (realistic) applications

7.Etc.

CONCEPTS

RELATIONS

Our basic system design problems

SYSTEM ANALYSIS & DESIGN PROBLEMS

1.Modeling of system (structural model, e.g., and-or graph)

2.Multicriteria comparison

3.Revelation of bottlenecks

4.Hierarchical modular design

5.Upgrade (improvement, adaptation)

6.Multi-stage design

7.Modeling of development process (flow of system generations)

8.System forecasting

Example: Notebook

Processor
CD-RW Modem

My notebook: S = P*H*C*M

P1(1)

P2(2)

P3(3)

S0=P3*H1*C2*M1 (my PC)

H1(3)

H2(2)

H3(2)

P H
Hard disk

C1(3)

C2(2)

C3(1)

M1(1)

M2(2)

M3(3)

C M

H4(1)

Example: Notebook

ALTERNATIVES:

P1 Intel-4

P2 Intel-3

P3 Celeron

H1 20Gb

H2 40Gb

H3 60Gb

H4 80Gb

C1 None

C2 Read

C3 Read & Write

M1 56 Kbit / sec

M2 48 Kbit / sec

M3 32 Kbit / sec

Example: Notebook

COMPARISON of note books:

 Cost Reliability Maintenance- Upgrade- Total

 (-) (+) ability(+) ability(+)

1.Alternative 1 1300 (6) 5 3 5 2 (1)

2.Alternative 2 1250 (5) 4 3 4 3 (3)

3.My note book 900 (2) 4 4 5 1 (1)

4.Alternative 3 1200 (4) 5 3 4 3 (2)

5.Alternative 4 1200 (4) 5 3 3 3 (3)

6.Alternative 5 1100 (3) 4 4 4 2 (2)

7.Moscow’s PC 700 (1) 3 5 5 1 (1)

8.Alternative 6 1200 (4) 4 3 3 4 (4)

Weights of criteria:

2 2 3 2

2 5 4 5

Example: Notebook

BOTTLENECKS:

 Cost of Reliability Damage Total

 upgrade (-) (-) (+)

1.P3 100 5 2 3 (3)

2.H1 80 3 5 1 (1)

3.C2 200 4 1 4 (4)

4.M1 50 5 4 2 (2)

Weights of criteria:

1 1 1

2 4 5

NOW: S0 = P3 * H1 * C2 * M1

Assessment of compatibility between alternatives (example for notebook)

P1

P2

P3

H1

H2

H3

H4

C1

C2

C3

H1 H2 H3 H4 C1 C2 C3 M1 M2 M3

1 2 3 3 0 2 3 3 1 1

3 2 1 1 1 3 3 2 3 1

2 3 1 2 0 3 2 3 2 1

 1 3 1 3 3 2

 1 3 2 3 3 1

 1 2 3 3 2 1

 1 2 3 3 2 1

 3 2 2

 3 3 1

 3 3 1

NOTE: 3 corresponds to the best level of compatibility

 0 corresponds to incompatibility

The best combination is : S1 = P1 * H4 * C3 * M1 N(S1) = (3 ; 4,0,0)

Upgrade (example for notebook)

Ideal Point

w=1

w=3

w=2

DISCRETE SPACE OF QUALITY:

N(S) = (w(S); n1(S) , n2(S) , n3(S))

N(S1)

N(S0)

S0 = P3*H1*C2*M1

S1 = P1*H4*C3*M1

Upgrade (example for notebook)

Ideal Point

w=1

w=3

w=2

Improvement action

(upgrade)

DISCRETE SPACE OF QUALITY:

N(S) = (w(S); n1(S) , n2(S) , n3(S))

N(S1)

N(S0)

N(S’0)

S’0 = P3*H2*C2*M1

Prospective

upgrade

action:

H1 => H2

S0 = P3*H1*C2*M1

S1 = P1*H4*C3*M1

Example for notebook

Before&

before

T
0

Before

Now

Upgrade

Improvement

S0=P3*H1*C2*M1

S’0=P3*H2*C2*M1

Sa=P3*H1*C2*M3

Sb=P3*H1*C1*M3

Layers of system development / evolution

T 0

STANDARDS to system

REQUREMENTS / CRITERIA to system

SYSTEM

Macro-evolution process for signal processing

T 0

Frequency

measurement

device

Spectrum

analysis

device

Device for

analog signal

processing

System for

analog signal

processing

System for

digital signal

processing

+ heterodyne part,

+ visualization

+ magistral

(interface) part

System for digital

signal processing with

special computer

1

2

3

4

5

6

+ computer

+special computer

+processing

part

Macro-evolution process: Operations (general case)

CHANGE OPERATIONS:

I.Operations for DA’s:

1.1.Change / improvement of DA’s O1: Ai => A’i

1.2.Deletion of DA O2

1.3.Addition of DA O3

1.4.Aggregation of DA’s O4: { Ai } => Aa = A1 &A2 & …

1.5.Standartization of DA’s O5: { Ai } => As

II.Operations for subsystems (parts, components):

2.1.Change / improvement of a system part O6

2.2.Deletion of system part O7

2.3.Addition of system part O8

2.4.Aggregation of system part O9

Design / planning of system change process

I.Characteristics over change operations:
1.Required resource

2.Possible profit

3.Etc.

II.Binary relations over change operations:

1.Precedence constraints (Oi => Oj)

2.Equivalence

3.Complementarity

POSSIBLE COMBINATORIAL PROBLEMS:

1.Multicriteria ranking

2.Knapsack problem

3.Multiple choice problem

4.Multicriteria knapsack problem

5.Multicriteria multiple choice problem

6.Scheduling

7.Combinatorial synthesis (modular design)

8.Multi-stage design

LECTURE 25. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Oct. 29, 2004

L.25. Design of life cycle. Systems with common modules.

PLAN:

1.Design of life cycle: illustrative example (morphological combinatorial approach)

2.Morphological combinatorial approach to multi-product system: common modules:

*2-product system (one common module, k common modules)

*m-product system (one common module, k common modules)

3.Recent references

Morphological clique

Design (planning) of life cycle

Research

Manufac-

turing Recycling

Life cycle S

R1

R2

R3

Example: S’=R3*A1*B2*M5*T2*P1*J2*I1*L3

A1

A2

A3

R D=A*B
Design

M1

M2

M3

P1

P2

P3

M L

B1

B2

B3

Testing

T

T1

T2

T3

I1

L1

L2

L3

U=J*I P

B4

M4

I2

M5

T4

J1

J2

J3

Trans-

portation

Utiliza-

tion

Design (planning) of life cycle

Life cycle S

Example 1: Design & Manufacturing S1=D1(A2*B1)*M3

Example 2: Design & Testing S2=D2(A1*B3)*T3

Example 3: Research & Design & Manufacturing

S3=R2*D’(A3*B1)*M4

Example 4: Design & Manufacturing & Transportation

S1=D’’(A3*B3)*M4*T3

Design (planning) of life cycle

Life cycle S

Design (Planning) of Life Cycle

Life Cycle Management

Life Cycle Engineering

Support of Life Cycle

Maintenance of Life Cycle

Example for modular software package

Structure for Modular Software Package: 3 layers

Layer 1: Control unit

Layer 3: Common modules

Layer 2:

Function

units

.

Example for modular software package

General Structure for Modular Software Package

Layer 1:

Control unit

Layer 3:

Common

modules

Layer 2:

Function

units

.

. . .

Layer 0: General

control unit

Layer 4: General

common modules

2-product system

The 1st Product

X1(3)

X2(1)

X3(1)

P = X*Y*Z

P1=X1*Y4*Z3

P2=X1*Y1*Z2

Y1(3)

Y2(1)

Y3(2)

X Y

Z1(1)

Z2(1)

Z3(2)

Z

Z4(3) Y4(3)

2-product system

The 1st Product

X1(3)

X2(1)

X3(1)

P = X*Y*Z

P1=X1*Y4*Z3

P2=X1*Y1*Z2

Y1(3)

Y2(1)

Y3(2)

X Y

Z1(1)

Z2(1)

Z3(2)

C1(1)

C2(1)

C3(2)

Z C

The 2nd Product

B1(3)

B2(1)

B3(2)

B

Z4(3) Y4(3)

P’ = Z*B*C

P’1=Z1*B3*C3

P’2=Z1*B1*C2

Z1(1)

Z2(1)

Z3(2)

Z

Z4(3)

2-product system (one common module)

The 1st Product

X1(3)

X2(1)

X3(1)

P = X*Y*Z

P1=X1*Y4*Z3

P2=X1*Y1*Z2

Y1(3)

Y2(1)

Y3(2)

X Y

Z1(1)

Z2(1)

Z3(2)

C1(1)

C2(1)

C3(2)

Z C

The 2nd Product

B1(3)

B2(1)

B3(2)

B

Z4(3) Y4(3)

P’ = Z*B*C

P’1=Z1*B3*C3

P’2=Z1*B1*C2

2-product system (one common module)

The 1st Product

 S = P * P’

X1(3)

X2(1)

X3(1)

P = X*Y*Z

P1=X1*Y4*Z3

P2=X1*Y1*Z2

Y1(3)

Y2(1)

Y3(2)

X Y

Z1(1)

Z2(1)

Z3(2)

C1(1)

C2(1)

C3(2)

Z C

The 2nd Product

B1(3)

B2(1)

B3(2)

B

Z4(3) Y4(3)

P’ = Z*B*C

P’1=Z1*B3*C3

P’2=Z1*B1*C2

2-product system (two common modules)

The 1st Product

 S = P * P’

X1(3)

X2(1)

X3(1)

P = X*Y*Z

P1=X1*Y4*Z3

P2=X1*Y1*Z2

Y1(3)

Y2(1)

Y3(2)

X Y

Z1(1)

Z2(1)

Z3(2)

C1(1)

C2(1)

C3(2)

Z C

The 2nd Product

B1(3)

B2(1)

B3(2)

B

Z4(3) Y4(3)

P’ = Y*Z*B*C

P’1=Y1*Z1*B3*C3

P’2=Y2*Z1*B1*C2

Recent English References

1. B. Agard, A. Kusiak, Data-mining-based methodology for the design of product

family. Int. J. of Prod. Res., 42(15), 2955-2969, 2004.

2.C.Y. Baldwin, K.B. Clark,Design Rules: The Power of Modularity. MIT Press, 2000.

3.J. Dahmus, J.P. Gonzalez-Zugasti, K.N. Otto, Modular product architecture,

Design Studies 22(5), 409-424, 2001.

4. G. Dobrescu, Y. Reich, Progressive sharing of modules among product variants.

 Computer-Aided Design 35(9), 791-806, 2003.

5.X. Du, J. Jiao, M.M. Tseng, Architecture of product family: Fundamentals and

methodology. Concurrent Eng.: Res. and Appl. 9(4), 309-325, 2001.

6.J.K. Gershenson, G.J. Prasad, S. Allamneni, Modular product design: A life-cycle

view. Trans. of the SDPS 3(4), 13-26, 1999.

 7.J.P. Gonzalez-Zugasti, K.N. Otto, J.D. Baker, A method for architecting product

platform. Res. in Eng. Des. 12(2), 61-72, 2000.

8.T.K.P. Holmqvist, M.L. Person, Analysis and improvement of product modularization

methods: Their ability to deal with complex products. Systems Engineering 6(3),

 195-209, 2003.

 9.C.C. Huang, A. Kusiak, Modularity in design of products and systems.

 IEEE Trans. on Syst., Man and Cybern. - Part A, 28(1), 66-77, 1998.

 10. M.Sh. Levin, Modular system synthesis: Example for packaged composite software,

IEEE Tr. on SMC-Part C, 35(4), 544-553, 2005.

11.M.Sh. Levin, Combinatorial design of multiproduct system: common modules.

Elsevier Server of Preprints in CS, 2003.

Recent English References

12.M. Kokkolaras, R. Fellini, H.M. Kim, N. Michelena, and P. Papalambros,

 Extension of the target cascading formulation to the design of product family,

Structural and Multidisciplinary Optimization, 24(4), 293-301, 2002.

13.A. Kusiak, Integrated product and process Design: a modularity perspective.

 J. of Eng. Des., 13(3), 223-231, 2002.

 14.A. Messac, M.P. Martinez, T.W. Simpson, Effective product family design using

physical programming. Engineering Optimization 34(3), 245-261, 2002.

15.M.H. Meyer, A.P. Lehnerd, The Power of Product Platforms,

The Free Press, New York, 1997.

 16.J.H. Mikkola, O. Gassmann, Managing modularity of product architectures:

 Toward an integrated theory. IEEE Trans. on Eng. Manag. 18(3), 204-218, 2003.

17.D. Robertson, K. Ulrich, Planning for product platforms, Sloan Manag. Review

39(4), 19-34, 1998.

18.M.S. Sawhney, Leverage high-variety strategies: From portfolio thinking to

platform thinking. J. of the Academy of Marketing Science 26(1), 54-61, 1998.

19.D.M. Sharman, A.A. Yassine, Charactrizing complex product architecture.

 Systems Engineering 7(1), 35-60, 2004.

 20.Z. Siddique, D.W. Rosen, On combinatorial design spaces for the configuration

design of product family. AI EDAM 15(2) 91-108, 2001.

 21.T.W. Simpson, J.R.A. Maier, F. Mistree, Product platform design: methods and

application. Res. in Eng. Des. 13(1), 2-22,2001.

LECTURE 26. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Nov. 5 2004

L.26. System testing

PLAN:

1.System Testing: main approaches: *white-box testing (system structure is well-known)

*black-box testing as model checking *black-box testing as multi-function testing

2.Multi-function system testing: basic combinatorial problems:

*preliminary analysis of system, *composition of test cases

*design of chain of test cases, *covering of digraph of function clusters by chains

3.Illustrative example for multi-function system testing

Black-box system

System Input
Output

… …

x1

xn

y1

ym

Example of test case structure (cluster: functions 1, 3, and 4)

x1 x2

S=x1*x2*x3*x4*x5*x6

0: x1=‘Any’ (2)

1: x1=1(3)

2: x1=2(3)

0: x2=‘Any’ (2)

1: x2=1(3)

2: x2=2(3)

x3

0: x3=‘Any’ (4)

1: x3=1(1)

2: x3=2(1)

0: x4=‘Any’ (4)

1: x4=1(1)

2: x4=2(1)

3: x3=3(3)

x4

0: x5=‘Any’ (2)

1: x5=1(3)

2: x5=2(3)

x6

0: x6=‘Any’ (4)

1: x6=1(2)

2: x6=2(2)

x5

3: x6=3(2)

4: x6=4(3)

5: x6=5(1)

TEST CASE

Selection of test cases (basic approaches)

Basic set

of test cases

Resultant set

of test cases

Basic algorithms:

1.Reducing of the initial space

(by equivalence)

2.Design of a test cases set

 which covers the reduced set

Additional “dimension”

Real system behavior

(user, black-box)

Specification based

inputs (designer,

white box)

Designed test cases

(tester, black-box,

Model checking, etc.)

We are here

PLUS: Dynamics as system

development / evolution

 1.Preliminaries: Main Roles and Responsibility (system testing)

TESTER:

* model checking

* etc..

DESIGNER:

* unit test

* integration test

USER(S):

* functional test

SYSTEM EXPERT(SPECIALIST) :

* system performance

* system safety

* system life cycle

* new requirements

* new generations

* new standards

Human-based illustration for multi-function testing: N functions & composite test

Human

Function 2

Illness 2

Composite

Test

Function 1

Illness 1

Function N

Illness N

Hierarchy of system characteristics in multi-function system testing 4

Input & Output

relationships

System

functions

Function

clusters

Input &Output
X Y

F1 F2 F3
Digraph

of clusters

 Levels of testing process and problems

Transition graph on units (states,

Function clusters)

Chains of units (states, functions)

Units / States / Functions
Unit

level

Basic Bottom

level
Test cases (Inputs)

Selection/

design

Chain

level

Groups of units (states, functions)
Groups (clusters)

level

Graph

level

Selection/

design

Selection/

design

Selection/design/

(test sequences)

Chain covering

Space of system functions and function clusters

Cluster F1

Cluster F2

Cluster F3

Cluster F4

Cluster F5

Cluster F6

Test case for function cluster and a sequence of test cases for a chain of function clusters

Cluster F1

Function cluster

Test case 1

Test case 2

Test case 3

Cluster F2
Cluster F3

Chains of function clusters and covering

F5

F6

F1

F2

F3 F4

F1 F2 F3 F4 F5 F6 F3

F1 F3 F5 F3

Digraph of

function clusters

Applied missile defense / anti-aircraft system

Control

center

Rocket

system 1

Other

systems

Rocket

system 2

Functions and function clusters

Function clusters
Functions:

1. Scanning the examined area f1

2. Initialization of targets f2

3. Identification of targets f3

4. Tracking/maintenance of targets f4

5. Multi-target multi-track

 assignment f5

6. Fair control (assignment of

rockets into targets) f6

7. Deletion of non-dangerous targets f7

8. Receiving date from other systems f8

9. Sending data to other systems f9

F1: f1

F2: f1,f4

F3: f2,f3, f4

F4: f4,f5

F5: f4,f7

F6: f5,f6

F7: f5,f8, f9

 Functions cluster digraph

F2

F1 F3

F7

F5

F6

F4

F1 F2 F3 F4 F6 F7 F3

F2 F5 F4 F3 F5 F3 F4 F7

Recent papers on multi-function system testing

1.M.Sh. Levin, M. Last, Multi-Function System

Testing: Composition of Test Sets.8th IEEE

Int. Conf. HASE 2004, Tampa, FL, 99-108, 2004.

2.M.Sh. Levin, M. Last, Test Case Sequences in

System Testing: Selection of Test Cases for

a Chain(Sequence) of Function Clusters.

17th Int. Conf. IEA/AIE, Ottawa, LNCS 3029,

Springer, 895-904, 2004.

3.M.Sh. Levin, M. Last, Collection of Test Case

Sequences Covering of Function Cluster Digraph.

IASTED Int. Conf. “AI and Applications”,

Innsbruck, 806-810, Febr. 2004.

LECTURE 27. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Nov. 12, 2004

L.27. System diagnosis, evaluation, improvement.

PLAN:

1.Hierarchical approach to diagnosis of complex systems

2.Hierarchical evaluation of composable system: example for building:

*models of building and corresponding evaluation scales for building parts

*method of integration tables

*usage of hierarchical combinatorial synthesis

*change operations and planning an upgrade process

Multi-level diagnosis of complex systems

PROCESS

CONTROL

INPUT OUTPUT

DIAGNOSIS

Multi-level diagnosis of complex systems

F1

F6

F3 F2 F1

F5 F4

P R O C E S S

F6
F2&3

F2 F3 F4 F5

F4&5

Multi-level diagnosis of complex systems

SCALE

DAMAGE

1 2 3 4

BAD NORMAL OK

F1 F2 F3 F4 F5 F6

Multi-level diagnosis of complex systems

F2&3

F2

F3

F4&5

F4

F5

F1 and F2&3 and F4&5 and F6 TOTAL ESTIMATE

Example of building (evaluation from the viewpoint of earthquake engineering)

Cantilever

balcony

Parapet

wall

Generalized ordinal scale for damage

1.Distriction (global)

2.Distriction (local)

3.Chinks

4.Small chinks (hair like)

5.Without damage

1

2

3

4

5

Hierarchical model of building and corresponding scales

Foundation 1.1
Basic

structure 1.2

Floors 1.3

Building: S = A*B*C

A C

B

F

J I

D

H G E

Frame 1.2.1.1

Bearing

structures 1.2.1
Nonbearing

structures 1.2.2

Staircase

1.2.1.3

Rigity core

1.2.1.2

Partitioning

walls 1.2.2.2
Filler

walls 1.2.2.1

X

X

X

X

X

X

X X X

X

X

X

X

X X

X

Example 1

Example 2

Method 1: integration tables

E G H D

3 4 3 3

3 4 4 3

3 4 5 -

3 5 3 3

3 5 4 3

3 5 5 -

5 4 3 3

5 4 4 4

5 4 5 4

5 5 3 4

5 5 4 4

5 5 5 5

4 4 3 3

4 4 4 4

4 4 5 -

4 5 3 3

4 5 4 4

4 5 5 4

Bearing structures D (1.2.1), scale [3,4,5]

Method 1: integration tables

2 2 - - 2

3 3 - - 3

3 3 4 - 4

- 4 4 5 5

2 3 4 5

Nonbearing structures F (1.2.2), scale [2,3,4,5]

J

I

Method 1: integration tables

2 3 - - 3

3 4 4 - 4

- 4 5 5 5

2 3 4 5

Basic structure B (1.2), scale [2,3,4,5]

F

D

Method 1: integration tables

A B C S

5 2 2 2

5 2 3 -

5 2 4 -

5 2 5 -

5 3 2 -

5 3 3 -

5 3 4 3

5 3 5 3

5 4 2 -

5 4 3 -

5 4 4 4

5 4 5 4

5 5 2 -

5 5 3 -

5 5 4 -

5 5 5 5

Building S, scale [2,3,4,5]

A B C S

4 2 2 2

4 2 3 -

4 2 4 -

4 2 5 -

4 3 2 -

4 3 3 3

4 3 4 3

4 3 5 -

4 4 2 -

4 4 3 -

4 4 4 4

4 4 5 4

4 5 2 -

4 5 3 -

4 5 4 -

4 5 5 -

A B C S

3 2 2 2

3 2 3 -

3 2 4 -

3 2 5 -

3 3 2 2

3 3 3 3

3 3 4 3

3 3 5 -

3 4 2 -

3 4 3 -

3 4 4 -

3 4 5 -

3 5 2 -

3 5 3 -

3 5 4 -

3 5 5 -

Method 2: Hierarchical morphological design (combinatorial synthesis)

Foundation 1.1
Basic

structure 1.2

Floors 1.3

Building: S = A*B*C

A C

B

F

J I

D

H G E

Frame 1.2.1.1

Bearing

structures 1.2.1
Nonbearing

structures 1.2.2

Staircase

1.2.1.3

Rigity core

1.2.1.2

Partitioning

walls 1.2.2.2
Filler

walls 1.2.2.1

A1(2)

A2(1)

A3(2)

C1(1)

C2(3)

C3(3)

H1(1)

H2(2)

H3(3)

J1(1)

J2(3)

J3(2)

E1(1)

E2(2)

G1(1)

G2(2)

I1(2)

I2(2)

I3(1)

I4(1)

D1=E1*G1*H1

. . .

D12= . . .

F1=I1*J1

. . .

F12= . . .

B1=D1*F7

. . .

B16= . . .

S1=A2*B1*C1

S2=A2*B3*C1

S3=A2*B4*C1

S4=A2*B13*C1

Method 2: Hierarchical morphological design (combinatorial synthesis)

Design Alternatives for Building

Foundation A : A1 (strip foundation), A2 (bedplate foundation), A3 (isolated parts)

Frame E : E1 (monolith frame), E2 (precast frame)

Rigidity core G : G1 (monolith rigid core), G2 (precast rigid core)

Stair case H : H1 (monolith staircase), H2 (precast staircase), H3 (composite staircase)

Filler walls I : I1 (small elements), I2 (curtain panel walls),

 I3 (precast enclose panel walls), I4 (frame walls)

Partitioning walls J : J1(precast panel walls), J2 (small elements), J3 (frame walls)

Floors C : C1 (monolith slabs), C2 (composite slabs), C3 (precast slabs)

Method 2: Hierarchical morphological design (combinatorial synthesis)

E1

E2

G1

G2

G1 G2 H1 H2 H3

3 2 3 1 2

2 1 2 1 2

 3 2 1

 2 1 1

NOTE: 3 corresponds to the best level of compatibility

 0 corresponds to incompatibility

J1

J2

J3

I1 I2 I3 I4

1 2 3 3

1 1 1 1

1 2 3 3

Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis)

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

3 3 3 2 2 2 2 2 2 2 2 3

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 3 2 2 3 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

NOTE: 3 corresponds to the best level of compatibility

 0 corresponds to incompatibility

Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis)

A1

A2

A3

C1

C2

C3

C1 C2 C3 B1 B3 B4 B13

2 2 2 2 2 2 1

3 2 2 3 3 3 2

2 2 2 2 2 2 1

 3 3 3 2

 3 3 3 2

 2 2 2 3

NOTE: 3 corresponds to the best level of compatibility

 0 corresponds to incompatibility

Compatibility

Method 2: Hierarchical morphological design (combinatorial synthesis)

Examples for building :

Si = A1 * (E1 * G1 * H1) * (I3 * J1) * C1 estimate 2 (Pareto-layer)

Sii = A2 * (E2 * G2 * H2) * (I3 * J1) * C1 estimate 2 (Pareto-layer)

Siii = A1 * (E2 * G2 * H2) * (I3 * J1) * C3 estimate 3

Siv = A2 * (E2 * G2 * H2) * (I3 * J1) * C3 estimate 3

Sv = A1 * (E2 * G1 * H1) * (I3 * J3) * C3 estimate 4

Improvement (upgrade) of building

Operation group I (frames):

O1 increasing a geometrical dimension and active reinforcement

O2 increasing of active reinforcement

Operation group II (joints):

O3 increasing a level for fixing a longitudinal active reinforcement in zone of joints

O4 decreasing the step of reinforced cross rods in zone of joint

Operation group III (cantilever and cantilever balcony):

O5 decreasing the projection cantilever

O6 supplementary supporting the cantilever

Operation group IV (fronton and parapet wall):

O7 fixing a bottom part

O8 designing a 3D structure (special)

Operation group V (connection between frame and filler walls):

O9 design of shear keys

O10 design of mesh reinforcement

O11 partition of filler walls by auxiliary frame

Improvement (upgrade) of building

Binary relation “equivalence” and “nonequivalence”

Binary relation “complementarity” and “noncomplementarity”

Binary relation “precedence”

BINARY RELATIONS OVER IMPROVEMENT OPERATIONS

Group 1. Improvement of earthquake resistance

Group 2. Quality of architecture and plan decisions

Group 4. Utilization properties

Group 4. Expenditure

CRITERIA FOR IMPROVEMENT OPERATIONS

Improvement (upgrade) of building

Model 1: Knapsack

Model 2: Multiple choice problem

Model 3: Multiple criteria ranking

Model 4: Morphological clique problem

Model 5: Scheduling

ETC.

COMBINATORIAL MODELS FOR PLANNING OF IMPROVEMENT

Combinatorial synthesis for planning of redesign (improvement, upgrade)

Improvement : S = A*B*(C*D)*E

A

C

B

D

E

O1(3)

O2(1)

O1&O2(4)

None

O3(32)

O4(1)

O3&O4(2)

None

O9(3)

O10(2)

O11(3)

None O7(3)

O8(2)

None

O5(3)

O6(4)

None

Strategy: O2 => O4 => O5&O7(4) => O10

LECTURE 28. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Nov. 19, 2004

L.28. System maintenance

PLAN:

1.Preliminaries: life cycle, systems, utilization, personnel, maintenance, roles

2.Framework of maintenance process:

*basic framework, *systems under maintenance

*maintenance operations (inspection as testing/analysis/diagnosis, repair, *replacement) *etc.

3.Illustrations: basic analogue (monitoring system), trajectory of fault.

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

NOW: HERE

SYSTEM

PERSONNEL

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

NOW: HERE

SYSTEM

UTILIZATION

(e.g., driver,

pilot,

operator)

MAINTENANCE

(support of system &

personnel)

MAINTENANCE ACTIONS:

*system installation

*training of personnel

*regular testing of personnel

*planning / scheduling of

 maintenance operations

*execution of operations

(inspection, repair, replacement)

*analysis of the system,

accumulation of data,

prediction

1.Preliminaries

EXAMPLES:

SYSTEM UTILIZATION MAINTENANCE

1.Car Driver, passengers Maintenance

 personnel

2.Airlane Pilot, passengers Maintenance

 personnel

3.Human Human Doctor, human

4.House Owner Maintenance

 personnel, owner

5.Computer User(s) Maintenance

 personnel,

 special software,

 user(s)

2.Framework

TYPICAL FAILURE RATE CURVE:

Failure

rate

Time
Useful period

Infant

mortality
Wear out

period

2.Framework

AN ORDINAL SCALE FOR FAULTS:

1.OK

2.Small fault

3.Significant fault

4.Damage (destriction)

2.Framework

OBJECT UNDER MAINTENANCE:

1.System and / or system part (component, unit)

2.System state

3.System function or function cluster

 (as a group of interrelated functions)

2.Framework

MAINTENANCE FRAMEWORK (problems):

1.System analysis / evaluation (systems, its part, etc.)

2.System prediction

3.Operational management / preventive maintenance:

 *testing

 *evaluation

 *additional information

 *repair / replacement

4.Design of information model for system and each part (object)

5.System strategy:

 *selection of object under maintenance

 *selection of operation (i.e., inspection, repair, replacement)

 *assignment of time for operation(s)

 *execution of the operation(s)

2.Framework

SYSTEM

Planning

Models

for

system,

faults,

prediction
Maintenance operations

(scanning, repair, replacement)

MODELS:

*selection, *knapsack, *routing, *assignment / allocation, etc.

*probabilistic models, Markov processes

*reliability evaluation / analysis

*safety analysis

*simulation

*etc.

Analysis,

accumulation,

processing,

integration

(fusion),

distribution

of

information

2.Framework

SYSTEMS UNDER MAINTENANCE:

1.Whole system

2.Multi-component (modular) system:

 *one-layer modular system

 *hierarchical (multi-layer) system

 *multi-layer modular system

 with complex module interrelation

 (including interrelation between

 different layers and branches)

3.Developping systems (e.g., upgrade of components,

 structure, interconnection)

4.Change of external environment

2.Framework

KINDS OF MAINTENANCE:

1.BASIC MAINTENANCE:

 faults => operation

2.PREVENTIVE MAINTENANCE:

 prediction of faults =>

 preliminary maintenance operation

3.SELF-MAINTENANCE

2.Framework

SYSTEM CHARACTERISTICS:

1.Reliability (stability, etc.)

2.Safety

3.Viability, survivability

4.Robustness

4.Performance

2.Framework

PROBLEMS & MODELS

OF PREVENTIVE MAINTENANCE:

1.REVELATION (ALLOCATION) OF TEST POINTS

Models: multicriteria selection, knapsack-like problems,

allocation problems, etc.

2.PLANNING TEST OPERATIONS

Models: multicriteria selection, knapsack-like problems,

scheduling, etc.

2.Framework

MODELING & INFORMATION PROCESSING:

1.Modeling of faults

2.Diagnosis of faults

3.Monitoring of faults

4.Tracking of faults

5.Integration (fusion) of information on local faults

6.Distribution of information on faults for various

 information systems and specialists

2.Framework

BASIC ACTIONS

1.Scanning

2.Small repair / replacement

3.Essencial repair / replacement

SYSTEM LAYERS

1.System

2.System parts

 (group of states,

 group of functions)

3.Components

 (state, function)

SYSTEM

3.Basic analogue: Monitoring systems

R

Control

Integration

(fusion),

analysis

SENSORS

ACTUATORS

Illustration: Accumulation of information

Normal

situation
T

0

Small

fault

Medium

fault

Trajectory of faults (for components)

SYSTEM

System component

Small

fault

FAULT/

DAMAGE

LECTURE 29. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Nov. 26, 2004

L.29. Requirements engineering

PLAN:

1.Requirements engineering: preliminaries

2.Types of requirements

2.Additions

3.Systems under analysis

4.Models

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

OLD RUSSIAN ENGINEEIRNG EXPERIENCE: NB!!!

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

OLD RUSSIAN ENGINEEIRNG EXPERIENCE: NB!!!

WEST EXPERIENCE:

1.Ralph R. Young, The Requirements Engineering Handbook,

Artech House, 2004 (Carnegie Mellon Univ.)

2.S. Robertson, J. Robertson, Mastering the Requirements Process.

Addison-Wesley, 1999.

3.K.E. Wiegers, Software Requirements. 2nd ed., Microsoft Press

2003.

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

OLD RUSSIAN ENGINEEIRNG EXPERIENCE: NB!!!

WEST EXPERIENCE:

1.Ralph R. Young, The Requirements Engineering Handbook,

Artech House, 2004 (Carnegie Mellon Univ.)

2.S. Robertson, J. Robertson, Mastering the Requirements Process.

Addison-Wesley, 1999.

3.K.E. Wiegers, Software Requirements. 2nd ed., Microsoft Press

2003.

JOURNALS: “Requirement Engineering” (Springer), etc.

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

OLD RUSSIAN ENGINEEIRNG EXPERIENCE: NB!!!

WEST EXPERIENCE:

1.Ralph R. Young, The Requirements Engineering Handbook,

Artech House, 2004 (Carnegie Mellon Univ.)

2.S. Robertson, J. Robertson, Mastering the Requirements Process.

Addison-Wesley, 1999.

3.K.E. Wiegers, Software Requirements. 2nd ed., Microsoft Press

2003.

JOURNALS: “Requirement Engineering” (Springer), etc.

CONFERENCES:

IEEE Requirement Engineering Conference, etc.

1.Preliminaries: Layers (product, requirements, standards)

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

1.Standards

2.Requirements

3.System (product, product family, platform)

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

Neighbor disciplines:

1.Systems engineering (& life cycle engineering)

2.Strategic management

3.Marketing

4.Forecasting

5.Knowledge engineering (acquisition of experience)

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

SYSTEM
Requirements

specifications

Designer

User

Customers

System specialist

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

SYSTEM
Requirements

specifications

Designer

User

Customers

System specialist

Personnel with skills (LITERACY)

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

SYSTEM Requirements

specification

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

SYSTEM

Requirements

engineering

process

(special project)

NB!

Requirements

specification

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

Requirements

engineering

process

(special project)

Requirements

specification

SOURCES:

1.Information from users, etc.

2.Previous experience

(e.g., design, manufacturing)

3.Analogue-Systems

4.Use Cases

1.Preliminaries

R & D
t

Manufacturing Testing Marketing

Utilization &

Maintenance Recycling

0 T

Requirements

engineering

process

(special project)

Requirements

specification

SOURCES:

1.Information from users

2.Previous experience

(e.g., design, manufacturing)

3.Analogue-Systems

4.Use cases

PROBLEMS & TOOLS (TECHNIQUES):

1.System analysis

2.Discovering

3.Acquisition of knowledge, skills, experience

4.Structuring & Integration

5.Modeling & Representation

6.Analysis of dynamics

6.Testing

7.Forecasting

2.Types of requirements (a hierarchical system of requirements)

TYPES:

1.Business requirements

2.User’s requirements

3.High-level or system requirements

4.Functional requirements (things the system must do)

5.Non-functional requirements (properties the system must have)

6.Design requirements / design constraints

7.Manufacturing constraints

8.Performance requirements

9.Interface requirements (with other systems)

10.Qualification requirements

11.Logistics requirements

12.Environmental requirements

13.System, subsystem and component requirements

14.Reusing requirements

ETC.

3.Additions

ADDITIONS:

1.Criteria for evaluation of requirements

2.Prototyping

3.Scenarios

4.Reusing requirements

3.System under analysis (hierarchical layers; product, product family)

OBJECT & HIERARCHY

1.System and / or system part (component, unit)

2.System state, group of states, state chart

3.System function, function cluster, digraph of function clusters

3.System under analysis (hierarchical layers; product, product family)

OBJECT & HIERARCHY

1.System and / or system part (component, unit)

2.System state, group of states, state chart

3.System function, function cluster, digraph of function clusters

1.SYSTEM / PRODUCT

2.PRODUCT FAMILY

3.PLATFORM

3.System under analysis (scenarios)

SCENARIOS:

1.STRUCTURE (e.g., chain, tree) of system states, functions

2.Qualitative scenarios

3.Integration of use cases & forecasting

3.System under analysis (scenarios)

SCENARIOS:

1.STRUCTURE (e.g., chain, tree) of system states, functions

2.Qualitative scenarios

3.Integration of use cases & forecasting

MODELS:

1.Entity relationship

2.State transition model

3.Entity relationship & state transition diagrams

4.Models

MODELS:

I.HIERARCHY OF REQUIREMENTS

1.Hierarchy of information

2.Integration of information (fusion), etc.

II.SCENARIOS

1.Coneptual maps

2.Graph models, etc.

III.DYNAMICAL MODELING

1.Simulation

2.Testing, etc.

LECTURE 30 (compressed version). Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Inst. of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Dec. 3, 2004

L.30. Allocation problems.

PLAN:

1.Allocation problem (problem formulations as assignment, matching, location):

*assignment problem (marriage problem), *quadratic assignment problem (QAP),

*generalized assignment problem (GAP) , *string matching (illustration), *multiple matching (illustration)

2.List of basic algorithm approaches

3.Evolution chart of allocation-like problems

4.List of application domains

5.Basic references (books, sites)

Allocation problem

Allocation (assignment, matching, location):

MAPPING

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

Positions

(locations,

sites)

Set of elements

(e.g., personnel, facilities)

Allocation problem

Allocation (assignment, matching, location):

matrix of weights cij

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

 a b c d e f g h

1

2

3

4

5

6

7

8

Positions

(locations,

sites)

Set of elements

(e.g., personnel, facilities)

Allocation problem: applied examples for elements & positions

1.Boys -- Girls (marriage problem)

2.Workers -- Work positions

3.Facilities --Positions in manufacturing system (facility layout)

4.Tasks -- Processors in multiprocessor system

5.Anti-rockets --Target in defense systems

6.Files -- Databases in distributed information systems

Etc.

Assignment problem AP

a3

a1

a2

an

b1

FORMULATION (combinatorial):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

 = {s} is set of permutations (assignment) of elements of A

into position set B:

s* = < (s*[1]), … ,(s*[i]), … ,(s*[n]) > , i.e., element ai into position s[i]

The goal is: max n
i=1 c (i, s[i])

Maximum (minimum) weight matching in a weighted bipartite graph

b2

b3

bm

.

ELEMENTS POSITIONS

Assignment problem AP

a3

a1

a2

an

b1

ANOTHER FORMULATION (algebraic):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

xij = 1 if ai is located into position bj and 0 otherwise (xij { 0,1 })

The problem is: max n
i=1 

n
j=1 cij xij

s.t. n
i=1 xij = 1  j

 n
j=1 xij = 1  i

b2

b3

bm

.

ELEMENTS POSITIONS

Assignment problem AP

ALGORITMS:

1.Polynomial exact algorithm (O(n3))

2.Hungarian method

Etc.

OTHER VERSIONS:

1.”Minimum” problem

2.”Min max” problem

3.Multicriteria problem

Etc.

Quadratic Assignment Problem QAP

a3

a1

a2

an

b1

b2

b3

bm

.

ELEMENTS POSITIONS

matrix of weights (“flow”) cij

 . . .

 . . .

 . cij .

 . . .

 . . .

 b1 … bj … bn

a1

…

ai

…

an

matrix of disctance dij

 . . .

 . . .

 . dij .

 . . .

 . . .

 b1 … bj … bn

b1

…

bi

…

bn

Quadratic Assignment Problem QAP

A Basic (“flow”) Mathematical Formulation

of the Quadratic Assignment Problem

An assignment of elements { i | i{1,…,n} } to positions (locations) { p(i) },

where p is permutation of numbers {1,…,n },

a set of all possible permutations is  = { p }.

Let us consider two n by n matrices:

(i)a “flow” (or “utility”)matrix C whose (i,j) element represents the flow

between elements (e.g., facilities) i and j, and

(ii)a distance matrix D whose (i,j) (p(i), p(j)) element represents

the distance between locations p(i) and p(j).

With these definitions, the QAP can be written as

max n
i=1 

n
j=1 cij dp(i)p(j)

p  

Quadratic Assignment Problem QAP

ALGORITHMS:

1.Branch & Bound method

2.Relaxation approach

3.Greedy algorithms

4.Genetic algorithms (evolutionary computing)

5.Metaheurstics (i.e., local optimization, hybrid schemes)

BASIC BOOKS:

1.P.M. Pardalos, H. Wolkowicz, (Ed.), Quadratic Assignment and

Related Problems. American Mathematical Society, 1994.

2.E. Cela, The Quadratic Assignment Problem. Kluwer, 1998.

SITES:

1.Quadratic assignment Problem Library: http://www.opt.math.tu-graz.ac.at/qaplib/

Multi–objective Quadratic Assignment Problem QAP

Multi-objective (multicriteria) Assignment Problem

(Quadratic Assignment Problem):

 Elements in matrix of weights (“flows”) are vectors.

ALGORITHMS

1.Branch & Bound method

2.Relaxation approach

3.Greedy algorithms

4.Metaheurstics (i.e., local optimization, hybrid schemes)

5.Multi-objective evolutionary optimization

Generalized Assignment Problem GAP

MAPPING

(one-many)

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

Positions

(agents,

e.g., processor) Set of elements

(e.g., tasks)

1

2

3

4

5

6

Resources

Generalized Assignment Problem GAP

a3

a1

a2

an

b1

FORMULATION (algebraic):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

xij = 1 if ai is located into position bj and 0 otherwise (xij { 0,1 })

The problem 1 is: max n
i=1 

n
j=1 cij xij

s.t. n
i=1 rik xij  Rj  j (Rk is resource of agent k)

 n
j=1 xij = 1  i

b2

b3

bm

.

ELEMENTS

(tasks)

POSITIONS

(agents,

e.g., processors)

RESOURCES

{ Rk }

i j k as j (1…m) one-many

Generalized Assignment Problem GAP (multiple common resources)

a3

a1

a2

an

b1

FORMULATION (algebraic):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

xij = 1 if ai is located into position bj and 0 otherwise (xij { 0,1 })

The problem 2 is: max n
i=1 

n
j=1 cij xij

s.t. m
j=1 

n
i=1 rik xij  Rk  k (common K resources)

 n
j=1 xij = 1  i

b2

b3

bm

.

ELEMENTS

(tasks)

POSITIONS

(agents,

e.g., processors)

RESOURCES

{ Rjk }

i j k (1…K) one-many

Generalized Assignment Problem GAP

ALGORITHMS:

1.Branch & Bound method

2.Relaxation approach

3.Heuristics (greedy algorithms, etc.)

4.Genetic algorithms (evolutionary computing)

5.Metaheurstics (i.e., local optimization, hybrid schemes)

EXTENSION:

1.Multicriteria cases

2.Uncertainty

3.Etc. (e.g., dependence of problem parts,

dependence on time)

String matching

CASE OF 2 WORDS:

A A B B D X

A D A C X Z

String (word) 1

String (word) 2

Z

B

D A B

PATTERNS:

X Z

A = { a1, … an } B = { b1, … bm }

C = { c1, … ck }

EXAMPLE:

3-MATCHING

(3-partite graph)

Multiple matching problem (Lecture 17-18)

ALGORITMS:

1.Enumerative algorithms (e.g., Branch-And-Bound)

2.Heursitcs (e.g., greedy algorithms,

various local optimization techniques)

3.Metaheuristics including hybrid methods

4.Morphological approach

VERSIONS:

1.Dynamical (multi-stage) problem (multiple track assignment)

2.Problem with errors

3.Problem with uncertainty (probabilistic estimates, fuzzy sets)

Etc.

Multiple matching problem (Lecture 17-18)

Usage of assignment problem to define velocity of particles, etc. (Lecture 17-18)

 

FRAME 1 FRAME 2 FRAME 3

VELOCITY SPACE

APPLICATIONS (air/ water environments):

1.Physical experiments

2.Climat science

3.Chemical processes

4.Biotechnological processes

Contemporary sources:

1.PIV systems (laser/optical systems)

2.Sattelite photos

3.Electronic microscope, etc.

List of algorithms for allocation-like problems

1.polynomial algorithms (e.g., Hungarian method, techniques on the basis of

 flow-like ideas, etc.)

2.LP-based algorithms

3.epsilon-approximation polynomial algorithms

4.data-correction algorithms

5.Branch-And-Bound method

6.dynamic programming approach

7.evolutionary and genetic algorithms

8.Bender's decomposition scheme

9.Local optimization techniques as various heuristics

(Tabu-search algorithms, simulated annealing, hybrid schemes etc.)

10.techniques of multiple criteria analysis (e.g., multi-attribute utility analysis,

Analytic Hierarchy Process, ELECTRE outranking method)

11.simulation based approaches

12.polyhedral methods

13.hierarchical approaches including morphological (decomposition) approach

14."constraint satisfaction problem" approach

15.fuzzy methods

16.knowledge-based algorithmic rules

20.neural networks

Evolution chart of allocation-like problems

Basic assignment

problem

Quadratic

assignment

problem

PLUS: distance

matrix for position

Generalized

assignment

problem

PLUS: resource (s)

for positions

Generalized quadratic

assignment problem

Multicriteria

quadratic

assignment

problem

Multicriteria

generalized

assignment

problem

Multicriteria generalized

Quadratic assignment problem

Multicriteria assignment

problem

PLUS:

multicriteria

description

PLUS: distance

matrix for position

PLUS: resource (s)

for positions

PLUS:

multicriteria

description

Application domains of allocation-like problems

1.facility allocation (layout) in manufacturing systems

2.allocation of resources in investment actions

3.allocation of facilities in supply chain management

4.assignment routing problems

5.allocation / layout in VLSI design

6.allocation / layout in the space design of buildings including topological

 / layout in multi-floor building design

7.allocation in architectural planning, e.g., in urban systems (allocation of

buildings and / or components of infrastructure as railway stations, hospitals,

shop-centers, schools, parks, etc.) including site search (selection) problem,

i.e., allocation of sites on a map

8.allocation of emergency service facilities

9.allocation of buffer capacities in production lines

 (including distribution of maintenance operations)

10.allocation of total maintenance investment among products

11.allocation of inspection efforts in various systems (e.g., production systems),

allocation of test positions and test time and optimal allocation of test resources

12.allocation of operations for balance control in assembly lines

13.allocation of human-machine functions

14.portfolio selection (optimization) on the basis of assignment-like models

(e.g., quadratic assignment problem)

15.project tasks assignment

Application domains of allocation-like problems

16.allocation of resources in large team

17.allocation of traffic police resources

18.blood assignment in a donation-transfusion system

19.assignment of papers to reviewers

 20.assignment in sport

21.dynamic storage allocation , note this problem is a complex one and often corresponds to a set

of combinatorial problems including bin-packing, segmentation / partitioning, scheduling, etc.

22.task allocation / assignment in distributed (e.g., computer and / or information) systems

23.allocation of production tasks in a virtual organization

24.information (e.g., databases files, documents) allocation in distributed computer / information

environments and networks, for example, allocation / reallocation of arrived data items

in a distributed information system (a set of servers), placement and replacement

for large-scale distributed cashes in digital libraries or in Internet

25.capacity assignment / allocation in communication networks

26.allocation of Internet resources 27.allocation of resources in e-business infrastructure

28.design of standards

29.multisensor multitarget tracking on the basis of non-linear and multidimensional

assignment problems (e.g., in radar systems)

30.allocation of reliability among components that are to be assembled into a system or

component redundancy allocation

31.assignment problem in experimental high energy physics

32.locomotive assignment to train-segments

Application domains of allocation-like problems

33.assignment / allocation problems in universities (e.g., assignment of

students to exams, assignment of faculty members to courses,

assignment of auditoriums for lectures, allocation of the most

desirous projects to the most qualified students)

34.assignment / allocation of particles / points (particle matching)

in particle image velocimetry (PIV) and particle tracking velocimetry (PTV)

for measurement in fluid mechanics

35.personnel management systems

(e.g., allocation of personnel, allocation of tasks, role assignment)

including assignment of technicians to handle computer system faults

(e.g., hardware, software, communication)

36.allocation of rooms among people

37.allocation of rights (e.g., in social networks for social choice and welfare,

 for participants of electronic financial markets

38.allocation of discrete resources

39.channel and frequency assignment in mobile radio systems

(including dynamical assignment)

40.assigning cells to switches in cellular mobile networks

41.allocation of tolerances in manufacturing systems

42.wavelength allocation on trees of rings for optical communication networks

Application domains of allocation-like problems

43.allocation in medical organizations, for example:

(a) allocation of surgeries to operating rooms, (b) allocation of inpatient resources,

(c) staff assignment problem, (d) the workshift and rest assignment of nursing personnel,

(e) hospital facility layout, (f) bed allocation, (g) organ allocation,

(h) patient assignment, and (i) medical service allocation and reallocation

44.bottleneck allocation methodology for scheduling in manufacturing systems

45.traffic assignment in transportation networks and

in communication / computer networks

46.hierarchical location-allocation problems on networks

47.dynamic allocation of resources in multi-project research and development systems

48.allocation of ecological facilities

49.hierarchical location-allocation of banking facilities

Basic Books on Allocation/ Location Problems

BASIC BOOKS:

1.M.S. Daskin, Networks and Discrete Location. Models, Algorithms, and Applications.

Wiley, 1995.

2.G.Y. Handler, P.B. Mirchandrani, Location on Networks: Theory and Algorithms.

MIT Press, 1979.

3.E. Minieka, Optimization Algorithms for Networks and Graphs. Marcel Dekker, 1978.

4.P.B. Mirchandrani, R.L. Francis, (Eds.), Discrete Location Theory, Wiley, 1990.

5.P.M. Pardalos, H. Wolkowicz, (Ed.), Quadratic Assignment and Related Problems.

American Mathematical Society, 1994.

6.E. Cela, The Quadratic Assignment Problem. Kluwer, 1998.

7.M.I. Rubinshtein, Optimal Grouping of Interconnected Objects, Nauka, (in Russian), 1989.

8.D.Gusfield, R.W. Irwing, The Stable Marriage Problem: Structure and Algorithms,

The MIT Press, 1989.

9.J.Aoe, (Ed.), Computer Algorithms: String Pattern Matching Strategies. IEEE CS Press, 1994.

10.A.I. Barros, Discrete and Fractional Programming Techniques for Location Models.

Kluwer, 1998.

SITES:

1.Dictionary of Algorithms and Data Structure (NIST): http://www.nist.gov/dads/

2.OR-Library by J.E. Beasley: http://www.brunel.ac.uk/depts/research/jeb/info.html

3.Quadratic Assignment Problem Library: http://www.opt.math.tu-graz.ac.at/qaplib/

LECTURE 31. Course: “Design of Systems: Structural Approach”

Dept. “Communication Networks &Systems”, Faculty of Radioengineering & Cybernetics

Moscow Institute of Physics and Technology (University)

Email: mslevin@acm.org / mslevin@iitp.ru

Mark Sh. Levin

Inst. for Information Transmission Problems, RAS

Dec. 10, 2004

L.31. Statisfiability problem. Six basic combinatorial problems. Timetabling.

PLAN:

1.Satisfiablity problem:

*formulation and illustration , *modification, *applications

2.Basic combinatorial problems

(satisfiability, 3-satisfiability, vertex covering, 3-matching, clique, Hamiltonian cycle,

partitioning,)

3.Timetabling problems

*formulation and illustration, *applications, *algorithms and solving schemes, *basic references (papers, sites)

Satisfiability problem

BOOLEAN VARIABLES:

U = x1, x2, x3, … (0 or 1)

LOGICAL OPERATIONS

(AND, OR, NOT):

*logical negation NOT *conjunction AND,

*parentheses for grouping

SET OF BOOLEAN EXPRESSIONS C:

Examples: C1 = (NOT x1) OR x2

 C2 = x1 OR (NOT x3)

 C3 = (NOT x5) OR (NOT x7) OR x9

 C4 = x1 OR x10 OR (NOT x11) OR x22

ALL TRUE (1)

Satisfiability problem

Satisfiability is the original NP-complete problem.

Despite its applications to

*constraint satisfaction,

*logic, and

*automatic theorem proving,

it is perhaps most important theoretically as

the root problem

from which all other NP-completeness proofs originate.

Satisfiability problem

Satisfiability

Satisfiability, or SAT for short, is the following problem:

Given an expression in propositional logic is there a satisfying assignment?

For example, can we assign a value of true or false to each of the variables x, y, z such

that the following expression is true?

(x or y) & (x or not y) &(not x or z) & (not z or not x or not y)

In this case the answer is yes: the satisfying assignment is x=true, y=false, z=true

There is no algorithm known that is guaranteed to solve any problem of this kind

in a time polynomial in the number of variables.

The amazing discovery of Cook and others in the early 70s was

that many natural problems such as scheduling, and many questions in networks,

graphs, etc. can be transformed into the above form (see Garey & Johnson, 1979).

Recently a popular area of interest is SAT-based planning (Kautz and Selman, 92).

In this approach the task of finding

a plan in a given domain is converted to the task of finding a model

for a certain satisfiability problem.

Satisfiability problem

MAXIMUM SATISFIABILITY

INSTANCE: Set U of variables,

collection C of disjunctive clauses of literals,

where a literal is a variable or a negated variable in U.

SOLUTION: A truth assignment for U.

MEASURE:

Number of clauses satisfied by the truth assignment.

Satisfiability problem

APPLICATIONS:

 1.Software Verification

 2.Electronic Design Automation and Verification

 3.Model Analysis

 4.Model Checking

 5.Theorem Prover

 6.AI Planning

Satisfiability problem: illustration for application in software / electronic systems

SYSTEM

x1

xm

xm-1

x2

. . . y (0 or 1)

c1

c2

cn-1

cn

Example: c1 = not x1 OR x2 OR x4 OR not x5 OR x7

 c2 = x1 OR not x2 OR not x3 OR x5 OR x7

 c3 = not x1 OR not x2 OR x3 OR not x5 OR not xn

 c4 = not x2 OR x3 OR x7 OR xn-2 OR xn-1

 . . .

y = c1&c2& … &cn

Literal: xi / not xi

PROBLEM: Exist xo=(x1,…,xn) that y(xo) =1 OR not

3-Satisfiability problem

SYSTEM

x1

xm

xm-1

x2

. . . y (0 or 1)

c1

c2

cn-1

cn

Example: c1 = not x1 OR x2 OR x4
 c2 = x2 OR not x3 OR x7

 c3 = not x1 OR not x5 OR not xn

 c4 = not x2 OR xn-2 OR xn-1

 . . .

y = c1&c2& … &cn

Literal: xi / not xi
3-satisfiability problem:

each cj contains 3 literals

Satisfiability Problem

SATISFIABILITY

3-SATISFIABILITY

3-MATCHING VERTEX COVERING

PARTITIONING

(about knapsack)
HAMILTONIAN CYCLE CLIQUE

BASIC 6 NP-COMPLETE PROBLEMS AND DIAGRAM

3-matching problem

A = { a1, … an }

B = { b1, … bn }

C = { c1, … cn }

|A| = |B| = |C|

PROBLEM: Exist covering by vertex triples (without intersection) OR not

Partitioning problem

Set of elements A = { 1, … , i , … , n }

“weights” of elements { b1, …, bi , … , bn }

PROBLEM: Exist A’  A that

  bi =  bj
 iA’ jA\A’

 OR not

Vertex covering problem

Vertex set A = { a1, … an }, edge set E={e1, …,ek}, graph G = (A, E)

PROBLEM: find vertex covering (A’  A) that covers e  E

Hamiltonian cycle problem

PROBLEM: Exist Hamiltonian cycle OR not

Clique problem

PROBLEM: Exist subgraph as clique with vertex number k OR not

k = 4

Timetabling

BASIC (& CLOSE) COMBINATORIAL MODELS:

1.Graph coloring

2.Assignment / Allocation / Matching problems

3.Marriage problems (e.g., stable marriage problem)

4.Scheduling problems

5.Cyclic scheduling problems

6.Maximum clique problem

7.Combinatorial design (e.g., Latin square)

Etc.

Timetabling

ALGORITHMS AND ALGORITHM SCHEMES:

1.ENUMERATIVE METHODS

2.AI METHODS:

 expert systems (e.g., production-based systems)

 knowledge-based systems

 neural networks

3.CONSTRAINED PROGRAMMING

4.METAHEURISTICS (various local optimization techniques):

 ant colony optimization,

 iterated local search

 simulated annealing

 Tabu search

 genetic algorithms

5.COMBINATORIAL DESIGN

6.EVOLUTIONARY COMPUTATION

 (e.g., multi-objective evolutionary optimization)

7.HYBRID SOLVING SCHEMES

Allocation problem (from lecture 30)

Allocation (assignment, matching, location):

matrix of weights cij

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

 a b c d e f g h

1

2

3

4

5

6

7

8

Positions

(locations,

sites)

Set of elements

(e.g., personnel, facilities)

MAPPING

Allocation problem (from lecture 30)

Allocation (assignment, matching, location):

matrix of weights cij

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

 a b c d e f g h

1

2

3

4

5

6

7

8

Courses

Faculties

(lectures)

MAPPING

Allocation problem (from lecture 30)

Allocation (assignment, matching, location):

matrix of weights cij

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

 a b c d e f g h

1

2

3

4

5

6

7

8

Rooms

(auditoriums)

Student groups
MAPPING

Assignment problem AP (from lecture 30)

a3

a1

a2

an

b1

ANOTHER FORMULATION (algebraic):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

xij = 1 if ai is located into position bj and 0 otherwise (xij { 0,1 })

The problem is: max n
i=1 

n
j=1 cij xij

s.t. n
i=1 xij = 1  j

 n
j=1 xij = 1  i

b2

b3

bm

.

ELEMENTS POSITIONS

(locations)

Quadratic Assignment Problem QAP (from lecture 30)

a3

a1

a2

an

b1

b2

b3

bm

.

ELEMENTS POSITIONS

matrix of weights (“flow”) cij

 . . .

 . . .

 . cij .

 . . .

 . . .

 b1 … bj … bn

a1

…

ai

…

an

matrix of disctance dij

 . . .

 . . .

 . dij .

 . . .

 . . .

 b1 … bj … bn

b1

…

bi

…

bn

Quadratic Assignment Problem QAP

A Basic (“flow”) Mathematical Formulation

of the Quadratic Assignment Problem

An assignment of elements { i | i{1,…,n} } to positions (locations) { p(i) },

where p is permutation of numbers {1,…,n },

a set of all possible permutations is  = { p }.

Let us consider two n by n matrices:

(i)a “flow” (or “utility”)matrix C whose (i,j) element represents the flow

between elements (e.g., facilities) i and j, and

(ii)a distance matrix D whose (i,j) (p(i), p(j)) element represents

the distance between locations p(i) and p(j).

With these definitions, the QAP can be written as

max n
i=1 

n
j=1 cij dp(i)p(j)

p  

Generalized Assignment Problem GAP (from lecture 30)

MAPPING

(one-many)

BIPARTITE GRAPH

1

2

3

4

5

6

7

8

a

b

c

d

e

f

g

h

Positions

(auditoriums)
Set of elements

(e.g., groups)

1

2

3

4

5

6

Resources

(time, equipment)

Generalized Assignment Problem GAP (from lecture 30)

a3

a1

a2

an

b1

FORMULATION (algebraic):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

xij = 1 if ai is located into position bj and 0 otherwise (xij { 0,1 })

The problem 1 is: max n
i=1 

n
j=1 cij xij

s.t. n
i=1 rik xij  Rj  j (Rk is resource of agent k)

 n
j=1 xij = 1  i

b2

b3

bm

.

ELEMENTS

(tasks)

POSITIONS

(agents,

e.g., processors)

RESOURCES

{ Rk }

i j k as j (1…m) one-many

Generalized Assignment Problem GAP (multiple common resources) (from lecture 30)

a3

a1

a2

an

b1

FORMULATION (algebraic):

Set of elements (e.g., personnel, facilities, tasks): A = { a1 , … , ai , … , an }

Set of positions (e.g., locations, processors) B = { b1 , … , bj , … . bm }

(now let n = m)

Effectiveness of pair ai and bj is: c (ai , bj)

xij = 1 if ai is located into position bj and 0 otherwise (xij { 0,1 })

The problem 2 is: max n
i=1 

n
j=1 cij xij

s.t. m
j=1 

n
i=1 rik xij  Rk  k (common K resources)

 n
j=1 xij = 1  i

b2

b3

bm

.

ELEMENTS

(tasks)

POSITIONS

(agents,

e.g., processors)

RESOURCES

{ Rjk }

i j k (1…K) one-many

Timetabling problem: PLUS time (cycles)

A = { a1, … an } B = { b1, … bm }

C = { c1, … ck }

EXAMPLE:

3-MATCHING

(3-partite graph)

FACULTY

COURSE

(student

group)

AUDITORIUM

(time)

0 t
T 2T

Timetabling problem: constraints

CONSTRAINTS (examples):

FOR LECTURERS:

Lecturer 2 can teach only on Monday and Friday (lecturers - time)

Lecture 11 must be after Lecturer 12 (over lecturers)

Lecturers 5 and 7 can teach only in auditoriums 9 or 10 (lecturers-auditoriums)

FOR STUDENT GROUPS:

Group 1 needs auditorium 5 on Monday morning (groups - time)

Groups 7, 8, and 9 must have the same Lecturer 1 (the same course)

 (groups - lecturers) * (groups - groups)

Group 4 prefers Lecturer 10 (groups - lecturers)

Group 5 needs Lecturer 5 & Lecturer 8 as time neighbors (groups - lecturers)

FOR AUDITORIUMS:

Auditorium 1 is maintained on Wednesday (closed) (auditoriums - time)

Auditorium 4 corresponds only for groups 5, 7, 8, and 9 (auditoriums - groups)

Timetabling problem: constraints

TYPES OF CONSTRAINTS (by elements):

Lecturers – lecturers

Lecturers - groups

Lecturers-auditoriums

Lecturers - time

Groups - groups

Groups – auditoriums

Groups - time

Auditoriums – auditoriums

Auditoriums - time

TYPES OF CONSTRAINTS (by kind):

Logical (e.g., binary relations)

Quantitative (e.g., resource constraints)

Timetabling problem: illustration for constraints

A = { a1, … an } B = { b1, … bm }

C = { c1, … ck }

FACULTY
COURSE

(student

group)

AUDITORIUM

(time)

0 t
T 2T

Prospective application domains for timetabling problems

1.SCHEDULING IN COMMUNICATION SYSTEMS

 AS COMMUNICATION TIMETABLING

2.SCHEDULING IN MONITORIG SYSTEMS

 AS MONITORING TIMETBLING

Timetabling: sport example

G.L. Nemhauser, M.A. Trick, Scheduling a major college basketball conference.

 Operations Research, 46(1), 1-8, 1998.

FORMULATION, DATA & CONSTRAINS:

1.Basic objects: teams, slots (weekday slots, weekend slots),

each team plays twice in a week,8 home slots, 8 away slots

2. Constraints for teams and slots: home slots, away slots, chain: home-away-etc.

3. Patterns and constraints: <= 2 away games, <= 2 home games

4.Team paring constraints: candidates of team pair (from previous schedule)

SOLVING SCHEME:

STEP 1. A pattern is a string of H (home), A (away), and B (bye).

Examples: HAA, HBW

To find a set of pattern, example: HHA, AHA, HAH, AAH (teams a, b, c, d)

(enumeration & integer programming)

STEP 2. To assign games to the patterns. This is timetabling

(integer programming)

STEP 3. To assign teams to the patterns. This with patterns gives schedule

(quadratic assignment problem)

COMPUTING: 24 hours

